1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
|
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/zucchini/abs32_utils.h"
#include <stdint.h>
#include <algorithm>
#include <string>
#include <utility>
#include "base/numerics/safe_conversions.h"
#include "components/zucchini/address_translator.h"
#include "components/zucchini/image_utils.h"
#include "components/zucchini/test_utils.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace zucchini {
namespace {
// A trivial AddressTranslator that applies constant shift.
class TestAddressTranslator : public AddressTranslator {
public:
TestAddressTranslator(size_t image_size, rva_t rva_begin) {
DCHECK_GE(rva_begin, 0U);
CHECK_EQ(AddressTranslator::kSuccess,
Initialize({{0, base::checked_cast<offset_t>(image_size),
rva_begin, base::checked_cast<rva_t>(image_size)}}));
}
};
// Helper to translate address |value| to RVA. May return |kInvalidRva|.
rva_t AddrValueToRva(uint64_t value, AbsoluteAddress* addr) {
*addr->mutable_value() = value;
return addr->ToRva();
}
} // namespace
TEST(Abs32UtilsTest, AbsoluteAddress32) {
std::vector<uint8_t> data32 = ParseHexString(
"00 00 32 00 21 43 65 4A 00 00 00 00 FF FF FF FF FF FF 31 00");
ConstBufferView image32(data32.data(), data32.size());
MutableBufferView mutable_image32(data32.data(), data32.size());
AbsoluteAddress addr32(kBit32, 0x00320000U);
EXPECT_TRUE(addr32.Read(0x0U, image32));
EXPECT_EQ(0x00000000U, addr32.ToRva());
EXPECT_TRUE(addr32.Read(0x4U, image32));
EXPECT_EQ(0x4A334321U, addr32.ToRva());
EXPECT_TRUE(addr32.Read(0x8U, image32));
EXPECT_EQ(kInvalidRva, addr32.ToRva()); // Underflow.
EXPECT_TRUE(addr32.Read(0xCU, image32));
EXPECT_EQ(kInvalidRva, addr32.ToRva()); // Translated RVA would be too large.
EXPECT_TRUE(addr32.Read(0x10U, image32));
EXPECT_EQ(kInvalidRva, addr32.ToRva()); // Underflow (boundary case).
EXPECT_FALSE(addr32.Read(0x11U, image32));
EXPECT_FALSE(addr32.Read(0x14U, image32));
EXPECT_FALSE(addr32.Read(0x100000U, image32));
EXPECT_FALSE(addr32.Read(0x80000000U, image32));
EXPECT_FALSE(addr32.Read(0xFFFFFFFFU, image32));
EXPECT_TRUE(addr32.FromRva(0x11223344U));
EXPECT_TRUE(addr32.Write(0x2U, &mutable_image32));
EXPECT_TRUE(addr32.Write(0x10U, &mutable_image32));
std::vector<uint8_t> expected_data32 = ParseHexString(
"00 00 44 33 54 11 65 4A 00 00 00 00 FF FF FF FF 44 33 54 11");
EXPECT_EQ(expected_data32, data32);
EXPECT_FALSE(addr32.Write(0x11U, &mutable_image32));
EXPECT_FALSE(addr32.Write(0xFFFFFFFFU, &mutable_image32));
EXPECT_EQ(expected_data32, data32);
}
TEST(Abs32UtilsTest, AbsoluteAddress32Overflow) {
AbsoluteAddress addr32(kBit32, 0xC0000000U);
EXPECT_TRUE(addr32.FromRva(0x00000000U));
EXPECT_TRUE(addr32.FromRva(0x11223344U));
EXPECT_TRUE(addr32.FromRva(0x3FFFFFFFU));
EXPECT_FALSE(addr32.FromRva(0x40000000U));
EXPECT_FALSE(addr32.FromRva(0x40000001U));
EXPECT_FALSE(addr32.FromRva(0x80000000U));
EXPECT_FALSE(addr32.FromRva(0xFFFFFFFFU));
EXPECT_EQ(0x00000000U, AddrValueToRva(0xC0000000U, &addr32));
EXPECT_EQ(kInvalidRva, AddrValueToRva(0xBFFFFFFFU, &addr32));
EXPECT_EQ(kInvalidRva, AddrValueToRva(0x00000000U, &addr32));
EXPECT_EQ(0x3FFFFFFFU, AddrValueToRva(0xFFFFFFFFU, &addr32));
}
TEST(Abs32UtilsTest, AbsoluteAddress64) {
std::vector<uint8_t> data64 = ParseHexString(
"00 00 00 00 64 00 00 00 21 43 65 4A 64 00 00 00 "
"00 00 00 00 00 00 00 00 FF FF FF FF FF FF FF FF "
"00 00 00 00 64 00 00 80 FF FF FF FF 63 00 00 00");
ConstBufferView image64(data64.data(), data64.size());
MutableBufferView mutable_image64(data64.data(), data64.size());
AbsoluteAddress addr64(kBit64, 0x0000006400000000ULL);
EXPECT_TRUE(addr64.Read(0x0U, image64));
EXPECT_EQ(0x00000000U, addr64.ToRva());
EXPECT_TRUE(addr64.Read(0x8U, image64));
EXPECT_EQ(0x4A654321U, addr64.ToRva());
EXPECT_TRUE(addr64.Read(0x10U, image64)); // Succeeds, in spite of value.
EXPECT_EQ(kInvalidRva, addr64.ToRva()); // Underflow.
EXPECT_TRUE(addr64.Read(0x18U, image64));
EXPECT_EQ(kInvalidRva, addr64.ToRva()); // Translated RVA too large.
EXPECT_TRUE(addr64.Read(0x20U, image64));
EXPECT_EQ(kInvalidRva, addr64.ToRva()); // Translated RVA toolarge.
EXPECT_TRUE(addr64.Read(0x28U, image64));
EXPECT_EQ(kInvalidRva, addr64.ToRva()); // Underflow.
EXPECT_FALSE(addr64.Read(0x29U, image64)); // Extends outside.
EXPECT_FALSE(addr64.Read(0x30U, image64)); // Entirely outside (note: hex).
EXPECT_FALSE(addr64.Read(0x100000U, image64));
EXPECT_FALSE(addr64.Read(0x80000000U, image64));
EXPECT_FALSE(addr64.Read(0xFFFFFFFFU, image64));
EXPECT_TRUE(addr64.FromRva(0x11223344U));
EXPECT_TRUE(addr64.Write(0x13U, &mutable_image64));
EXPECT_TRUE(addr64.Write(0x20U, &mutable_image64));
std::vector<uint8_t> expected_data64 = ParseHexString(
"00 00 00 00 64 00 00 00 21 43 65 4A 64 00 00 00 "
"00 00 00 44 33 22 11 64 00 00 00 FF FF FF FF FF "
"44 33 22 11 64 00 00 00 FF FF FF FF 63 00 00 00");
EXPECT_EQ(expected_data64, data64);
EXPECT_FALSE(addr64.Write(0x29U, &mutable_image64));
EXPECT_FALSE(addr64.Write(0x30U, &mutable_image64));
EXPECT_FALSE(addr64.Write(0xFFFFFFFFU, &mutable_image64));
EXPECT_EQ(expected_data64, data64);
EXPECT_FALSE(addr64.FromRva(0xFFFFFFFFU));
}
TEST(Abs32UtilsTest, AbsoluteAddress64Overflow) {
{
// Counterpart to AbsoluteAddress632verflow test.
AbsoluteAddress addr64(kBit64, 0xFFFFFFFFC0000000ULL);
EXPECT_TRUE(addr64.FromRva(0x00000000U));
EXPECT_TRUE(addr64.FromRva(0x11223344U));
EXPECT_TRUE(addr64.FromRva(0x3FFFFFFFU));
EXPECT_FALSE(addr64.FromRva(0x40000000U));
EXPECT_FALSE(addr64.FromRva(0x40000001U));
EXPECT_FALSE(addr64.FromRva(0x80000000U));
EXPECT_FALSE(addr64.FromRva(0xFFFFFFFFU));
EXPECT_EQ(0x00000000U, AddrValueToRva(0xFFFFFFFFC0000000U, &addr64));
EXPECT_EQ(kInvalidRva, AddrValueToRva(0xFFFFFFFFBFFFFFFFU, &addr64));
EXPECT_EQ(kInvalidRva, AddrValueToRva(0x0000000000000000U, &addr64));
EXPECT_EQ(kInvalidRva, AddrValueToRva(0xFFFFFFFF00000000U, &addr64));
EXPECT_EQ(0x3FFFFFFFU, AddrValueToRva(0xFFFFFFFFFFFFFFFFU, &addr64));
}
{
// Pseudo-counterpart to AbsoluteAddress632verflow test: Some now pass.
AbsoluteAddress addr64(kBit64, 0xC0000000U);
EXPECT_TRUE(addr64.FromRva(0x00000000U));
EXPECT_TRUE(addr64.FromRva(0x11223344U));
EXPECT_TRUE(addr64.FromRva(0x3FFFFFFFU));
EXPECT_TRUE(addr64.FromRva(0x40000000U));
EXPECT_TRUE(addr64.FromRva(0x40000001U));
EXPECT_FALSE(addr64.FromRva(0x80000000U));
EXPECT_FALSE(addr64.FromRva(0xFFFFFFFFU));
// ToRva() still fail though.
EXPECT_EQ(0x00000000U, AddrValueToRva(0xC0000000U, &addr64));
EXPECT_EQ(kInvalidRva, AddrValueToRva(0xBFFFFFFFU, &addr64));
EXPECT_EQ(kInvalidRva, AddrValueToRva(0x00000000U, &addr64));
EXPECT_EQ(0x3FFFFFFFU, AddrValueToRva(0xFFFFFFFFU, &addr64));
}
{
AbsoluteAddress addr64(kBit64, 0xC000000000000000ULL);
EXPECT_TRUE(addr64.FromRva(0x00000000ULL));
EXPECT_TRUE(addr64.FromRva(0x11223344ULL));
EXPECT_TRUE(addr64.FromRva(0x3FFFFFFFULL));
EXPECT_TRUE(addr64.FromRva(0x40000000ULL));
EXPECT_TRUE(addr64.FromRva(0x40000001ULL));
EXPECT_FALSE(addr64.FromRva(0x80000000ULL));
EXPECT_FALSE(addr64.FromRva(0xFFFFFFFFULL));
EXPECT_EQ(0x00000000U, AddrValueToRva(0xC000000000000000ULL, &addr64));
EXPECT_EQ(kInvalidRva, AddrValueToRva(0xBFFFFFFFFFFFFFFFULL, &addr64));
EXPECT_EQ(kInvalidRva, AddrValueToRva(0x0000000000000000ULL, &addr64));
EXPECT_EQ(0x3FFFFFFFU, AddrValueToRva(0xC00000003FFFFFFFULL, &addr64));
EXPECT_EQ(kInvalidRva, AddrValueToRva(0xFFFFFFFFFFFFFFFFULL, &addr64));
}
}
TEST(Abs32UtilsTest, Win32Read32) {
constexpr uint32_t kImageBase = 0xA0000000U;
constexpr uint32_t kRvaBegin = 0x00C00000U;
struct {
std::vector<uint8_t> data32;
std::deque<offset_t> abs32_locations; // Assumption: Sorted.
offset_t lo; // Assumption: In range, does not straddle |abs32_location|.
offset_t hi; // Assumption: Also >= |lo|.
std::vector<Reference> expected_refs;
} test_cases[] = {
// Targets at beginning and end.
{ParseHexString("FF FF FF FF 0F 00 C0 A0 00 00 C0 A0 FF FF FF FF"),
{0x4U, 0x8U},
0x0U,
0x10U,
{{0x4U, 0xFU}, {0x8U, 0x0U}}},
// Targets at beginning and end are out of bound: Rejected.
{ParseHexString("FF FF FF FF 10 00 C0 A0 FF FF BF A0 FF FF FF FF"),
{0x4U, 0x8U},
0x0U,
0x10U,
std::vector<Reference>()},
// Same with more extreme target values: Rejected.
{ParseHexString("FF FF FF FF FF FF FF FF 00 00 00 00 FF FF FF FF"),
{0x4U, 0x8U},
0x0U,
0x10U,
std::vector<Reference>()},
// Locations at beginning and end, plus invalid locations.
{ParseHexString("08 00 C0 A0 FF FF FF FF FF FF FF FF 04 00 C0 A0"),
{0x0U, 0xCU, 0x10U, 0x1000U, 0x80000000U, 0xFFFFFFFFU},
0x0U,
0x10U,
{{0x0U, 0x8U}, {0xCU, 0x4U}}},
// Odd size, location, target.
{ParseHexString("FF FF FF 09 00 C0 A0 FF FF FF FF FF FF FF FF FF "
"FF FF FF"),
{0x3U},
0x0U,
0x13U,
{{0x3U, 0x9U}}},
// No location given.
{ParseHexString("FF FF FF FF 0C 00 C0 A0 00 00 C0 A0 FF FF FF FF"),
std::deque<offset_t>(), 0x0U, 0x10U, std::vector<Reference>()},
// Simple alternation.
{ParseHexString("04 00 C0 A0 FF FF FF FF 0C 00 C0 A0 FF FF FF FF "
"14 00 C0 A0 FF FF FF FF 1C 00 C0 A0 FF FF FF FF"),
{0x0U, 0x8U, 0x10U, 0x18U},
0x0U,
0x20U,
{{0x0U, 0x4U}, {0x8U, 0xCU}, {0x10U, 0x14U}, {0x18U, 0x1CU}}},
// Same, with locations limited by |lo| and |hi|. By assumption these must
// not cut accross Reference body.
{ParseHexString("04 00 C0 A0 FF FF FF FF 0C 00 C0 A0 FF FF FF FF "
"14 00 C0 A0 FF FF FF FF 1C 00 C0 A0 FF FF FF FF"),
{0x0U, 0x8U, 0x10U, 0x18U},
0x04U,
0x17U,
{{0x8U, 0xCU}, {0x10U, 0x14U}}},
// Same, with very limiting |lo| and |hi|.
{ParseHexString("04 00 C0 A0 FF FF FF FF 0C 00 C0 A0 FF FF FF FF "
"14 00 C0 A0 FF FF FF FF 1C 00 C0 A0 FF FF FF FF"),
{0x0U, 0x8U, 0x10U, 0x18U},
0x0CU,
0x10U,
std::vector<Reference>()},
// Same, |lo| == |hi|.
{ParseHexString("04 00 C0 A0 FF FF FF FF 0C 00 C0 A0 FF FF FF FF "
"14 00 C0 A0 FF FF FF FF 1C 00 C0 A0 FF FF FF FF"),
{0x0U, 0x8U, 0x10U, 0x18U},
0x14U,
0x14U,
std::vector<Reference>()},
// Same, |lo| and |hi| at end.
{ParseHexString("04 00 C0 A0 FF FF FF FF 0C 00 C0 A0 FF FF FF FF "
"14 00 C0 A0 FF FF FF FF 1C 00 C0 A0 FF FF FF FF"),
{0x0U, 0x8U, 0x10U, 0x18U},
0x20U,
0x20U,
std::vector<Reference>()},
// Mix. Note that targets can overlap.
{ParseHexString("FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF "
"06 00 C0 A0 2C 00 C0 A0 FF FF C0 A0 2B 00 C0 A0 "
"FF 06 00 C0 A0 00 00 C0 A0 FF FF FF FF FF FF FF"),
{0x10U, 0x14U, 0x18U, 0x1CU, 0x21U, 0x25U, 0xAAAAU},
0x07U,
0x25U,
{{0x10U, 0x6U}, {0x14U, 0x2CU}, {0x1CU, 0x2BU}, {0x21, 0x6U}}},
};
for (const auto& test_case : test_cases) {
ConstBufferView image32(test_case.data32.data(), test_case.data32.size());
Abs32RvaExtractorWin32 extractor(image32, {kBit32, kImageBase},
test_case.abs32_locations, test_case.lo,
test_case.hi);
TestAddressTranslator translator(test_case.data32.size(), kRvaBegin);
Abs32ReaderWin32 reader(std::move(extractor), translator);
// Loop over |expected_ref| to check element-by-element.
std::optional<Reference> ref;
for (const auto& expected_ref : test_case.expected_refs) {
ref = reader.GetNext();
EXPECT_TRUE(ref.has_value());
EXPECT_EQ(expected_ref, ref.value());
}
// Check that nothing is left.
ref = reader.GetNext();
EXPECT_FALSE(ref.has_value());
}
}
TEST(Abs32UtilsTest, Win32Read64) {
constexpr uint64_t kImageBase = 0x31415926A0000000U;
constexpr uint32_t kRvaBegin = 0x00C00000U;
// For simplicity, just test mixed case.
std::vector<uint8_t> data64 = ParseHexString(
"FF FF FF FF FF FF FF FF 00 00 C0 A0 26 59 41 31 "
"06 00 C0 A0 26 59 41 31 02 00 C0 A0 26 59 41 31 "
"FF FF FF BF 26 59 41 31 FF FF FF FF FF FF FF FF "
"02 00 C0 A0 26 59 41 31 07 00 C0 A0 26 59 41 31");
std::deque<offset_t> abs32_locations = {0x8U, 0x10U, 0x18U, 0x20U,
0x28U, 0x30U, 0x38U, 0x40U};
offset_t lo = 0x10U;
offset_t hi = 0x38U;
std::vector<Reference> expected_refs = {
{0x10U, 0x06U}, {0x18U, 0x02U}, {0x30U, 0x02U}};
ConstBufferView image64(data64.data(), data64.size());
Abs32RvaExtractorWin32 extractor(image64, {kBit64, kImageBase},
abs32_locations, lo, hi);
TestAddressTranslator translator(data64.size(), kRvaBegin);
Abs32ReaderWin32 reader(std::move(extractor), translator);
std::vector<Reference> refs;
std::optional<Reference> ref;
for (ref = reader.GetNext(); ref.has_value(); ref = reader.GetNext())
refs.push_back(ref.value());
EXPECT_EQ(expected_refs, refs);
}
TEST(Abs32UtilsTest, Win32ReadFail) {
// Make |bitness| a state to reduce repetition.
Bitness bitness = kBit32;
constexpr uint32_t kImageBase = 0xA0000000U; // Shared for 32-bit and 64-bit.
std::vector<uint8_t> data(32U, 0xFFU);
ConstBufferView image(data.data(), data.size());
auto try_make = [&](std::deque<offset_t>&& abs32_locations, offset_t lo,
offset_t hi) {
Abs32RvaExtractorWin32 extractor(image, {bitness, kImageBase},
abs32_locations, lo, hi);
extractor.GetNext(); // Dummy call so |extractor| gets used.
};
// 32-bit tests.
bitness = kBit32;
try_make({8U, 24U}, 0U, 32U);
#if GTEST_HAS_DEATH_TEST
EXPECT_DEATH(try_make({4U, 24U}, 32U, 0U), ""); // |lo| > |hi|.
#endif
try_make({8U, 24U}, 0U, 12U);
try_make({8U, 24U}, 0U, 28U);
try_make({8U, 24U}, 8U, 32U);
try_make({8U, 24U}, 24U, 32U);
#if GTEST_HAS_DEATH_TEST
EXPECT_DEATH(try_make({8U, 24U}, 0U, 11U), ""); // |hi| straddles.
EXPECT_DEATH(try_make({8U, 24U}, 26U, 32U), ""); // |lo| straddles.
#endif
try_make({8U, 24U}, 12U, 24U);
// 64-bit tests.
bitness = kBit64;
try_make({6U, 22U}, 0U, 32U);
#if GTEST_HAS_DEATH_TEST
// |lo| > |hi|.
EXPECT_DEATH(try_make(std::deque<offset_t>(), 32U, 31U), "");
#endif
try_make({6U, 22U}, 0U, 14U);
try_make({6U, 22U}, 0U, 30U);
try_make({6U, 22U}, 6U, 32U);
try_make({6U, 22U}, 22U, 32U);
#if GTEST_HAS_DEATH_TEST
EXPECT_DEATH(try_make({6U, 22U}, 0U, 29U), ""); // |hi| straddles.
EXPECT_DEATH(try_make({6U, 22U}, 7U, 32U), ""); // |lo| straddles.
#endif
try_make({6U, 22U}, 14U, 20U);
try_make({16U}, 16U, 24U);
#if GTEST_HAS_DEATH_TEST
EXPECT_DEATH(try_make({16U}, 18U, 18U), ""); // |lo|, |hi| straddle.
#endif
}
TEST(Abs32UtilsTest, Win32Write32) {
constexpr uint32_t kImageBase = 0xA0000000U;
constexpr uint32_t kRvaBegin = 0x00C00000U;
std::vector<uint8_t> data32(0x30, 0xFFU);
MutableBufferView image32(data32.data(), data32.size());
AbsoluteAddress addr(kBit32, kImageBase);
TestAddressTranslator translator(data32.size(), kRvaBegin);
Abs32WriterWin32 writer(image32, std::move(addr), translator);
// Successful writes.
writer.PutNext({0x02U, 0x10U});
writer.PutNext({0x0BU, 0x21U});
writer.PutNext({0x16U, 0x10U});
writer.PutNext({0x2CU, 0x00U});
// Invalid data: For simplicity, Abs32WriterWin32 simply ignores bad writes.
// Invalid location.
writer.PutNext({0x2DU, 0x20U});
writer.PutNext({0x80000000U, 0x20U});
writer.PutNext({0xFFFFFFFFU, 0x20U});
// Invalid target.
writer.PutNext({0x1CU, 0x00001111U});
writer.PutNext({0x10U, 0xFFFFFF00U});
std::vector<uint8_t> expected_data32 = ParseHexString(
"FF FF 10 00 C0 A0 FF FF FF FF FF 21 00 C0 A0 FF "
"FF FF FF FF FF FF 10 00 C0 A0 FF FF FF FF FF FF "
"FF FF FF FF FF FF FF FF FF FF FF FF 00 00 C0 A0");
EXPECT_EQ(expected_data32, data32);
}
TEST(Abs32UtilsTest, Win32Write64) {
constexpr uint64_t kImageBase = 0x31415926A0000000U;
constexpr uint32_t kRvaBegin = 0x00C00000U;
std::vector<uint8_t> data64(0x30, 0xFFU);
MutableBufferView image32(data64.data(), data64.size());
AbsoluteAddress addr(kBit64, kImageBase);
TestAddressTranslator translator(data64.size(), kRvaBegin);
Abs32WriterWin32 writer(image32, std::move(addr), translator);
// Successful writes.
writer.PutNext({0x02U, 0x10U});
writer.PutNext({0x0BU, 0x21U});
writer.PutNext({0x16U, 0x10U});
writer.PutNext({0x28U, 0x00U});
// Invalid data: For simplicity, Abs32WriterWin32 simply ignores bad writes.
// Invalid location.
writer.PutNext({0x29U, 0x20U});
writer.PutNext({0x80000000U, 0x20U});
writer.PutNext({0xFFFFFFFFU, 0x20U});
// Invalid target.
writer.PutNext({0x1CU, 0x00001111U});
writer.PutNext({0x10U, 0xFFFFFF00U});
std::vector<uint8_t> expected_data64 = ParseHexString(
"FF FF 10 00 C0 A0 26 59 41 31 FF 21 00 C0 A0 26 "
"59 41 31 FF FF FF 10 00 C0 A0 26 59 41 31 FF FF "
"FF FF FF FF FF FF FF FF 00 00 C0 A0 26 59 41 31");
EXPECT_EQ(expected_data64, data64);
}
TEST(Abs32UtilsTest, RemoveUntranslatableAbs32) {
Bitness kBitness = kBit32;
uint64_t kImageBase = 0x2BCD0000;
// Valid RVAs: [0x00001A00, 0x00001A28) and [0x00003A00, 0x00004000).
// Valid AVAs: [0x2BCD1A00, 0x2BCD1A28) and [0x2BCD3A00, 0x2BCD4000).
// Notice that the second section has has dangling RVA.
AddressTranslator translator;
ASSERT_EQ(AddressTranslator::kSuccess,
translator.Initialize(
{{0x04, +0x28, 0x1A00, +0x28}, {0x30, +0x30, 0x3A00, +0x600}}));
std::vector<uint8_t> data = ParseHexString(
"FF FF FF FF 0B 3A CD 2B 00 00 00 04 3A CD 2B 00 "
"FC 3F CD 2B 14 1A CD 2B 44 00 00 00 CC 00 00 00 "
"00 00 55 00 00 00 1E 1A CD 2B 00 99 FF FF FF FF "
"10 3A CD 2B 22 00 00 00 00 00 00 11 00 00 00 00 "
"66 00 00 00 28 1A CD 2B 00 00 CD 2B 27 1A CD 2B "
"FF 39 CD 2B 00 00 00 00 18 1A CD 2B 00 00 00 00 "
"FF FF FF FF FF FF FF FF");
MutableBufferView image(data.data(), data.size());
const offset_t kAbs1 = 0x04; // a:2BCD3A0B = r:3A0B = o:3B
const offset_t kAbs2 = 0x0B; // a:2BCD3A04 = r:3A04 = o:34
const offset_t kAbs3 = 0x10; // a:2BCD3FFF = r:3FFF (dangling)
const offset_t kAbs4 = 0x14; // a:2BCD1A14 = r:1A14 = o:18
const offset_t kAbs5 = 0x26; // a:2BCD1A1E = r:1A1E = o:22
const offset_t kAbs6 = 0x30; // a:2BCD3A10 = r:3A10 = 0x40
const offset_t kAbs7 = 0x44; // a:2BCD1A28 = r:1A28 (bad: sentinel)
const offset_t kAbs8 = 0x48; // a:2BCD0000 = r:0000 (bad: not covered)
const offset_t kAbs9 = 0x4C; // a:2BCD1A27 = r:1A27 = 0x2B
const offset_t kAbsA = 0x50; // a:2BCD39FF (bad: not covered)
const offset_t kAbsB = 0x54; // a:00000000 (bad: underflow)
const offset_t kAbsC = 0x58; // a:2BCD1A18 = r:1A18 = 0x1C
std::deque<offset_t> locations = {kAbs1, kAbs2, kAbs3, kAbs4, kAbs5, kAbs6,
kAbs7, kAbs8, kAbs9, kAbsA, kAbsB, kAbsC};
std::deque<offset_t> exp_locations = {kAbs1, kAbs2, kAbs3, kAbs4,
kAbs5, kAbs6, kAbs9, kAbsC};
size_t exp_num_removed = locations.size() - exp_locations.size();
size_t num_removed = RemoveUntranslatableAbs32(image, {kBitness, kImageBase},
translator, &locations);
EXPECT_EQ(exp_num_removed, num_removed);
EXPECT_EQ(exp_locations, locations);
}
TEST(Abs32UtilsTest, RemoveOverlappingAbs32Locations) {
// Make |width| a state to reduce repetition.
uint32_t width = WidthOf(kBit32);
auto run_test = [&width](const std::deque<offset_t>& expected_locations,
std::deque<offset_t>&& locations) {
ASSERT_TRUE(std::is_sorted(locations.begin(), locations.end()));
size_t expected_removals = locations.size() - expected_locations.size();
size_t removals = RemoveOverlappingAbs32Locations(width, &locations);
EXPECT_EQ(expected_removals, removals);
EXPECT_EQ(expected_locations, locations);
};
// 32-bit tests.
width = WidthOf(kBit32);
run_test(std::deque<offset_t>(), std::deque<offset_t>());
run_test({4U}, {4U});
run_test({4U, 10U}, {4U, 10U});
run_test({4U, 8U}, {4U, 8U});
run_test({4U}, {4U, 7U});
run_test({4U}, {4U, 4U});
run_test({4U, 8U}, {4U, 7U, 8U});
run_test({4U, 10U}, {4U, 7U, 10U});
run_test({4U, 9U}, {4U, 9U, 10U});
run_test({3U}, {3U, 5U, 6U});
run_test({3U, 7U}, {3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U});
run_test({3U, 7U, 11U}, {3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U, 11U, 12U});
run_test({4U, 8U, 12U}, {4U, 6U, 8U, 10U, 12U});
run_test({4U, 8U, 12U, 16U}, {4U, 8U, 12U, 16U});
run_test({4U, 8U, 12U}, {4U, 8U, 9U, 12U});
run_test({4U}, {4U, 4U, 4U, 4U, 4U, 4U});
run_test({3U}, {3U, 4U, 4U, 4U, 5U, 5U});
run_test({3U, 7U}, {3U, 4U, 4U, 4U, 7U, 7U, 8U});
run_test({10U, 20U, 30U, 40U}, {10U, 20U, 22U, 22U, 30U, 40U});
run_test({1000000U, 1000004U}, {1000000U, 1000004U});
run_test({1000000U}, {1000000U, 1000002U});
// 64-bit tests.
width = WidthOf(kBit64);
run_test(std::deque<offset_t>(), std::deque<offset_t>());
run_test({4U}, {4U});
run_test({4U, 20U}, {4U, 20U});
run_test({4U, 12U}, {4U, 12U});
run_test({4U}, {4U, 11U});
run_test({4U}, {4U, 5U});
run_test({4U}, {4U, 4U});
run_test({4U, 12U, 20U}, {4U, 12U, 20U});
run_test({1U, 9U, 17U}, {1U, 9U, 17U});
run_test({1U, 17U}, {1U, 8U, 17U});
run_test({1U, 10U}, {1U, 10U, 17U});
run_test({3U, 11U}, {3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U, 11U, 12U});
run_test({4U, 12U}, {4U, 6U, 8U, 10U, 12U});
run_test({4U, 12U}, {4U, 12U, 16U});
run_test({4U, 12U, 20U, 28U}, {4U, 12U, 20U, 28U});
run_test({4U}, {4U, 4U, 4U, 4U, 5U, 5U});
run_test({3U, 11U}, {3U, 4U, 4U, 4U, 11U, 11U, 12U});
run_test({10U, 20U, 30U, 40U}, {10U, 20U, 22U, 22U, 30U, 40U});
run_test({1000000U, 1000008U}, {1000000U, 1000008U});
run_test({1000000U}, {1000000U, 1000004U});
}
} // namespace zucchini
|