1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
|
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/zucchini/arm_utils.h"
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <initializer_list>
#include <map>
#include <sstream>
#include <string>
#include <vector>
#include "base/check_op.h"
#include "components/zucchini/address_translator.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/abseil-cpp/absl/strings/ascii.h"
namespace zucchini {
namespace {
// "Clean slate" |code|s for branch instruction encodings with |disp| = 0, and
// if applicable, |cond| = 0.
uint32_t kCleanSlateB_A1 = 0x0A000000; // A24.
uint32_t kCleanSlateBL_A1 = 0x0B000000; // A24.
uint32_t kCleanSlateBLX_A2 = 0xFA000000; // A24.
uint16_t kCleanSlateB_T1 = 0xD000; // T8.
uint16_t kCleanSlateB_T2 = 0xE000; // T11.
uint32_t kCleanSlateB_T3 = 0xF0008000; // T20.
// For T24 encodings, |disp| = 0 means J1 = J2 = 1, so include 0x00002800.
uint32_t kCleanSlateB_T4 = 0xF0009000 | 0x00002800; // T24.
uint32_t kCleanSlateBL_T1 = 0xF000D000 | 0x00002800; // T24.
uint32_t kCleanSlateBLX_T2 = 0xF000C000 | 0x00002800; // T24.
// For AArch64.
uint32_t kCleanSlate64TBZw = 0x36000000; // Immd14.
uint32_t kCleanSlate64TBZz = 0xB6000000; // Immd14.
uint32_t kCleanSlate64TBNZw = 0x37000000; // Immd14.
uint32_t kCleanSlate64TBNZz = 0xB7000000; // Immd14.
uint32_t kCleanSlate64Bcond = 0x54000000; // Immd19.
uint32_t kCleanSlate64CBZw = 0x34000000; // Immd19.
uint32_t kCleanSlate64CBZz = 0xB4000000; // Immd19.
uint32_t kCleanSlate64CBNZw = 0x35000000; // Immd19.
uint32_t kCleanSlate64CBNZz = 0xB5000000; // Immd19.
uint32_t kCleanSlate64B = 0x14000000; // Immd26.
uint32_t kCleanSlate64BL = 0x94000000; // Immd26.
// Special case: Cond = 0xE => AL.
uint32_t kCleanSlateBAL_A1 = kCleanSlateB_A1 | (0xE << 28); //
// Test helper: Extracts |components| from |value| (may be |code| or |disp|)
// based on |pattern|. Also performs consistency checks. On success, writes to
// |*components| and returns true. Otherwise returns false.
// Example (all numbers are in binary):
// |pattern| = "11110Scc cciiiiii 10(J1)0(J2)jjj jjjj...."
// |value| = 11110111 00111000 10 1 0 0 111 11000101
// Result: Noting that all 0's and 1's are consistent, returns true with:
// |*components| = {S: 1, c: 1100, i: 111000, J1: 1, J2: 0, j: 1111100}
// Rules for |pattern|:
// * Spaces are ignored.
// * '.' means "don't care".
// * '0' and '1' are expected literals; mismatch leads to failure.
// * A variable name is specified as:
// * A single letter.
// * "(var)", where "var" is a name that begins with a letter.
// * If a variable's first letter is uppercase, then it's a singleton bit.
// * If repeated, consistency check is applied (must be identical).
// * If a variable's first letter is lowercase, then it spans multiple bits.
// * These need not be contiguous, but order is preserved (big-endian).
static bool SplitBits(const std::string& pattern,
uint32_t value,
std::map<std::string, uint32_t>* components) {
CHECK(components);
// Split |pattern| into |token_list|.
std::vector<std::string> token_list;
size_t bracket_start = std::string::npos;
for (size_t i = 0; i < pattern.size(); ++i) {
char ch = pattern[i];
if (bracket_start == std::string::npos) {
if (ch == '(')
bracket_start = i + 1;
else if (ch != ' ') // Ignore space.
token_list.push_back(std::string(1, ch));
} else if (ch == ')') {
token_list.push_back(pattern.substr(bracket_start, i - bracket_start));
bracket_start = std::string::npos;
}
}
CHECK_EQ(std::string::npos, bracket_start); // No dangling "(".
// Process each token.
size_t num_tokens = token_list.size();
std::map<std::string, uint32_t> temp_components;
CHECK(num_tokens == 32 || (num_tokens == 16 && value <= 0xFFFF));
for (size_t i = 0; i < num_tokens; ++i) {
const std::string& token = token_list[i];
CHECK(!token.empty());
uint32_t bit = (value >> (num_tokens - 1 - i)) & 1;
if (token == "0" || token == "1") {
if (token[0] != static_cast<char>('0' + bit))
return false; // Fail: Mismatch.
} else if (absl::ascii_isupper(static_cast<unsigned char>(token[0]))) {
if (temp_components.count(token)) {
if (temp_components[token] != bit)
return false; // Fail: Singleton bit not uniform.
} else {
temp_components[token] = bit;
}
} else if (absl::ascii_islower(static_cast<unsigned char>(token[0]))) {
temp_components[token] = (temp_components[token] << 1) | bit;
} else if (token != ".") {
return false; // Fail: Unrecognized token.
}
}
components->swap(temp_components);
return true;
}
// AArch32 or AArch64 instruction specification for tests. May be 16-bit or
// 32-bit (determined by INT_T).
template <typename INT_T>
struct ArmRelInstruction {
ArmRelInstruction(const std::string& code_pattern_in, INT_T code)
: code_pattern(code_pattern_in), clean_slate_code(code) {}
// Code pattern for SplitBits().
std::string code_pattern;
// "Clean slate" |code| encodes |disp| = 0.
INT_T clean_slate_code;
};
// Tester for ARM Encode / Decode functions for |disp| <-> |code|.
template <typename TRAITS>
class ArmTranslatorEncodeDecodeTest {
public:
using CODE_T = typename TRAITS::code_t;
ArmTranslatorEncodeDecodeTest() = default;
// For each instruction (with |clean_slate_code| in |instr_list|) and for each
// |disp| in |good_disp_list|, forms |code| with |encode_fun()| and checks for
// success. Extracts |disp_out| with |decode_fun()| and checks that it's the
// original |disp|. For each (|disp|, |code|) pair, extracts components using
// SplitBits(), and checks that components from |toks_list| are identical. For
// each |disp| in |bad_disp_list|, checks that |decode_fun_()| fails.
void Run(const std::string& disp_pattern,
const std::vector<std::string>& toks_list,
const std::vector<ArmRelInstruction<CODE_T>>& instr_list,
const std::vector<arm_disp_t>& good_disp_list,
const std::vector<arm_disp_t>& bad_disp_list) {
ArmAlign (*decode_fun)(CODE_T, arm_disp_t*) = TRAITS::Decode;
bool (*encode_fun)(arm_disp_t, CODE_T*) = TRAITS::Encode;
for (const ArmRelInstruction<CODE_T> instr : instr_list) {
// Parse clean slate code bytes, and ensure it's well-formed.
std::map<std::string, uint32_t> clean_slate_code_components;
EXPECT_TRUE(SplitBits(instr.code_pattern, instr.clean_slate_code,
&clean_slate_code_components));
for (arm_disp_t disp : good_disp_list) {
CODE_T code = instr.clean_slate_code;
// Encode |disp| to |code|.
EXPECT_TRUE((*encode_fun)(disp, &code)) << disp;
arm_disp_t disp_out = 0;
// Extract components (performs consistency checks) and compare.
std::map<std::string, uint32_t> disp_components;
EXPECT_TRUE(SplitBits(disp_pattern, static_cast<uint32_t>(disp),
&disp_components));
std::map<std::string, uint32_t> code_components;
EXPECT_TRUE(SplitBits(instr.code_pattern, code, &code_components));
for (const std::string& tok : toks_list) {
EXPECT_EQ(1U, disp_components.count(tok)) << tok;
EXPECT_EQ(1U, code_components.count(tok)) << tok;
EXPECT_EQ(disp_components[tok], code_components[tok]) << tok;
}
// Decode |code| to |disp_out|, check fidelity.
EXPECT_NE(kArmAlignFail, (*decode_fun)(code, &disp_out));
EXPECT_EQ(disp, disp_out);
// Sanity check: Re-encode |disp| into |code|, ensure no change.
CODE_T code_copy = code;
EXPECT_TRUE((*encode_fun)(disp, &code));
EXPECT_EQ(code_copy, code);
// Encode 0, ensure we get clean slate |code| back.
EXPECT_TRUE((*encode_fun)(0, &code));
EXPECT_EQ(instr.clean_slate_code, code);
}
for (arm_disp_t disp : bad_disp_list) {
CODE_T code = instr.clean_slate_code;
EXPECT_FALSE((*encode_fun)(disp, &code)) << disp;
// Value does not get modified after failure.
EXPECT_EQ(instr.clean_slate_code, code);
}
}
}
};
// Tester for ARM Write / Read functions for |target_rva| <-> |code|.
template <typename TRAITS>
class ArmTranslatorWriteReadTest {
public:
using CODE_T = typename TRAITS::code_t;
ArmTranslatorWriteReadTest() = default;
// Expects successful Write() to |clean_slate_code| for each |target_rva_list|
// RVA, using each |instr_rva_list| RVA, and that the resulting |code| leads
// to successful Read(), which recovers |instr_rva|.
void Accept(CODE_T clean_slate_code,
const std::vector<rva_t>& instr_rva_list,
const std::vector<rva_t>& target_rva_list) {
bool (*read_fun)(rva_t, CODE_T, rva_t*) = TRAITS::Read;
bool (*write_fun)(rva_t, rva_t, CODE_T*) = TRAITS::Write;
for (rva_t instr_rva : instr_rva_list) {
for (rva_t target_rva : target_rva_list) {
CODE_T code = clean_slate_code;
// Write |target_rva| to |code|.
EXPECT_TRUE((*write_fun)(instr_rva, target_rva, &code)) << target_rva;
rva_t target_rva_out = kInvalidRva;
// Read |code| to |target_rva_out|, check fidelity.
EXPECT_TRUE((*read_fun)(instr_rva, code, &target_rva_out));
EXPECT_EQ(target_rva, target_rva_out);
// Sanity check: Rewrite |target_rva| into |code|, ensure no change.
CODE_T code_copy = code;
EXPECT_TRUE((*write_fun)(instr_rva, target_rva, &code));
EXPECT_EQ(code_copy, code);
}
}
}
// Expects failed Write() to |clean_slate_code| for each |target_rva_list|
// RVA, using each |instr_rva_list| RVA.
void Reject(CODE_T clean_slate_code,
const std::vector<rva_t>& instr_rva_list,
const std::vector<rva_t>& target_rva_list) {
bool (*write_fun)(rva_t, rva_t, CODE_T*) = TRAITS::Write;
for (rva_t instr_rva : instr_rva_list) {
for (rva_t target_rva : target_rva_list) {
CODE_T code = clean_slate_code;
EXPECT_FALSE((*write_fun)(instr_rva, target_rva, &code)) << target_rva;
// Output variable is unmodified after failure.
EXPECT_EQ(clean_slate_code, code);
}
}
}
};
} // namespace
// Test for test helper.
TEST(ArmUtilsTest, SplitBits) {
// If |expected| == "BAD" then we expect failure.
auto run_test = [](const std::string& expected, const std::string& pattern,
uint32_t value) {
std::map<std::string, uint32_t> components;
if (expected == "BAD") {
EXPECT_FALSE(SplitBits(pattern, value, &components));
EXPECT_TRUE(components.empty());
} else {
EXPECT_TRUE(SplitBits(pattern, value, &components));
std::ostringstream oss;
// Not using AsHex<>, since number of digits is not fixed.
oss << std::uppercase << std::hex;
std::string sep = "";
for (auto it : components) {
oss << sep << it.first << "=" << it.second;
sep = ",";
}
EXPECT_EQ(expected, oss.str());
}
};
run_test("a=ABCD0123", "aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa", 0xABCD0123);
run_test("a=ABCD,b=123", "aaaaaaaa aaaaaaaa bbbbbbbb bbbbbbbb", 0xABCD0123);
run_test("a=23,b=1,c=CD,d=AB", "dddddddd cccccccc bbbbbbbb aaaaaaaa",
0xABCD0123);
run_test("", "........ ........ ........ ........", 0xABCD0123);
run_test("t=AC02", " tttt.... tt tt.... tttt....tttt.... ", 0xABCD0123);
run_test("a=8,b=C,c=E,d1=F", "aaaabbbb cccc(d1)(d1)(d1)(d1)", 0x8CEF);
run_test("a=F,b=7,c=3,d1=1", "abc(d1)abc(d1) abc(d1)abc(d1)", 0x8CEF);
run_test("A1=0,X=1", "(A1)XX(A1) X(A1)(A1)(A1) (X)(A1)(X)X(X)(X)X(A1)",
0x68BE);
run_test("BAD", "(A1)XX(A1) X(A1)(A1)(A1) (X)(A1)(X)X(X)(X)X(A1)", 0x68BF);
run_test("BAD", "(A1)XX(A1) X(A1)(A1)(A1) (X)(A1)(X)X(X)(X)X(A1)", 0x683E);
run_test("A=1,B=0,a=C", "AAAAaaaa BBBB01..", 0xFC06);
run_test("A=1,B=0,a=4", "AAAAaaaa BBBB01..", 0xF406);
run_test("A=0,B=1,a=C", "AAAAaaaa BBBB01..", 0x0CF5);
run_test("BAD", "AAAAaaaa BBBB01..", 0xEC06); // Non-uniform A.
run_test("BAD", "AAAAaaaa BBBB01..", 0xFC16); // Non-uniform B.
run_test("BAD", "AAAAaaaa BBBB01..", 0xFC02); // Constant mismatch.
}
TEST(AArch32Rel32Translator, Fetch) {
std::vector<uint8_t> bytes = {0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE};
ConstBufferView region(&bytes[0], bytes.size());
AArch32Rel32Translator translator;
EXPECT_EQ(0x76543210U, translator.FetchArmCode32(region, 0U));
EXPECT_EQ(0xFEDCBA98U, translator.FetchArmCode32(region, 4U));
EXPECT_EQ(0x3210U, translator.FetchThumb2Code16(region, 0U));
EXPECT_EQ(0xFEDCU, translator.FetchThumb2Code16(region, 6U));
EXPECT_EQ(0x32107654U, translator.FetchThumb2Code32(region, 0U));
EXPECT_EQ(0xBA98FEDCU, translator.FetchThumb2Code32(region, 4U));
}
TEST(AArch32Rel32Translator, Store) {
std::vector<uint8_t> expected = {
0xFF, 0xFF, 0xFF, 0xFF, // Padding.
0x10, 0x32, 0x54, 0x76, // ARM 32-bit.
0xFF, 0xFF, // Padding.
0x42, 0x86, // THUMB2 16-bit.
0xFF, 0xFF, // Padding.
0xDC, 0xFE, 0x98, 0xBA, // THUMB2 32-bit.
0xFF, 0xFF, 0xFF, 0xFF // Padding.
};
std::vector<uint8_t> bytes(4 * 2 + 2 * 3 + 4 * 2, 0xFF);
MutableBufferView region(&bytes[0], bytes.size());
CHECK_EQ(expected.size(), bytes.size());
AArch32Rel32Translator translator;
translator.StoreArmCode32(region, 4U, 0x76543210U);
translator.StoreThumb2Code16(region, 10U, 0x8642U);
translator.StoreThumb2Code32(region, 14U, 0xFEDCBA98U);
EXPECT_EQ(expected, bytes);
}
// Detailed test of Encode/Decode: Check valid and invalid |disp| for various
// clean slate |code| cases. Also check |disp| and |code| binary components,
// which in AArch32Rel32Translator comments.
TEST(AArch32Rel32Translator, EncodeDecode) {
// A24 tests.
ArmTranslatorEncodeDecodeTest<AArch32Rel32Translator::AddrTraits_A24>
test_A24;
for (int cond = 0; cond <= 0x0E; ++cond) {
ArmRelInstruction<uint32_t> B_A1_cond("cccc1010 Siiiiiii iiiiiiii iiiiiiii",
kCleanSlateB_A1 | (cond << 28));
ArmRelInstruction<uint32_t> BL_A1_cond(
"cccc1011 Siiiiiii iiiiiiii iiiiiiii", kCleanSlateBL_A1 | (cond << 28));
test_A24.Run("SSSSSSSi iiiiiiii iiiiiiii iiiiii00", {"S", "i"},
{B_A1_cond, BL_A1_cond},
{0x01FFFFFC, -0x02000000, 0, 4, -4, 0x40, 0x44},
{2, -2, 0x41, 0x42, 0x43, 0x02000000, -0x02000004});
}
// BLX encoding A2, which has 2-byte alignment.
ArmRelInstruction<uint32_t> BLX_A2("1111101H Siiiiiii iiiiiiii iiiiiiii",
kCleanSlateBLX_A2);
test_A24.Run("SSSSSSSi iiiiiiii iiiiiiii iiiiiiH0", {"S", "i", "H"}, {BLX_A2},
{0x01FFFFFC, 0x01FFFFFE, -0x02000000, 0, 2, -2, 4, 0x40, 0x42},
{1, -1, 0x41, 0x43, 0x02000000, -0x02000002});
// T8 tests.
ArmTranslatorEncodeDecodeTest<AArch32Rel32Translator::AddrTraits_T8> test_T8;
for (int cond = 0; cond <= 0x0E; ++cond) {
ArmRelInstruction<uint16_t> B_T1_cond("1101cccc Siiiiiii",
kCleanSlateB_T1 | (cond << 8));
test_T8.Run("SSSSSSSS SSSSSSSS SSSSSSSS iiiiiii0", {"S", "i"}, {B_T1_cond},
{0x00FE, -0x0100, 0, 2, -2, 4, 0x40, 0x42},
{1, -1, 0x41, 0x43, 0x0100, -0x0102});
}
ArmRelInstruction<uint16_t> B_T1_invalid("11011111 ........",
kCleanSlateB_T1 | (0x0F << 8));
test_T8.Run("........ ........ ........ ........", std::vector<std::string>(),
{B_T1_invalid}, std::vector<arm_disp_t>(),
{0x00FE, -0x0100, 0, 2, 4, 0x40, 0x41, 0x0100, -0x0102});
// T11 tests.
ArmTranslatorEncodeDecodeTest<AArch32Rel32Translator::AddrTraits_T11>
test_T11;
ArmRelInstruction<uint16_t> B_T2("11100Sii iiiiiiii", kCleanSlateB_T2);
test_T11.Run("SSSSSSSS SSSSSSSS SSSSSiii iiiiiii0", {"S", "i"}, {B_T2},
{0x07FE, -0x0800, 0, 2, -2, 4, 0x40, 0x42},
{1, -1, 0x41, 0x43, 0x0800, -0x0802});
// T20 tests.
ArmTranslatorEncodeDecodeTest<AArch32Rel32Translator::AddrTraits_T20>
test_T20;
for (int cond = 0; cond <= 0x0E; ++cond) {
ArmRelInstruction<uint32_t> B_T3_cond(
"11110Scc cciiiiii 10(J1)0(J2)jjj jjjjjjjj",
kCleanSlateB_T3 | (cond << 22));
test_T20.Run("SSSSSSSS SSSS(J2)(J1)ii iiiijjjj jjjjjjj0",
{"S", "J2", "J1", "i", "j"}, {B_T3_cond},
{0x000FFFFE, -0x00100000, 0, 2, -2, 4, 0x40, 0x42},
{1, -1, 0x41, 0x43, 0x00100000, -0x00100002});
}
ArmRelInstruction<uint32_t> B_T3_invalid(
"11110.11 11...... 10.0.... ........", kCleanSlateB_T3 | (0x0F << 22));
test_T20.Run("........ ........ ........ ........",
std::vector<std::string>(), {B_T3_invalid},
std::vector<arm_disp_t>(),
{0x000FFFFE, -0x00100000, 0, 2, 4, 0x40, 0x42, 1, 0x41, 0x43,
0x00100000, -0x00100002});
// T24 tests.
ArmTranslatorEncodeDecodeTest<AArch32Rel32Translator::AddrTraits_T24>
test_T24;
// "Clean slate" means J1 = J2 = 1, so we include 0x00002800.
ArmRelInstruction<uint32_t> B_T4("11110Sii iiiiiiii 10(J1)1(J2)jjj jjjjjjjj",
kCleanSlateB_T4);
ArmRelInstruction<uint32_t> BL_T1("11110Sii iiiiiiii 11(J1)1(J2)jjj jjjjjjjj",
kCleanSlateBL_T1);
test_T24.Run("SSSSSSSS (I1)(I2)iiiiii iiiijjjj jjjjjjj0",
{"S", "i", "j"}, // Skip "J1", "J2", "I1", "I2" checks.
{B_T4, BL_T1},
{0x00FFFFFE, -0x01000000, 0, 2, -2, 4, -4, 0x40, 0x42},
{1, -1, 0x41, 0x43, 0x01000000, -0x01000002});
// For BLX encoding T2, |disp| must be multiple of 4.
ArmRelInstruction<uint32_t> BLX_T2(
"11110Sii iiiiiiii 11(J1)0(J2)jjj jjjjjjj0", kCleanSlateBLX_T2);
test_T24.Run(
"SSSSSSSS (I1)(I2)iiiiii iiiijjjj jjjjjj00",
{"S", "i", "j"}, // Skip "J1", "J2", "I1", "I2" checks.
{BLX_T2}, {0x00FFFFFC, -0x01000000, 0, 4, -4, 0x40},
{1, -1, 2, -2, 0x41, 0x42, 0x43, 0x00FFFFFE, 0x01000000, -0x01000002});
}
TEST(AArch32Rel32Translator, WriteRead) {
std::vector<rva_t> aligned4;
std::vector<rva_t> misaligned4;
std::vector<rva_t> aligned2;
std::vector<rva_t> misaligned2;
for (rva_t rva = 0x1FFC; rva <= 0x2010; ++rva) {
((rva % 4 == 0) ? aligned4 : misaligned4).push_back(rva);
((rva % 2 == 0) ? aligned2 : misaligned2).push_back(rva);
}
CHECK_EQ(6U, aligned4.size());
CHECK_EQ(15U, misaligned4.size());
CHECK_EQ(11U, aligned2.size());
CHECK_EQ(10U, misaligned2.size());
// Helpers to convert an instruction's RVA to PC.
auto pcArm = [](rva_t instr_rva) -> rva_t { return instr_rva + 8; };
auto pcThumb2 = [](rva_t instr_rva) -> rva_t { return instr_rva + 4; };
// A24 tests.
ArmTranslatorWriteReadTest<AArch32Rel32Translator::AddrTraits_A24> test_A24;
for (uint32_t clean_slate_code : {kCleanSlateB_A1, kCleanSlateBL_A1}) {
test_A24.Accept(clean_slate_code, aligned4, aligned4);
test_A24.Reject(clean_slate_code, aligned4, misaligned4);
test_A24.Reject(clean_slate_code, misaligned4, aligned4);
test_A24.Reject(clean_slate_code, misaligned4, misaligned4);
// Signed (24 + 2)-bit range, 4-byte aligned: [-0x02000000, 0x01FFFFFC].
test_A24.Accept(clean_slate_code, {0x15000000},
{pcArm(0x13000000), pcArm(0x16FFFFFC)});
test_A24.Reject(clean_slate_code, {0x15000000},
{pcArm(0x13000000 - 4), pcArm(0x16FFFFFC + 4)});
}
// BLX complication: ARM -> THUMB2.
test_A24.Accept(kCleanSlateBLX_A2, aligned4, aligned2);
test_A24.Reject(kCleanSlateBLX_A2, aligned4, misaligned2);
test_A24.Reject(kCleanSlateBLX_A2, misaligned4, aligned2);
test_A24.Reject(kCleanSlateBLX_A2, misaligned4, misaligned2);
test_A24.Accept(kCleanSlateBLX_A2, {0x15000000},
{pcArm(0x13000000), pcArm(0x16FFFFFE)});
test_A24.Reject(kCleanSlateBLX_A2, {0x15000000},
{pcArm(0x13000000 - 4), pcArm(0x13000000 - 2),
pcArm(0x16FFFFFE + 2), pcArm(0x16FFFFFE + 4)});
// T8 tests.
ArmTranslatorWriteReadTest<AArch32Rel32Translator::AddrTraits_T8> test_T8;
test_T8.Accept(kCleanSlateB_T1, aligned2, aligned2);
test_T8.Reject(kCleanSlateB_T1, aligned2, misaligned2);
test_T8.Reject(kCleanSlateB_T1, misaligned2, aligned2);
test_T8.Reject(kCleanSlateB_T1, misaligned2, misaligned2);
// Signed (8 + 1)-bit range, 2-byte aligned: [-0x0100, 0x00FE].
test_T8.Accept(kCleanSlateB_T1, {0x10000500},
{pcThumb2(0x10000400), pcThumb2(0x100005FE)});
test_T8.Reject(kCleanSlateB_T1, {0x10000500},
{pcThumb2(0x10000400 - 2), pcThumb2(0x100005FE + 2)});
// T11 tests.
ArmTranslatorWriteReadTest<AArch32Rel32Translator::AddrTraits_T11> test_T11;
test_T11.Accept(kCleanSlateB_T2, aligned2, aligned2);
test_T11.Reject(kCleanSlateB_T2, aligned2, misaligned2);
test_T11.Reject(kCleanSlateB_T2, misaligned2, aligned2);
test_T11.Reject(kCleanSlateB_T2, misaligned2, misaligned2);
// Signed (11 + 1)-bit range, 2-byte aligned: [-0x0800, 0x07FE].
test_T11.Accept(kCleanSlateB_T2, {0x10003000},
{pcThumb2(0x10002800), pcThumb2(0x100037FE)});
test_T11.Reject(kCleanSlateB_T2, {0x10003000},
{pcThumb2(0x10002800 - 2), pcThumb2(0x100037FE + 2)});
// T20 tests.
ArmTranslatorWriteReadTest<AArch32Rel32Translator::AddrTraits_T20> test_T20;
test_T20.Accept(kCleanSlateB_T3, aligned2, aligned2);
test_T20.Reject(kCleanSlateB_T3, aligned2, misaligned2);
test_T20.Reject(kCleanSlateB_T3, misaligned2, aligned2);
test_T20.Reject(kCleanSlateB_T3, misaligned2, misaligned2);
// Signed (20 + 1)-bit range, 2-byte aligned: [-0x00100000, 0x000FFFFE].
test_T20.Accept(kCleanSlateB_T3, {0x10300000},
{pcThumb2(0x10200000), pcThumb2(0x103FFFFE)});
test_T20.Reject(kCleanSlateB_T3, {0x10300000},
{pcThumb2(0x10200000 - 2), pcThumb2(0x103FFFFE + 2)});
// T24 tests.
ArmTranslatorWriteReadTest<AArch32Rel32Translator::AddrTraits_T24> test_T24;
for (uint32_t clean_slate_code : {kCleanSlateB_T4, kCleanSlateBL_T1}) {
test_T24.Accept(clean_slate_code, aligned2, aligned2);
test_T24.Reject(clean_slate_code, aligned2, misaligned2);
test_T24.Reject(clean_slate_code, misaligned2, aligned2);
test_T24.Reject(clean_slate_code, misaligned2, misaligned2);
// Signed (24 + 1)-bit range, 2-byte aligned: [-0x01000000, 0x00FFFFFE].
test_T24.Accept(clean_slate_code, {0x16000000},
{pcThumb2(0x15000000), pcThumb2(0x16FFFFFE)});
test_T24.Reject(clean_slate_code, {0x16000000},
{pcThumb2(0x15000000 - 2), pcThumb2(0x16FFFFFE + 2)});
}
// BLX complication: THUMB2 -> ARM.
test_T24.Accept(kCleanSlateBLX_T2, aligned2, aligned4);
test_T24.Reject(kCleanSlateBLX_T2, aligned2, misaligned4);
test_T24.Reject(kCleanSlateBLX_T2, misaligned2, aligned4);
test_T24.Reject(kCleanSlateBLX_T2, misaligned2, misaligned4);
test_T24.Accept(kCleanSlateBLX_T2, {0x16000000},
{pcThumb2(0x15000000), pcThumb2(0x16FFFFFC)});
test_T24.Reject(kCleanSlateBLX_T2, {0x16000000},
{pcThumb2(0x15000000 - 4), pcThumb2(0x15000000 - 2),
pcThumb2(0x16FFFFFC + 2), pcThumb2(0x16FFFFFC + 4)});
}
// Typical usage in |target_rva| extraction.
TEST(AArch32Rel32Translator, Main) {
// ARM mode (32-bit).
// 00103050: 00 01 02 EA B 00183458 ; B encoding A1 (cond = AL).
{
rva_t instr_rva = 0x00103050U;
AArch32Rel32Translator translator;
std::vector<uint8_t> bytes = {0x00, 0x01, 0x02, 0xEA};
MutableBufferView region(&bytes[0], bytes.size());
uint32_t code = translator.FetchArmCode32(region, 0U);
EXPECT_EQ(0xEA020100U, code);
// |code| <-> |disp|.
arm_disp_t disp = 0;
EXPECT_EQ(kArmAlign4, translator.DecodeA24(code, &disp));
EXPECT_EQ(+0x00080400, disp);
uint32_t code_from_disp = kCleanSlateBAL_A1;
EXPECT_TRUE(translator.EncodeA24(disp, &code_from_disp));
EXPECT_EQ(code, code_from_disp);
// |code| <-> |target_rva|.
rva_t target_rva = kInvalidRva;
EXPECT_TRUE(translator.ReadA24(instr_rva, code, &target_rva));
// 0x00103050 + 8 + 0x00080400.
EXPECT_EQ(0x00183458U, target_rva);
uint32_t code_from_rva = kCleanSlateBAL_A1;
EXPECT_TRUE(translator.WriteA24(instr_rva, target_rva, &code_from_rva));
EXPECT_EQ(code, code_from_rva);
}
// THUMB2 mode (16-bit).
// 001030A2: F3 E7 B 0010308C ; B encoding T2.
{
rva_t instr_rva = 0x001030A2U;
AArch32Rel32Translator translator;
std::vector<uint8_t> bytes = {0xF3, 0xE7};
MutableBufferView region(&bytes[0], bytes.size());
uint16_t code = translator.FetchThumb2Code16(region, 0U);
// Sii iiiiiiii = 111 11110011 = -1101 = -0x0D.
EXPECT_EQ(0xE7F3U, code);
// |code| <-> |disp|.
arm_disp_t disp = 0;
EXPECT_EQ(kArmAlign2, translator.DecodeT11(code, &disp));
EXPECT_EQ(-0x0000001A, disp); // -0x0D * 2 = -0x1A.
uint16_t code_from_disp = kCleanSlateB_T2;
EXPECT_TRUE(translator.EncodeT11(disp, &code_from_disp));
EXPECT_EQ(code, code_from_disp);
// |code| <-> |target_rva|.
rva_t target_rva = kInvalidRva;
EXPECT_TRUE(translator.ReadT11(instr_rva, code, &target_rva));
// 0x001030A2 + 4 - 0x0000001A.
EXPECT_EQ(0x0010308CU, target_rva);
uint16_t code_from_rva = kCleanSlateB_T2;
EXPECT_TRUE(translator.WriteT11(instr_rva, target_rva, &code_from_rva));
EXPECT_EQ(code, code_from_rva);
}
// THUMB2 mode (32-bit).
// 001030A2: 00 F0 01 FA BL 001034A8 ; BL encoding T1.
{
rva_t instr_rva = 0x001030A2U;
AArch32Rel32Translator translator;
std::vector<uint8_t> bytes = {0x00, 0xF0, 0x01, 0xFA};
MutableBufferView region(&bytes[0], bytes.size());
uint32_t code = translator.FetchThumb2Code32(region, 0U);
EXPECT_EQ(0xF000FA01U, code);
// |code| <-> |disp|.
arm_disp_t disp = 0;
EXPECT_EQ(kArmAlign2, translator.DecodeT24(code, &disp));
EXPECT_EQ(+0x00000402, disp);
uint32_t code_from_disp = kCleanSlateBL_T1;
EXPECT_TRUE(translator.EncodeT24(disp, &code_from_disp));
EXPECT_EQ(code, code_from_disp);
// |code| <-> |target_rva|.
rva_t target_rva = kInvalidRva;
EXPECT_TRUE(translator.ReadT24(instr_rva, code, &target_rva));
// 0x001030A2 + 4 + 0x00000002.
EXPECT_EQ(0x001034A8U, target_rva);
uint32_t code_from_rva = kCleanSlateBL_T1;
EXPECT_TRUE(translator.WriteT24(instr_rva, target_rva, &code_from_rva));
EXPECT_EQ(code, code_from_rva);
}
}
TEST(AArch32Rel32Translator, BLXComplication) {
auto run_test = [](rva_t instr_rva,
std::vector<uint8_t> bytes, // Pass by value.
uint32_t expected_code, arm_disp_t expected_disp,
uint32_t clean_slate_code, rva_t expected_target_rva) {
AArch32Rel32Translator translator;
MutableBufferView region(&bytes[0], bytes.size());
uint32_t code = translator.FetchThumb2Code32(region, 0U);
EXPECT_EQ(expected_code, code);
// |code| <-> |disp|.
arm_disp_t disp = 0;
EXPECT_TRUE(translator.DecodeT24(code, &disp));
EXPECT_EQ(expected_disp, disp);
uint32_t code_from_disp = clean_slate_code;
EXPECT_TRUE(translator.EncodeT24(disp, &code_from_disp));
EXPECT_EQ(code, code_from_disp);
// |code| <-> |target_rva|.
rva_t target_rva = kInvalidRva;
EXPECT_TRUE(translator.ReadT24(instr_rva, code, &target_rva));
EXPECT_EQ(expected_target_rva, target_rva);
uint32_t code_from_rva = clean_slate_code;
EXPECT_TRUE(translator.WriteT24(instr_rva, target_rva, &code_from_rva));
EXPECT_EQ(code, code_from_rva);
};
// No complication, 4-byte aligned.
// 001030A0: 01 F0 06 B0 B 005040B0 ; B encoding T4.
run_test(0x001030A0U, // Multiple of 4.
{0x01, 0xF0, 0x06, 0xB0}, 0xF001B006U, 0x0040100C, kCleanSlateB_T4,
// "Canonical" |target_rva|: 0x001030A0 + 4 + 0x0040100C.
0x005040B0U);
// No complication, not 4-byte aligned.
// 001030A2: 01 F0 06 B0 B 005040B2 ; B encoding T4.
run_test(0x001030A2U, // Shift by 2: Not multiple of 4.
{0x01, 0xF0, 0x06, 0xB0}, 0xF001B006U, 0x0040100C, kCleanSlateB_T4,
// Shifted by 2: 0x001030A2 + 4 + 0x0040100C.
0x005040B2U);
// Repeat the above, but use BLX instead of B.
// BLX complication, 4-byte aligned.
// 001030A0: 01 F0 06 E0 BLX 005040B0 ; BLX encoding T2.
run_test(0x001030A0U, // Multiple of 4.
{0x01, 0xF0, 0x06, 0xE0}, 0xF001E006U, 0x0040100C, kCleanSlateBLX_T2,
// Canonical again: align_down_4(0x001030A0 + 4 + 0x0040100C).
0x005040B0U);
// BLX complication, not 4-byte aligned.
// 001030A2: 01 F0 06 E0 BLX 005040B0 ; BLX encoding T2.
run_test(0x001030A2U, // Shift by 2: Not multiple of 4.
{0x01, 0xF0, 0x06, 0xE0}, 0xF001E006U, 0x0040100C, kCleanSlateBLX_T2,
// No shift: align_down_4(0x001030A2 + 4 + 0x0040100C).
0x005040B0U);
}
TEST(AArch64Rel32Translator, FetchStore) {
std::vector<uint8_t> bytes = {0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE};
std::vector<uint8_t> expected = {0xAB, 0x33, 0x22, 0x11,
0x69, 0x5A, 0xFF, 0x00};
MutableBufferView region(&bytes[0], bytes.size());
AArch64Rel32Translator translator;
EXPECT_EQ(0x76543210U, translator.FetchCode32(region, 0U));
EXPECT_EQ(0xFEDCBA98U, translator.FetchCode32(region, 4U));
translator.StoreCode32(region, 0U, 0x112233ABU);
translator.StoreCode32(region, 4U, 0x00FF5A69);
EXPECT_EQ(expected, bytes);
}
TEST(AArch64Rel32Translator, EncodeDecode) {
// Immd14 tests.
ArmTranslatorEncodeDecodeTest<AArch64Rel32Translator::AddrTraits_Immd14>
test_immd14;
for (int b40 : {0, 1, 7, 31}) {
uint32_t b40_mask = b40 << 19;
for (int Rt : {0, 1, 15, 30}) {
uint32_t mask = b40_mask | Rt;
ArmRelInstruction<uint32_t> TBZw_Rt("00110110 bbbbbSii iiiiiiii iiittttt",
kCleanSlate64TBZw | mask);
ArmRelInstruction<uint32_t> TBZz_Rt("10110110 bbbbbSii iiiiiiii iiittttt",
kCleanSlate64TBZz | mask);
ArmRelInstruction<uint32_t> TBNZw_Rt(
"00110111 bbbbbSii iiiiiiii iiittttt", kCleanSlate64TBNZw | mask);
ArmRelInstruction<uint32_t> TBNZz_Rt(
"10110111 bbbbbSii iiiiiiii iiittttt", kCleanSlate64TBNZz | mask);
test_immd14.Run("SSSSSSSS SSSSSSSS Siiiiiii iiiiii00", {"S", "i"},
{TBZw_Rt, TBZz_Rt, TBNZw_Rt, TBNZz_Rt},
{0x00007FFC, -0x00008000, 0, 4, -4, 0x40, 0x44},
{2, -2, 0x41, 0x42, 0x43, 0x00008000, -0x00008004});
}
}
// Immd19 tests.
ArmTranslatorEncodeDecodeTest<AArch64Rel32Translator::AddrTraits_Immd19>
test_immd19;
for (int cond = 0; cond <= 0x0E; ++cond) {
ArmRelInstruction<uint32_t> B_cond("01010100 Siiiiiii iiiiiiii iii0cccc",
kCleanSlate64Bcond | cond);
test_immd19.Run("SSSSSSSS SSSSiiii iiiiiiii iiiiii00", {"S", "i"}, {B_cond},
{0x000FFFFC, -0x00100000, 0, 4, -4, 0x40, 0x44},
{2, -2, 0x41, 0x42, 0x43, 0x00100000, -0x00100004});
}
for (int Rt : {0, 1, 15, 30}) {
ArmRelInstruction<uint32_t> CBZw_Rt("00110100 Siiiiiii iiiiiiii iiittttt",
kCleanSlate64CBZw | Rt);
ArmRelInstruction<uint32_t> CBZz_Rt("10110100 Siiiiiii iiiiiiii iiittttt",
kCleanSlate64CBZz | Rt);
ArmRelInstruction<uint32_t> CBNZw_Rt("00110101 Siiiiiii iiiiiiii iiittttt",
kCleanSlate64CBNZw | Rt);
ArmRelInstruction<uint32_t> CBNZz_Rt("10110101 Siiiiiii iiiiiiii iiittttt",
kCleanSlate64CBNZz | Rt);
test_immd19.Run("SSSSSSSS SSSSiiii iiiiiiii iiiiii00", {"S", "i"},
{CBZw_Rt, CBZz_Rt, CBNZw_Rt, CBNZz_Rt},
{0x000FFFFC, -0x00100000, 0, 4, -4, 0x40, 0x44},
{2, -2, 0x41, 0x42, 0x43, 0x00100000, -0x00100004});
}
// Immd26 tests.
ArmTranslatorEncodeDecodeTest<AArch64Rel32Translator::AddrTraits_Immd26>
test_immd26;
ArmRelInstruction<uint32_t> B("000101Si iiiiiiii iiiiiiii iiiiiiii",
kCleanSlate64B);
ArmRelInstruction<uint32_t> BL("100101Si iiiiiiii iiiiiiii iiiiiiii",
kCleanSlate64BL);
test_immd26.Run("SSSSSiii iiiiiiii iiiiiiii iiiiii00", {"S", "i"}, {B, BL},
{0x07FFFFFC, -0x08000000, 0, 4, -4, 0x40, 0x44},
{2, -2, 0x41, 0x42, 0x43, 0x08000000, -0x08000004});
}
TEST(AArch64Rel32Translator, WriteRead) {
std::vector<rva_t> aligned4;
std::vector<rva_t> misaligned4;
for (rva_t rva = 0x1FFC; rva <= 0x2010; ++rva) {
((rva % 4 == 0) ? aligned4 : misaligned4).push_back(rva);
}
CHECK_EQ(6U, aligned4.size());
CHECK_EQ(15U, misaligned4.size());
// Helper to convert an instruction's RVA to PC.
auto pcAArch64 = [](rva_t instr_rva) -> rva_t { return instr_rva; };
// Immd14 tests.
ArmTranslatorWriteReadTest<AArch64Rel32Translator::AddrTraits_Immd14>
test_immd14;
for (uint32_t clean_slate_code : {kCleanSlate64TBZw, kCleanSlate64TBZz,
kCleanSlate64TBNZw, kCleanSlate64TBNZz}) {
test_immd14.Accept(clean_slate_code, aligned4, aligned4);
test_immd14.Reject(clean_slate_code, aligned4, misaligned4);
test_immd14.Reject(clean_slate_code, misaligned4, aligned4);
test_immd14.Reject(clean_slate_code, misaligned4, misaligned4);
// Signed (14 + 2)-bit range, 4-byte aligned: [-0x00008000, 0x00007FFC].
test_immd14.Accept(clean_slate_code, {0x10040000},
{pcAArch64(0x10038000), pcAArch64(0x10047FFC)});
test_immd14.Reject(clean_slate_code, {0x15000000},
{pcAArch64(0x10038000 - 4), pcAArch64(0x10047FFC + 4)});
}
// Immd19 tests.
ArmTranslatorWriteReadTest<AArch64Rel32Translator::AddrTraits_Immd19>
test_immd19;
for (uint32_t clean_slate_code :
{kCleanSlate64Bcond, kCleanSlate64CBZw, kCleanSlate64CBZz,
kCleanSlate64CBNZw, kCleanSlate64CBNZz}) {
test_immd19.Accept(clean_slate_code, aligned4, aligned4);
test_immd19.Reject(clean_slate_code, aligned4, misaligned4);
test_immd19.Reject(clean_slate_code, misaligned4, aligned4);
test_immd19.Reject(clean_slate_code, misaligned4, misaligned4);
// Signed (19 + 2)-bit range, 4-byte aligned: [-0x00100000, 0x000FFFFC].
test_immd19.Accept(clean_slate_code, {0x10300000},
{pcAArch64(0x10200000), pcAArch64(0x103FFFFC)});
test_immd19.Reject(clean_slate_code, {0x10300000},
{pcAArch64(0x10200000 - 4), pcAArch64(0x103FFFFC + 4)});
}
// Immd26 tests.
ArmTranslatorWriteReadTest<AArch64Rel32Translator::AddrTraits_Immd26>
test_immd26;
for (uint32_t clean_slate_code : {kCleanSlate64B, kCleanSlate64BL}) {
test_immd26.Accept(clean_slate_code, aligned4, aligned4);
test_immd26.Reject(clean_slate_code, aligned4, misaligned4);
test_immd26.Reject(clean_slate_code, misaligned4, aligned4);
test_immd26.Reject(clean_slate_code, misaligned4, misaligned4);
// Signed (26 + 2)-bit range, 4-byte aligned: [-0x08000000, 0x07FFFFFC].
test_immd26.Accept(clean_slate_code, {0x30000000},
{pcAArch64(0x28000000), pcAArch64(0x37FFFFFC)});
test_immd26.Reject(clean_slate_code, {0x30000000},
{pcAArch64(0x28000000 - 4), pcAArch64(0x37FFFFFC + 4)});
}
}
// Typical usage in |target_rva| extraction.
TEST(AArch64Rel32Translator, Main) {
// 00103050: 02 01 02 14 B 00183458
rva_t instr_rva = 0x00103050U;
AArch64Rel32Translator translator;
std::vector<uint8_t> bytes = {0x02, 0x01, 0x02, 0x14};
MutableBufferView region(&bytes[0], bytes.size());
uint32_t code = translator.FetchCode32(region, 0U);
EXPECT_EQ(0x14020102U, code);
// |code| <-> |disp|.
arm_disp_t disp = 0;
EXPECT_TRUE(translator.DecodeImmd26(code, &disp));
EXPECT_EQ(+0x00080408, disp);
uint32_t code_from_disp = kCleanSlate64B;
EXPECT_TRUE(translator.EncodeImmd26(disp, &code_from_disp));
EXPECT_EQ(code, code_from_disp);
// |code| <-> |target_rva|.
rva_t target_rva = kInvalidRva;
EXPECT_TRUE(translator.ReadImmd26(instr_rva, code, &target_rva));
// 0x00103050 + 0 + 0x00080408.
EXPECT_EQ(0x00183458U, target_rva);
uint32_t code_from_rva = kCleanSlate64B;
EXPECT_TRUE(translator.WriteImmd26(instr_rva, target_rva, &code_from_rva));
EXPECT_EQ(code, code_from_rva);
}
} // namespace zucchini
|