1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/zucchini/address_translator.h"
#include <algorithm>
#include <utility>
#include <vector>
namespace zucchini {
/******** AddressTranslator::OffsetToRvaCache ********/
AddressTranslator::OffsetToRvaCache::OffsetToRvaCache(
const AddressTranslator& translator)
: translator_(translator) {}
rva_t AddressTranslator::OffsetToRvaCache::Convert(offset_t offset) const {
if (offset >= translator_->fake_offset_begin_) {
// Rely on |translator_| to handle this special case.
return translator_->OffsetToRva(offset);
}
if (cached_unit_ && cached_unit_->CoversOffset(offset))
return cached_unit_->OffsetToRvaUnsafe(offset);
const AddressTranslator::Unit* unit = translator_->OffsetToUnit(offset);
if (!unit)
return kInvalidRva;
cached_unit_ = unit;
return unit->OffsetToRvaUnsafe(offset);
}
/******** AddressTranslator::RvaToOffsetCache ********/
AddressTranslator::RvaToOffsetCache::RvaToOffsetCache(
const AddressTranslator& translator)
: translator_(translator) {}
bool AddressTranslator::RvaToOffsetCache::IsValid(rva_t rva) const {
if (rva == kInvalidRva)
return false;
if (!cached_unit_ || !cached_unit_->CoversRva(rva)) {
const AddressTranslator::Unit* unit = translator_->RvaToUnit(rva);
if (!unit)
return false;
cached_unit_ = unit;
}
return true;
}
offset_t AddressTranslator::RvaToOffsetCache::Convert(rva_t rva) const {
if (!cached_unit_ || !cached_unit_->CoversRva(rva)) {
const AddressTranslator::Unit* unit = translator_->RvaToUnit(rva);
if (!unit)
return kInvalidOffset;
cached_unit_ = unit;
}
return cached_unit_->RvaToOffsetUnsafe(rva, translator_->fake_offset_begin_);
}
/******** AddressTranslator ********/
AddressTranslator::AddressTranslator() = default;
AddressTranslator::AddressTranslator(AddressTranslator&&) = default;
AddressTranslator::~AddressTranslator() = default;
AddressTranslator::Status AddressTranslator::Initialize(
std::vector<Unit>&& units) {
for (Unit& unit : units) {
// Check for overflows and fail if found.
if (!RangeIsBounded<offset_t>(unit.offset_begin, unit.offset_size,
kOffsetBound) ||
!RangeIsBounded<rva_t>(unit.rva_begin, unit.rva_size, kRvaBound)) {
return kErrorOverflow;
}
// If |rva_size < offset_size|: Just shrink |offset_size| to accommodate.
unit.offset_size = std::min(unit.offset_size, unit.rva_size);
// Now |rva_size >= offset_size|. Note that |rva_size > offset_size| is
// allowed; these lead to dangling RVA.
}
// Remove all empty units.
std::erase_if(units, [](const Unit& unit) { return unit.IsEmpty(); });
// Sort |units| by RVA, then uniquefy.
std::sort(units.begin(), units.end(), [](const Unit& a, const Unit& b) {
return std::tie(a.rva_begin, a.rva_size) <
std::tie(b.rva_begin, b.rva_size);
});
units.erase(std::unique(units.begin(), units.end()), units.end());
// Scan for RVA range overlaps, validate, and merge wherever possible.
if (units.size() > 1) {
// Traverse with two iterators: |slow| stays behind and modifies Units that
// absorb all overlapping (or tangent if suitable) Units; |fast| explores
// new Units as candidates for consistency checks and potential merge into
// |slow|.
auto slow = units.begin();
// All |it| with |slow| < |it| < |fast| contain garbage.
for (auto fast = slow + 1; fast != units.end(); ++fast) {
// Comment notation: S = slow offset, F = fast offset, O = overlap offset,
// s = slow RVA, f = fast RVA, o = overlap RVA.
DCHECK_GE(fast->rva_begin, slow->rva_begin);
if (slow->rva_end() < fast->rva_begin) {
// ..ssssss..ffffff..: Disjoint: Can advance |slow|.
*(++slow) = *fast;
continue;
}
// ..ssssffff..: Tangent: Merge is optional.
// ..sssooofff.. / ..sssooosss..: Overlap: Merge is required.
bool merge_is_optional = slow->rva_end() == fast->rva_begin;
// Check whether |fast| and |slow| have identical RVA -> offset shift.
// If not, then merge cannot be resolved. Examples:
// ..ssssffff.. -> ..SSSSFFFF..: Good, can merge.
// ..ssssffff.. -> ..SSSS..FFFF..: Non-fatal: don't merge.
// ..ssssffff.. -> ..FFFF..SSSS..: Non-fatal: don't merge.
// ..ssssffff.. -> ..SSOOFF..: Fatal: Ignore for now (handled later).
// ..sssooofff.. -> ..SSSOOOFFF..: Good, can merge.
// ..sssooofff.. -> ..SSSSSOFFFFF..: Fatal.
// ..sssooofff.. -> ..FFOOOOSS..: Fatal.
// ..sssooofff.. -> ..SSSOOOF..: Good, notice |fast| has dangling RVAs.
// ..oooooo.. -> ..OOOOOO..: Good, can merge.
if (fast->offset_begin < slow->offset_begin ||
fast->offset_begin - slow->offset_begin !=
fast->rva_begin - slow->rva_begin) {
if (merge_is_optional) {
*(++slow) = *fast;
continue;
}
return kErrorBadOverlap;
}
// Check whether dangling RVAs (if they exist) are consistent. Examples:
// ..sssooofff.. -> ..SSSOOOF..: Good, can merge.
// ..sssooosss.. -> ..SSSOOOS..: Good, can merge.
// ..sssooofff.. -> ..SSSOO..: Good, can merge.
// ..sssooofff.. -> ..SSSOFFF..: Fatal.
// ..sssooosss.. -> ..SSSOOFFFF..: Fatal.
// ..oooooo.. -> ..OOO..: Good, can merge.
// Idea of check: Suppose |fast| has dangling RVA, then
// |[fast->rva_start, fast->rva_start + fast->offset_start)| ->
// |[fast->offset_start, **fast->offset_end()**)|, with remaining RVA
// mapping to fake offsets. This means |fast->offset_end()| must be >=
// |slow->offset_end()|, and failure to do so resluts in error. The
// argument for |slow| havng dangling RVA is symmetric.
if ((fast->HasDanglingRva() && fast->offset_end() < slow->offset_end()) ||
(slow->HasDanglingRva() && slow->offset_end() < fast->offset_end())) {
if (merge_is_optional) {
*(++slow) = *fast;
continue;
}
return kErrorBadOverlapDanglingRva;
}
// Merge |fast| into |slow|.
slow->rva_size =
std::max(slow->rva_size, fast->rva_end() - slow->rva_begin);
slow->offset_size =
std::max(slow->offset_size, fast->offset_end() - slow->offset_begin);
}
++slow;
units.erase(slow, units.end());
}
// After resolving RVA overlaps, any offset overlap would imply error.
std::sort(units.begin(), units.end(), [](const Unit& a, const Unit& b) {
return a.offset_begin < b.offset_begin;
});
if (units.size() > 1) {
auto previous = units.begin();
for (auto current = previous + 1; current != units.end(); ++current) {
if (previous->offset_end() > current->offset_begin)
return kErrorBadOverlap;
previous = current;
}
}
// For to fake offset heuristics: Compute exclusive upper bounds for offsets
// and RVAs.
offset_t offset_bound = 0;
rva_t rva_bound = 0;
for (const Unit& unit : units) {
offset_bound = std::max(offset_bound, unit.offset_end());
rva_bound = std::max(rva_bound, unit.rva_end());
}
// Compute pessimistic range and see if it still fits within space of valid
// offsets. This limits image size to one half of |kOffsetBound|, and is a
// main drawback for the current heuristic to convert dangling RVA to fake
// offsets.
if (!RangeIsBounded(offset_bound, rva_bound, kOffsetBound))
return kErrorFakeOffsetBeginTooLarge;
// Success. Store results. |units| is currently sorted by offset, so assign.
units_sorted_by_offset_.assign(units.begin(), units.end());
// Sort |units| by RVA, and just store it directly
std::sort(units.begin(), units.end(), [](const Unit& a, const Unit& b) {
return a.rva_begin < b.rva_begin;
});
units_sorted_by_rva_ = std::move(units);
fake_offset_begin_ = offset_bound;
return kSuccess;
}
rva_t AddressTranslator::OffsetToRva(offset_t offset) const {
if (offset >= fake_offset_begin_) {
// Handle dangling RVA: First shift it to regular RVA space.
rva_t rva = offset - fake_offset_begin_;
// If result is indeed a dangling RVA, return it; else return |kInvalidRva|.
const Unit* unit = RvaToUnit(rva);
return (unit && unit->HasDanglingRva() && unit->CoversDanglingRva(rva))
? rva
: kInvalidRva;
}
const Unit* unit = OffsetToUnit(offset);
return unit ? unit->OffsetToRvaUnsafe(offset) : kInvalidRva;
}
offset_t AddressTranslator::RvaToOffset(rva_t rva) const {
const Unit* unit = RvaToUnit(rva);
// This also handles dangling RVA.
return unit ? unit->RvaToOffsetUnsafe(rva, fake_offset_begin_)
: kInvalidOffset;
}
const AddressTranslator::Unit* AddressTranslator::OffsetToUnit(
offset_t offset) const {
// Finds first Unit with |offset_begin| > |offset|, rewind by 1 to find the
// last Unit with |offset_begin| >= |offset| (if it exists).
auto it = std::upper_bound(
units_sorted_by_offset_.begin(), units_sorted_by_offset_.end(), offset,
[](offset_t a, const Unit& b) { return a < b.offset_begin; });
if (it == units_sorted_by_offset_.begin())
return nullptr;
--it;
return it->CoversOffset(offset) ? &(*it) : nullptr;
}
const AddressTranslator::Unit* AddressTranslator::RvaToUnit(rva_t rva) const {
auto it = std::upper_bound(
units_sorted_by_rva_.begin(), units_sorted_by_rva_.end(), rva,
[](rva_t a, const Unit& b) { return a < b.rva_begin; });
if (it == units_sorted_by_rva_.begin())
return nullptr;
--it;
return it->CoversRva(rva) ? &(*it) : nullptr;
}
} // namespace zucchini
|