1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
|
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "components/viz/service/frame_sinks/video_capture/video_capture_overlay.h"
#include <algorithm>
#include <cmath>
#include <optional>
#include <string>
#include <utility>
#include "base/containers/heap_array.h"
#include "base/functional/bind.h"
#include "base/numerics/safe_conversions.h"
#include "base/strings/stringprintf.h"
#include "base/trace_event/trace_event.h"
#include "media/base/limits.h"
#include "media/base/video_frame.h"
#include "media/base/video_types.h"
#include "media/base/video_util.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkColorSpace.h"
#include "third_party/skia/include/core/SkImageInfo.h"
#include "ui/gfx/geometry/point.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/rect_f.h"
using media::VideoFrame;
using media::VideoPixelFormat;
namespace viz {
VideoCaptureOverlay::FrameSource::~FrameSource() = default;
VideoCaptureOverlay::VideoCaptureOverlay(
FrameSource& frame_source,
mojo::PendingReceiver<mojom::FrameSinkVideoCaptureOverlay> receiver)
: frame_source_(frame_source), receiver_(this, std::move(receiver)) {
receiver_.set_disconnect_handler(
base::BindOnce(&FrameSource::OnOverlayConnectionLost,
base::Unretained(frame_source_), this));
}
VideoCaptureOverlay::~VideoCaptureOverlay() = default;
void VideoCaptureOverlay::SetImageAndBounds(const SkBitmap& image,
const gfx::RectF& bounds) {
const gfx::Rect old_rect = ComputeSourceMutationRect();
image_ = image;
bounds_ = bounds;
image_.setImmutable();
// Reset the cached sprite since the source image has been changed.
sprite_ = nullptr;
const gfx::Rect new_rect = ComputeSourceMutationRect();
if (!new_rect.IsEmpty() || !old_rect.IsEmpty()) {
frame_source_->InvalidateRect(old_rect);
frame_source_->InvalidateRect(new_rect);
frame_source_->RefreshNow();
}
}
void VideoCaptureOverlay::SetBounds(const gfx::RectF& bounds) {
if (bounds_ != bounds) {
const gfx::Rect old_rect = ComputeSourceMutationRect();
bounds_ = bounds;
const gfx::Rect new_rect = ComputeSourceMutationRect();
if (!new_rect.IsEmpty() || !old_rect.IsEmpty()) {
frame_source_->InvalidateRect(old_rect);
frame_source_->InvalidateRect(new_rect);
frame_source_->RefreshNow();
}
}
}
namespace {
// Scales a |relative| rect having coordinates in the range [0.0,1.0) by the
// given |span|, snapping all coordinates to even numbers.
gfx::Rect ToAbsoluteBoundsForI420(const gfx::RectF& relative,
const gfx::Rect& span) {
const float absolute_left = std::fma(relative.x(), span.width(), span.x());
const float absolute_top = std::fma(relative.y(), span.height(), span.y());
const float absolute_right =
std::fma(relative.right(), span.width(), span.x());
const float absolute_bottom =
std::fma(relative.bottom(), span.height(), span.y());
// Compute the largest I420-friendly Rect that is fully-enclosed by the
// absolute rect. Use saturated_cast<> to restrict all extreme results [and
// Inf and NaN] to a safe range of integers.
const int snapped_left =
base::saturated_cast<int16_t>(std::ceil(absolute_left / 2.0f)) * 2;
const int snapped_top =
base::saturated_cast<int16_t>(std::ceil(absolute_top / 2.0f)) * 2;
const int snapped_right =
base::saturated_cast<int16_t>(std::floor(absolute_right / 2.0f)) * 2;
const int snapped_bottom =
base::saturated_cast<int16_t>(std::floor(absolute_bottom / 2.0f)) * 2;
return gfx::Rect(snapped_left, snapped_top,
std::max(0, snapped_right - snapped_left),
std::max(0, snapped_bottom - snapped_top));
}
// Uses the mapping of a region R that exists in coordinate system A
// as |from_region| and in coordinate system B as |to_region|. The |source|
// rectangle is in coordinate system A and mapped to coordinate system B
// in three steps:
// 1. translate to remove the origin of the old coordinate space.
// 2. scale values to the new space.
// 3. translate to add the origin of the new coordinate space.
gfx::Rect Transform(const gfx::Rect& source,
const gfx::Rect& from_region,
const gfx::Rect& to_region) {
// Transforming from or to a zero space is undefined behavior.
if (from_region.IsEmpty() || to_region.IsEmpty())
return {};
const gfx::Vector2dF scale{static_cast<float>(to_region.width()) /
static_cast<float>(from_region.width()),
static_cast<float>(to_region.height()) /
static_cast<float>(from_region.height())};
const gfx::Rect old_translated =
gfx::Rect(source.x() - from_region.x(), source.y() - from_region.y(),
source.width(), source.height());
const gfx::Rect scaled =
gfx::ScaleToEnclosingRect(old_translated, scale.x(), scale.y());
const gfx::Rect new_translated =
gfx::Rect(scaled.x() + to_region.x(), scaled.y() + to_region.y(),
scaled.width(), scaled.height());
return media::MinimallyShrinkRectForI420(new_translated);
}
} // namespace
std::string VideoCaptureOverlay::CapturedFrameProperties::ToString() const {
return base::StringPrintf(
"%s from %s into %s via transform %s, format %s",
region_properties.render_pass_subrect.ToString().c_str(),
region_properties.root_render_pass_size.ToString().c_str(),
content_rect.ToString().c_str(),
region_properties.transform_to_root.ToString().c_str(),
media::VideoPixelFormatToString(format).c_str());
}
std::string VideoCaptureOverlay::BlendInformation::ToString() const {
return base::StringPrintf(
"source_region=%s, source_region_scaled=%s, "
"destination_region_content=%s",
source_region.ToString().c_str(), source_region_scaled.ToString().c_str(),
destination_region_content.ToString().c_str());
}
std::optional<VideoCaptureOverlay::BlendInformation>
VideoCaptureOverlay::CalculateBlendInformation(
const CapturedFrameProperties& properties) const {
const auto& compositor_frame_rect =
gfx::Rect(properties.region_properties.root_render_pass_size);
const gfx::Rect compositor_frame_subrect =
properties.region_properties.transform_to_root.MapRect(
properties.region_properties.render_pass_subrect);
// The sub region should always be a subset of the frame region.
CHECK(compositor_frame_rect.Contains(compositor_frame_subrect));
// If there's no image set yet, punt.
if (image_.drawsNothing() || bounds_.IsEmpty()) {
return std::nullopt;
}
// Determine the bounds of the sprite to be blended onto the video frame. The
// calculations here align to the 2x2 pixel-quads, since dealing with
// fractions or partial I420 chroma plane alpha-blending would greatly
// complexify the blitting algorithm later on. This introduces a little
// inaccuracy in the size and position of the overlay in the final result, but
// should be an acceptable trade-off for all use cases.
//
// Rescale the relative bounds (scoped between [0, 1]) to absolute bounds
// based on the entire region of the frame sink being captured. This allows
// for calculations such as mouse cursor position (which is retrieved in
// relationship to the entire tab or window) to be scaled properly.
const gfx::Rect bounds_in_compositor_space =
ToAbsoluteBoundsForI420(bounds_, compositor_frame_rect);
// If the sprite that we want to render does not fall within the subregion
// that we are capturing, punt.
if (!bounds_in_compositor_space.Intersects(compositor_frame_subrect)) {
return std::nullopt;
}
// The bounds are currently in the coordinate space of the captured compositor
// frame, however blending may be done in the coordinate space of the
// outputted video frame and must be scaled and translated.
const gfx::Rect bounds_in_content_space =
Transform(bounds_in_compositor_space, compositor_frame_subrect,
properties.content_rect);
// If the sprite's size will be unreasonably large, punt.
if (bounds_in_content_space.width() > media::limits::kMaxDimension ||
bounds_in_content_space.height() > media::limits::kMaxDimension) {
return std::nullopt;
}
// Now let's see where the scaled sprite will be placed in the video frame.
// By intersecting, we will check if the entire sprite fits in the frame,
// and if not, we will calculate which part of the sprite will be blended.
// |blit_rect| is the region of the video frame that we will write into.
const gfx::Rect blit_rect =
gfx::IntersectRects(bounds_in_content_space, properties.content_rect);
// If the scaled sprite's size is empty, punt.
if (blit_rect.IsEmpty()) {
return std::nullopt;
}
// Compute the left-most and top-most pixel to source from the transformed
// image. This is usually (0,0) unless only part of the sprite is being
// blended (i.e., cropped at the edge(s) of the video frame):
const gfx::Rect source_region_scaled =
gfx::Rect(blit_rect.origin() - bounds_in_content_space.OffsetFromOrigin(),
blit_rect.size());
// Scaling is determined by the ratio of the |image_| size to
// |bounds_in_content_space| size - we know the size of the scaled region, so
// use the ratio to compute the unscaled region:
float scale_x = static_cast<float>(image_.dimensions().width()) /
bounds_in_content_space.width();
float scale_y = static_cast<float>(image_.dimensions().height()) /
bounds_in_content_space.height();
const gfx::Rect source_region =
gfx::ScaleToEnclosingRect(source_region_scaled, scale_x, scale_y);
// If the unscaled source region is empty, punt.
if (source_region.IsEmpty()) {
return std::nullopt;
}
return BlendInformation{source_region, source_region_scaled,
bounds_in_content_space};
}
VideoCaptureOverlay::OnceRenderer VideoCaptureOverlay::MakeRenderer(
const CapturedFrameProperties& properties) {
std::optional<VideoCaptureOverlay::BlendInformation> blend_information =
CalculateBlendInformation(properties);
if (!blend_information) {
return {};
}
// Sprite cares about scaled source region, as it will blend from a
// transformed image:
gfx::Rect src_rect = blend_information->source_region_scaled;
// Sprite cares about content's destination region, as it will blend into the
// video frame:
gfx::Rect dst_rect = blend_information->destination_region_content;
// If the cached sprite does not match the computed scaled size and/or
// pixel format, create a new instance for this (and future) renderers.
if (!sprite_ || sprite_->size() != dst_rect.size() ||
sprite_->format() != properties.format) {
sprite_ = base::MakeRefCounted<Sprite>(image_, dst_rect.size(),
properties.format);
}
dst_rect.Intersect(properties.content_rect);
if (dst_rect.IsEmpty())
return {};
return base::BindOnce(&Sprite::Blend, sprite_, src_rect, dst_rect);
}
// static
VideoCaptureOverlay::OnceRenderer VideoCaptureOverlay::MakeCombinedRenderer(
const std::vector<VideoCaptureOverlay*>& overlays,
const CapturedFrameProperties& properties) {
if (overlays.empty())
return {};
std::vector<OnceRenderer> renderers;
for (VideoCaptureOverlay* overlay : overlays) {
renderers.emplace_back(overlay->MakeRenderer(properties));
if (renderers.back().is_null()) {
renderers.pop_back();
}
}
if (renderers.empty())
return {};
return base::BindOnce(
[](std::vector<OnceRenderer> renderers, VideoFrame* frame) {
for (OnceRenderer& renderer : renderers) {
std::move(renderer).Run(frame);
}
},
std::move(renderers));
}
gfx::Rect VideoCaptureOverlay::ComputeSourceMutationRect() const {
if (!image_.drawsNothing() && !bounds_.IsEmpty()) {
const gfx::Size& source_size = frame_source_->GetSourceSize();
gfx::Rect result = gfx::ToEnclosingRect(
gfx::ScaleRect(bounds_, source_size.width(), source_size.height()));
result.Intersect(gfx::Rect(source_size));
return result;
}
return {};
}
VideoCaptureOverlay::Sprite::Sprite(const SkBitmap& image,
const gfx::Size& size,
const VideoPixelFormat format)
: image_(image), size_(size), format_(format) {
CHECK(!image_.isNull());
}
VideoCaptureOverlay::Sprite::~Sprite() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
}
namespace {
// Returns the pointer to the element at the |offset| position, given a pointer
// to the element for (0,0) in a row-major image plane.
template <typename Pointer>
Pointer PositionPointerInPlane(Pointer plane_begin,
int stride,
const gfx::Point& offset) {
return plane_begin + (offset.y() * stride) + offset.x();
}
// Returns the pointer to the element at the |offset| position, given a pointer
// to the element for (0,0) in a row-major bitmap with 4 elements per pixel.
template <typename Pointer>
Pointer PositionPointerARGB(Pointer pixels_begin,
int stride,
const gfx::Point& offset) {
return pixels_begin + (offset.y() * stride) + (4 * offset.x());
}
// Transforms the lower 8 bits of |value| from the [0,255] range to the
// normalized floating-point [0.0,1.0] range.
float From255(uint8_t value) {
return value / 255.0f;
}
// Transforms the value from the normalized floating-point [0.0,1.0] range to an
// unsigned int in the [0,255] range, capping any out-of-range values.
uint32_t ToClamped255(float value) {
value = std::fma(value, 255.0f, 0.5f /* rounding */);
return base::saturated_cast<uint8_t>(value);
}
} // namespace
void VideoCaptureOverlay::Sprite::Blend(const gfx::Rect& src_rect,
const gfx::Rect& dst_rect,
VideoFrame* frame) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
CHECK(frame);
CHECK(frame->visible_rect().Contains(dst_rect))
<< "frame->visible_rect()=" << frame->visible_rect().ToString()
<< ", dst_rect=" << dst_rect.ToString();
CHECK(gfx::Rect(size_).Contains(src_rect))
<< "size_=" << size_.ToString() << ", src_rect=" << src_rect.ToString();
CHECK_EQ(format_, frame->format());
CHECK(!dst_rect.IsEmpty())
<< ": frame->visible_rect()=" << frame->visible_rect().ToString()
<< ", dst_rect=" << dst_rect.ToString();
CHECK(frame->ColorSpace().IsValid());
TRACE_EVENT("gpu.capture", "VideoCaptureOverlay::Sprite::Blend", "x",
dst_rect.x(), "y", dst_rect.y());
if (!transformed_image_ || color_space_ != frame->ColorSpace()) {
color_space_ = frame->ColorSpace();
TransformImage();
}
gfx::Point src_origin = src_rect.origin();
// Blit the sprite (src) onto the video frame (dest). One of two algorithms is
// used, depending on the video frame's format, as the blending calculations
// and data layout/format are different.
switch (frame->format()) {
case media::PIXEL_FORMAT_I420: {
// Core assumption: All coordinates are aligned to even-numbered
// coordinates.
CHECK_EQ(src_origin.x() % 2, 0);
CHECK_EQ(src_origin.y() % 2, 0);
CHECK_EQ(dst_rect.x() % 2, 0);
CHECK_EQ(dst_rect.y() % 2, 0);
CHECK_EQ(dst_rect.width() % 2, 0);
CHECK_EQ(dst_rect.height() % 2, 0);
// Helper function to execute a "SrcOver" blit from |src| to |dst|, and
// store the results back in |dst|.
const auto BlitOntoPlane = [](const gfx::Size& blit_size, int src_stride,
const float* src, const float* under_weight,
int dst_stride, uint8_t* dst) {
for (int row = 0; row < blit_size.height(); ++row, src += src_stride,
under_weight += src_stride, dst += dst_stride) {
for (int col = 0; col < blit_size.width(); ++col) {
dst[col] = base::saturated_cast<uint8_t>(
dst[col] * under_weight[col] + 255.0f * src[col] + 0.5f);
}
}
};
// Blit the Y plane: |src| points to the pre-multiplied luma values, while
// |under_weight| points to the "one minus src alpha" values. Both have
// the same stride, |src_stride|.
int src_stride = size_.width();
const float* under_weight = PositionPointerInPlane(
transformed_image_.get(), src_stride, src_origin);
const int num_pixels = size_.GetArea();
const float* src = under_weight + num_pixels;
// Likewise, start |dst| at the upper-left-most pixel within the video
// frame's Y plane that will be SrcOver'ed.
int dst_stride = frame->stride(VideoFrame::Plane::kY);
uint8_t* dst = PositionPointerInPlane(
frame->GetWritableVisibleData(VideoFrame::Plane::kY), dst_stride,
dst_rect.origin());
BlitOntoPlane(dst_rect.size(), src_stride, src, under_weight, dst_stride,
dst);
// Blit the U and V planes similarly to the Y plane, but reduce all
// coordinates by 2x2.
src_stride = size_.width() / 2;
src_origin = gfx::Point(src_origin.x() / 2, src_origin.y() / 2);
under_weight = PositionPointerInPlane(
transformed_image_.get() + 2 * num_pixels, src_stride, src_origin);
const int num_chroma_pixels = size_.GetArea() / 4;
src = under_weight + num_chroma_pixels;
dst_stride = frame->stride(VideoFrame::Plane::kU);
const gfx::Rect chroma_blit_rect(dst_rect.x() / 2, dst_rect.y() / 2,
dst_rect.width() / 2,
dst_rect.height() / 2);
dst = PositionPointerInPlane(
frame->GetWritableVisibleData(VideoFrame::Plane::kU), dst_stride,
chroma_blit_rect.origin());
BlitOntoPlane(chroma_blit_rect.size(), src_stride, src, under_weight,
dst_stride, dst);
src += num_chroma_pixels;
dst_stride = frame->stride(VideoFrame::Plane::kV);
dst = PositionPointerInPlane(
frame->GetWritableVisibleData(VideoFrame::Plane::kV), dst_stride,
chroma_blit_rect.origin());
BlitOntoPlane(chroma_blit_rect.size(), src_stride, src, under_weight,
dst_stride, dst);
break;
}
case media::PIXEL_FORMAT_ARGB: {
// Start |src| at the upper-left-most pixel within |transformed_image_|
// that will be blitted.
const int src_stride = size_.width() * 4;
const float* src =
PositionPointerARGB(transformed_image_.get(), src_stride, src_origin);
// Likewise, start |dst| at the upper-left-most pixel within the video
// frame that will be SrcOver'ed.
const int dst_stride = frame->stride(VideoFrame::Plane::kARGB);
CHECK_EQ(dst_stride % sizeof(uint32_t), 0u);
uint8_t* dst = PositionPointerARGB(
frame->GetWritableVisibleData(VideoFrame::Plane::kARGB), dst_stride,
dst_rect.origin());
CHECK_EQ((dst - frame->visible_data(VideoFrame::Plane::kARGB)) %
sizeof(uint32_t),
0u);
// Blend each sprite pixel over the corresponding pixel in the video
// frame, and store the result back in the video frame. Note that the
// video frame format does NOT have color values pre-multiplied by the
// alpha.
for (int row = 0; row < dst_rect.height();
++row, src += src_stride, dst += dst_stride) {
uint32_t* dst_pixel = reinterpret_cast<uint32_t*>(dst);
for (int col = 0; col < dst_rect.width(); ++col) {
const int src_idx = 4 * col;
const float src_alpha = src[src_idx];
const float dst_weight =
From255(dst_pixel[col] >> 24) * (1.0f - src_alpha);
const float out_alpha = src_alpha + dst_weight;
float out_red = std::fma(From255(dst_pixel[col] >> 16), dst_weight,
src[src_idx + 1]);
float out_green = std::fma(From255(dst_pixel[col] >> 8), dst_weight,
src[src_idx + 2]);
float out_blue = std::fma(From255(dst_pixel[col] >> 0), dst_weight,
src[src_idx + 3]);
if (out_alpha != 0.0f) {
out_red /= out_alpha;
out_green /= out_alpha;
out_blue /= out_alpha;
}
dst_pixel[col] =
((ToClamped255(out_alpha) << 24) | (ToClamped255(out_red) << 16) |
(ToClamped255(out_green) << 8) | (ToClamped255(out_blue) << 0));
}
}
break;
}
default:
NOTREACHED();
}
}
void VideoCaptureOverlay::Sprite::TransformImage() {
TRACE_EVENT("gpu.capture", "VideoCaptureOverlay::Sprite::TransformImage",
"width", size_.width(), "height", size_.height());
// Scale the source |image_| to match the format and size required. For the
// purposes of color space conversion, the alpha must not be pre-multiplied.
const SkImageInfo scaled_image_format =
SkImageInfo::Make(size_.width(), size_.height(), kN32_SkColorType,
kUnpremul_SkAlphaType, image_.refColorSpace());
SkBitmap scaled_image;
if (image_.info() == scaled_image_format) {
scaled_image = image_;
} else {
if (scaled_image.tryAllocPixels(scaled_image_format) &&
image_.pixmap().scalePixels(
scaled_image.pixmap(),
SkSamplingOptions(SkFilterMode::kLinear, SkMipmapMode::kNearest))) {
// Cache the scaled image, to avoid needing to re-scale in future calls to
// this method.
image_ = scaled_image;
} else {
// If the allocation, format conversion and/or scaling failed, just reset
// the |scaled_image|. This will be checked below.
scaled_image.reset();
}
}
// Populate |colors| and |alphas| from the |scaled_image|. If the image
// scaling operation failed, this sprite should draw nothing, and so fully
// transparent pixels will be generated instead.
const int num_pixels = size_.GetArea();
auto alphas = base::HeapArray<float>::Uninit(num_pixels);
auto colors =
base::HeapArray<gfx::ColorTransform::TriStim>::WithSize(num_pixels);
if (scaled_image.drawsNothing()) {
std::fill(alphas.begin(), alphas.end(), 0.0f);
std::fill(colors.begin(), colors.end(), gfx::ColorTransform::TriStim());
} else {
int pos = 0;
for (int y = 0; y < size_.height(); ++y) {
const uint32_t* src = scaled_image.getAddr32(0, y);
for (int x = 0; x < size_.width(); ++x) {
const uint32_t pixel = src[x];
alphas[pos] = ((pixel >> SK_A32_SHIFT) & 0xff) / 255.0f;
colors[pos].SetPoint(((pixel >> SK_R32_SHIFT) & 0xff) / 255.0f,
((pixel >> SK_G32_SHIFT) & 0xff) / 255.0f,
((pixel >> SK_B32_SHIFT) & 0xff) / 255.0f);
++pos;
}
}
}
// Transform the colors, if needed. This may perform RGB→YUV conversion.
gfx::ColorSpace image_color_space;
if (scaled_image.colorSpace()) {
image_color_space = gfx::ColorSpace(*scaled_image.colorSpace());
}
if (!image_color_space.IsValid()) {
// Assume a default linear color space, if no color space was provided.
image_color_space = gfx::ColorSpace(
gfx::ColorSpace::PrimaryID::BT709, gfx::ColorSpace::TransferID::LINEAR,
gfx::ColorSpace::MatrixID::RGB, gfx::ColorSpace::RangeID::FULL);
}
if (image_color_space != color_space_) {
const auto color_transform =
gfx::ColorTransform::NewColorTransform(image_color_space, color_space_);
color_transform->Transform(colors.data(), num_pixels);
}
switch (format_) {
case media::PIXEL_FORMAT_I420: {
// Produce 5 planes of data: The "one minus alpha" plane, the Y plane, the
// subsampled "one minus alpha" plane, the U plane, and the V plane.
// Pre-multiply the colors by the alpha to prevent extra work in multiple
// later Blit() calls.
CHECK_EQ(size_.width() % 2, 0);
CHECK_EQ(size_.height() % 2, 0);
const int num_chroma_pixels = size_.GetArea() / 4;
transformed_image_.reset(
new float[num_pixels * 2 + num_chroma_pixels * 3]);
// Copy the alpha values, and pre-multiply the luma values by the alpha.
float* out_1_minus_alpha = transformed_image_.get();
float* out_luma = out_1_minus_alpha + num_pixels;
for (int i = 0; i < num_pixels; ++i) {
const float alpha = alphas[i];
out_1_minus_alpha[i] = 1.0f - alpha;
out_luma[i] = colors[i].x() * alpha;
}
// Downscale the alpha, U, and V planes by 2x2, and pre-multiply the
// chroma values by the alpha.
float* out_uv_1_minus_alpha = out_luma + num_pixels;
float* out_u = out_uv_1_minus_alpha + num_chroma_pixels;
float* out_v = out_u + num_chroma_pixels;
auto alpha_row0 = alphas.begin();
auto alpha_row_end = alphas.end();
auto color_row0 = colors.begin();
while (alpha_row0 < alpha_row_end) {
const auto alpha_row1 = alpha_row0 + size_.width();
const auto color_row1 = color_row0 + size_.width();
for (int col = 0; col < size_.width(); col += 2) {
// First, the downscaled alpha is the average of the four original
// alpha values:
//
// sum_of_alphas = a[r,c] + a[r,c+1] + a[r+1,c] + a[r+1,c+1];
// average_alpha = sum_of_alphas / 4
*(out_uv_1_minus_alpha++) =
std::fma(alpha_row0[col] + alpha_row0[col + 1] + alpha_row1[col] +
alpha_row1[col + 1],
-1.0f / 4.0f, 1.0f);
// Then, the downscaled chroma values are the weighted average of the
// four original chroma values (weighed by alpha):
//
// weighted_sum_of_chromas =
// c[r,c]*a[r,c] + c[r,c+1]*a[r,c+1] +
// c[r+1,c]*a[r+1,c] + c[r+1,c+1]*a[r+1,c+1]
// sum_of_weights = sum_of_alphas;
// average_chroma = weighted_sum_of_chromas / sum_of_weights
//
// But then, because the chroma is to be pre-multiplied by the alpha,
// the calculations simplify, as follows:
//
// premul_chroma = average_chroma * average_alpha
// = (weighted_sum_of_chromas / sum_of_alphas) *
// (sum_of_alphas / 4)
// = weighted_sum_of_chromas / 4
//
// This also automatically solves a special case, when sum_of_alphas
// is zero: With the simplified calculations, there is no longer a
// "divide-by-zero guard" needed; and the result in this case will be
// a zero chroma, which is perfectly acceptable behavior.
*(out_u++) = ((color_row0[col].y() * alpha_row0[col]) +
(color_row0[col + 1].y() * alpha_row0[col + 1]) +
(color_row1[col].y() * alpha_row1[col]) +
(color_row1[col + 1].y() * alpha_row1[col + 1])) /
4.0f;
*(out_v++) = ((color_row0[col].z() * alpha_row0[col]) +
(color_row0[col + 1].z() * alpha_row0[col + 1]) +
(color_row1[col].z() * alpha_row1[col]) +
(color_row1[col + 1].z() * alpha_row1[col + 1])) /
4.0f;
}
alpha_row0 = alpha_row1 + size_.width();
color_row0 = color_row1 + size_.width();
}
break;
}
case media::PIXEL_FORMAT_ARGB: {
// Produce ARGB pixels from |colors| and |alphas|. Pre-multiply the colors
// by the alpha to prevent extra work in multiple later Blit() calls.
transformed_image_.reset(new float[num_pixels * 4]);
float* out = transformed_image_.get();
for (int i = 0; i < num_pixels; ++i) {
const float alpha = alphas[i];
*(out++) = alpha;
*(out++) = colors[i].x() * alpha;
*(out++) = colors[i].y() * alpha;
*(out++) = colors[i].z() * alpha;
}
break;
}
default:
NOTREACHED();
}
}
} // namespace viz
|