1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdint.h>
#include <array>
#include <memory>
#include <tuple>
#include "base/containers/heap_array.h"
#include "base/functional/bind.h"
#include "base/notimplemented.h"
#include "base/run_loop.h"
#include "base/task/sequenced_task_runner.h"
#include "build/build_config.h"
#include "cc/test/pixel_test_utils.h"
#include "cc/test/render_pass_test_utils.h"
#include "components/viz/common/frame_sinks/copy_output_request.h"
#include "components/viz/common/frame_sinks/copy_output_result.h"
#include "components/viz/common/frame_sinks/copy_output_util.h"
#include "components/viz/common/quads/compositor_render_pass.h"
#include "components/viz/service/display/viz_pixel_test.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/libyuv/include/libyuv.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkColor.h"
#include "ui/gfx/geometry/point.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/size.h"
#include "ui/gfx/geometry/vector2d.h"
namespace viz {
namespace {
class CopyOutputScalingPixelTest
: public VizPixelTest,
public testing::WithParamInterface<std::tuple<RendererType,
gfx::Vector2d,
gfx::Vector2d,
CopyOutputResult::Format>> {
public:
CopyOutputScalingPixelTest() : VizPixelTest(std::get<0>(GetParam())) {}
DirectRenderer* renderer() { return renderer_.get(); }
void SetUp() override {
VizPixelTest::SetUp();
scale_from_ = std::get<1>(GetParam());
scale_to_ = std::get<2>(GetParam());
result_format_ = std::get<3>(GetParam());
}
// This tests that copy requests requesting scaled results execute correctly.
// The test procedure creates a scene similar to the wall art that can be
// found in the stairwell of a certain Google office building: A white
// background" (W=white) and four blocks of different colors (r=red, g=green,
// b=blue, y=yellow).
//
// WWWWWWWWWWWWWWWWWWWWWWWW
// WWWWWWWWWWWWWWWWWWWWWWWW
// WWWWrrrrWWWWWWWWggggWWWW
// WWWWrrrrWWWWWWWWggggWWWW
// WWWWWWWWWWWWWWWWWWWWWWWW
// WWWWWWWWWWWWWWWWWWWWWWWW
// WWWWbbbbWWWWWWWWyyyyWWWW
// WWWWbbbbWWWWWWWWyyyyWWWW
// WWWWWWWWWWWWWWWWWWWWWWWW
// WWWWWWWWWWWWWWWWWWWWWWWW
//
// The scene is drawn, which also causes the copy request to execute. Then,
// the resulting bitmap is compared against an expected bitmap.
void RunTest() {
const char* result_format_as_str = "<unknown>";
// Tests only issue requests for system-memory destinations, no need to
// take the destination into account:
if (result_format_ == CopyOutputResult::Format::RGBA)
result_format_as_str = "RGBA";
else if (result_format_ == CopyOutputResult::Format::I420_PLANES)
result_format_as_str = "I420_PLANES";
else
NOTIMPLEMENTED();
SCOPED_TRACE(testing::Message()
<< "scale_from=" << scale_from_.ToString()
<< ", scale_to=" << scale_to_.ToString()
<< ", result_format=" << result_format_as_str);
// These need to be large enough to prevent odd-valued coordinates when
// testing I420_PLANES requests. The requests would still work with
// odd-valued coordinates, but the pixel comparisons at the end of the test
// will fail due to off-by-one chroma reconstruction. That behavior is WAI,
// though, since clients making CopyOutputRequests should always align to
// even-valued coordinates!
constexpr gfx::Size viewport_size = gfx::Size(48, 20);
constexpr int x_block = 8;
constexpr int y_block = 4;
constexpr std::array<SkColor4f, 4> smaller_pass_colors = {
SkColors::kRed,
SkColors::kGreen,
SkColors::kBlue,
SkColors::kYellow,
};
constexpr SkColor4f root_pass_color = SkColors::kWhite;
AggregatedRenderPassList list;
// Create the render passes drawn on top of the root render pass.
std::array<AggregatedRenderPass*, 4> smaller_passes;
std::array<gfx::Rect, 4> smaller_pass_rects;
AggregatedRenderPassId pass_id{5};
for (int i = 0; i < 4;
++i, pass_id = AggregatedRenderPassId{pass_id.value() - 1}) {
smaller_pass_rects[i] = gfx::Rect(
i % 2 == 0 ? x_block : (viewport_size.width() - 2 * x_block),
i / 2 == 0 ? y_block : (viewport_size.height() - 2 * y_block),
x_block, y_block);
smaller_passes[i] =
AddRenderPass(&list, pass_id, smaller_pass_rects[i], gfx::Transform(),
cc::FilterOperations());
cc::AddQuad(smaller_passes[i], smaller_pass_rects[i],
smaller_pass_colors[i]);
}
// Create the root render pass and add all the child passes to it.
auto* root_pass =
cc::AddRenderPass(&list, pass_id, gfx::Rect(viewport_size),
gfx::Transform(), cc::FilterOperations());
for (int i = 0; i < 4; ++i)
cc::AddRenderPassQuad(root_pass, smaller_passes[i]);
cc::AddQuad(root_pass, gfx::Rect(viewport_size), root_pass_color);
// Make a copy request and execute it by drawing a frame. A subset of the
// viewport is requested, to test that scaled offsets are being computed
// correctly as well.
const gfx::Rect copy_rect(x_block, y_block,
viewport_size.width() - 2 * x_block,
viewport_size.height() - 2 * y_block);
std::unique_ptr<CopyOutputResult> result;
{
base::RunLoop loop;
// Add a copy request to the root RenderPass, to capture the results of
// drawing all passes for this frame.
auto request = std::make_unique<CopyOutputRequest>(
result_format_, CopyOutputRequest::ResultDestination::kSystemMemory,
base::BindOnce(
[](std::unique_ptr<CopyOutputResult>* test_result,
const base::RepeatingClosure& quit_closure,
std::unique_ptr<CopyOutputResult> result_from_renderer) {
*test_result = std::move(result_from_renderer);
quit_closure.Run();
},
&result, loop.QuitClosure()));
request->set_result_selection(
copy_output::ComputeResultRect(copy_rect, scale_from_, scale_to_));
request->SetScaleRatio(scale_from_, scale_to_);
// Ensure the result callback is run on test main thread.
request->set_result_task_runner(
base::SequencedTaskRunner::GetCurrentDefault());
list.back()->copy_requests.push_back(std::move(request));
SurfaceDamageRectList surface_damage_rect_list;
renderer()->DrawFrame(&list, 1.0f, viewport_size,
gfx::DisplayColorSpaces(),
std::move(surface_damage_rect_list));
// Call SwapBuffersSkipped(), so the renderer can release related
// resources.
renderer()->SwapBuffersSkipped();
loop.Run();
}
// Check that the result succeeded and provides a bitmap of the expected
// size.
const gfx::Rect expected_result_rect =
copy_output::ComputeResultRect(copy_rect, scale_from_, scale_to_);
EXPECT_EQ(expected_result_rect, result->rect());
EXPECT_EQ(result_format_, result->format());
std::optional<CopyOutputResult::ScopedSkBitmap> scoped_bitmap;
SkBitmap result_bitmap;
if (result_format_ == CopyOutputResult::Format::I420_PLANES) {
result_bitmap = ReadI420ResultToSkBitmap(*result);
} else {
scoped_bitmap = result->ScopedAccessSkBitmap();
result_bitmap = scoped_bitmap->bitmap();
}
ASSERT_TRUE(result_bitmap.readyToDraw());
ASSERT_EQ(expected_result_rect.width(), result_bitmap.width());
ASSERT_EQ(expected_result_rect.height(), result_bitmap.height());
// Create the "expected result" bitmap.
SkBitmap expected_bitmap;
expected_bitmap.allocN32Pixels(expected_result_rect.width(),
expected_result_rect.height());
expected_bitmap.eraseColor(root_pass_color);
for (int i = 0; i < 4; ++i) {
gfx::Rect rect = smaller_pass_rects[i] - copy_rect.OffsetFromOrigin();
rect = copy_output::ComputeResultRect(rect, scale_from_, scale_to_);
expected_bitmap.erase(
smaller_pass_colors[i],
SkIRect{rect.x(), rect.y(), rect.right(), rect.bottom()});
}
// Do an approximate comparison of the result bitmap to the expected one to
// confirm the position and size of the color values in the result is
// correct. Allow for pixel values to be a bit off for two reasons:
//
// 1. The scaler algorithms are not using a naïve box filter, and so will
// blend things together at edge boundaries.
// 2. In the case of an I420 format request, the chroma is at half-
// resolution, and so there can be "fuzzy color blending" at the edges
// between the color rects.
int num_bad_pixels = 0;
gfx::Point first_failure_position;
for (int y = 0; y < expected_bitmap.height(); ++y) {
for (int x = 0; x < expected_bitmap.width(); ++x) {
const SkColor4f expected = expected_bitmap.getColor4f(x, y);
const SkColor4f actual = result_bitmap.getColor4f(x, y);
const bool red_bad = (expected.fR < 0.5f) != (actual.fR < 0.5f);
const bool green_bad = (expected.fG < 0.5f) != (actual.fG < 0.5f);
const bool blue_bad = (expected.fB < 0.5f) != (actual.fB < 0.5f);
const bool alpha_bad = (expected.fA < 0.5f) != (actual.fA < 0.5f);
if (red_bad || green_bad || blue_bad || alpha_bad) {
if (num_bad_pixels == 0)
first_failure_position = gfx::Point(x, y);
++num_bad_pixels;
}
}
}
EXPECT_EQ(0, num_bad_pixels)
<< "First failure position at: " << first_failure_position.ToString()
<< "\nExpected bitmap: " << cc::GetPNGDataUrl(expected_bitmap)
<< "\nActual bitmap: " << cc::GetPNGDataUrl(result_bitmap);
}
private:
// Calls result.ReadI420Planes() and then converts the I420 format back to a
// SkBitmap for comparison with the expected bitmap.
static SkBitmap ReadI420ResultToSkBitmap(const CopyOutputResult& result) {
const int result_width = result.rect().width();
const int result_height = result.rect().height();
// Calculate width/height/stride for each plane and allocate temporary
// buffers to hold the pixels. Note that the strides for each plane are
// being set differently to test that the arguments are correctly plumbed-
// through.
const int y_width = result_width;
const int y_stride = y_width + 7;
auto y_data = base::HeapArray<uint8_t>::Uninit(y_stride * result_height);
const int chroma_width = (result_width + 1) / 2;
const int u_stride = chroma_width + 11;
const int v_stride = chroma_width + 17;
const int chroma_height = (result_height + 1) / 2;
auto u_data = base::HeapArray<uint8_t>::Uninit(u_stride * chroma_height);
auto v_data = base::HeapArray<uint8_t>::Uninit(v_stride * chroma_height);
// Do the read.
const bool success = result.ReadI420Planes(y_data, y_stride, u_data,
u_stride, v_data, v_stride);
CHECK(success);
// Convert to an SkBitmap.
SkBitmap bitmap;
bitmap.allocPixels(SkImageInfo::Make(result_width, result_height,
kBGRA_8888_SkColorType,
kPremul_SkAlphaType));
const int error_code = libyuv::I420ToARGB(
y_data.data(), y_stride, u_data.data(), u_stride, v_data.data(),
v_stride, static_cast<uint8_t*>(bitmap.getPixels()), bitmap.rowBytes(),
result_width, result_height);
CHECK_EQ(0, error_code);
return bitmap;
}
gfx::Vector2d scale_from_;
gfx::Vector2d scale_to_;
CopyOutputResult::Format result_format_;
};
// Parameters common to all test instantiations. These are tuples consisting of
// {scale_from, scale_to, i420_format}.
const auto kParameters =
testing::Combine(testing::ValuesIn(GetRendererTypes()),
testing::Values(gfx::Vector2d(1, 1),
gfx::Vector2d(2, 1),
gfx::Vector2d(1, 2),
gfx::Vector2d(2, 2)),
testing::Values(gfx::Vector2d(1, 1),
gfx::Vector2d(2, 1),
gfx::Vector2d(1, 2)),
testing::Values(CopyOutputResult::Format::RGBA,
CopyOutputResult::Format::I420_PLANES));
TEST_P(CopyOutputScalingPixelTest, ScaledCopyOfDrawnFrame) {
RunTest();
}
INSTANTIATE_TEST_SUITE_P(, CopyOutputScalingPixelTest, kParameters);
} // namespace
} // namespace viz
|