1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "components/zucchini/binary_data_histogram.h"
#include <stddef.h>
#include <memory>
#include <vector>
#include "components/zucchini/buffer_view.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace zucchini {
TEST(OutlierDetectorTest, Basic) {
auto make_detector = [](const std::vector<double>& values) {
auto detector = std::make_unique<OutlierDetector>();
for (double v : values)
detector->Add(v);
detector->Prepare();
return detector;
};
std::unique_ptr<OutlierDetector> detector;
// No data: Should at least not cause error.
detector = make_detector({});
EXPECT_EQ(0, detector->DecideOutlier(0.0));
// Single point: Trivially inert.
detector = make_detector({0.5});
EXPECT_EQ(0, detector->DecideOutlier(0.1));
EXPECT_EQ(0, detector->DecideOutlier(0.5));
EXPECT_EQ(0, detector->DecideOutlier(0.9));
// Two identical points: StdDev is 0, so falls back to built-in tolerance.
detector = make_detector({0.5, 0.5});
EXPECT_EQ(-1, detector->DecideOutlier(0.3));
EXPECT_EQ(0, detector->DecideOutlier(0.499));
EXPECT_EQ(0, detector->DecideOutlier(0.5));
EXPECT_EQ(0, detector->DecideOutlier(0.501));
EXPECT_EQ(1, detector->DecideOutlier(0.7));
// Two separate points: Outliner test is pretty lax.
detector = make_detector({0.4, 0.6});
EXPECT_EQ(-1, detector->DecideOutlier(0.2));
EXPECT_EQ(0, detector->DecideOutlier(0.3));
EXPECT_EQ(0, detector->DecideOutlier(0.5));
EXPECT_EQ(0, detector->DecideOutlier(0.7));
EXPECT_EQ(1, detector->DecideOutlier(0.8));
// Sharpen distribution by clustering toward norm: Now test is stricter.
detector = make_detector({0.4, 0.47, 0.48, 0.49, 0.50, 0.51, 0.52, 0.6});
EXPECT_EQ(-1, detector->DecideOutlier(0.3));
EXPECT_EQ(0, detector->DecideOutlier(0.4));
EXPECT_EQ(0, detector->DecideOutlier(0.5));
EXPECT_EQ(0, detector->DecideOutlier(0.6));
EXPECT_EQ(1, detector->DecideOutlier(0.7));
// Shift numbers around: Mean is 0.3, and data order scrambled.
detector = make_detector({0.28, 0.2, 0.31, 0.4, 0.29, 0.32, 0.27, 0.30});
EXPECT_EQ(-1, detector->DecideOutlier(0.0));
EXPECT_EQ(-1, detector->DecideOutlier(0.1));
EXPECT_EQ(0, detector->DecideOutlier(0.2));
EXPECT_EQ(0, detector->DecideOutlier(0.3));
EXPECT_EQ(0, detector->DecideOutlier(0.4));
EXPECT_EQ(1, detector->DecideOutlier(0.5));
EXPECT_EQ(1, detector->DecideOutlier(1.0));
// Typical usage: Potential outlier would be part of original input data!
detector = make_detector({0.3, 0.29, 0.31, 0.0, 0.3, 0.32, 0.3, 0.29, 0.6});
EXPECT_EQ(-1, detector->DecideOutlier(0.0));
EXPECT_EQ(0, detector->DecideOutlier(0.28));
EXPECT_EQ(0, detector->DecideOutlier(0.29));
EXPECT_EQ(0, detector->DecideOutlier(0.3));
EXPECT_EQ(0, detector->DecideOutlier(0.31));
EXPECT_EQ(0, detector->DecideOutlier(0.32));
EXPECT_EQ(1, detector->DecideOutlier(0.6));
}
TEST(BinaryDataHistogramTest, Basic) {
constexpr double kUninitScore = -1;
constexpr uint8_t kTestData[] = {2, 137, 42, 0, 0, 0, 7, 11, 1, 11, 255};
const size_t n = sizeof(kTestData);
ConstBufferView region(kTestData, n);
std::vector<BinaryDataHistogram> prefix_histograms(n + 1); // Short to long.
std::vector<BinaryDataHistogram> suffix_histograms(n + 1); // Long to short.
for (size_t i = 0; i <= n; ++i) {
ConstBufferView prefix(region.begin(), i);
ConstBufferView suffix(region.begin() + i, n - i);
// If regions are smaller than 2 bytes then it is invalid. Else valid.
EXPECT_EQ(prefix.size() >= 2, prefix_histograms[i].Compute(prefix));
EXPECT_EQ(suffix.size() >= 2, suffix_histograms[i].Compute(suffix));
// IsValid() returns the same results.
EXPECT_EQ(prefix.size() >= 2, prefix_histograms[i].IsValid());
EXPECT_EQ(suffix.size() >= 2, suffix_histograms[i].IsValid());
}
// Full-prefix = full-suffix = full data.
EXPECT_EQ(0.0, prefix_histograms[n].Distance(suffix_histograms[0]));
EXPECT_EQ(0.0, suffix_histograms[0].Distance(prefix_histograms[n]));
// Testing heuristics without overreliance on implementation details.
// Strict prefixes, in increasing size. Compare against full data.
double prev_prefix_score = kUninitScore;
for (size_t i = 2; i < n; ++i) {
double score = prefix_histograms[i].Distance(prefix_histograms[n]);
// Positivity.
EXPECT_GT(score, 0.0);
// Symmetry.
EXPECT_EQ(score, prefix_histograms[n].Distance(prefix_histograms[i]));
// Distance should decrease as prefix gets nearer to full data.
if (prev_prefix_score != kUninitScore)
EXPECT_LT(score, prev_prefix_score);
prev_prefix_score = score;
}
// Strict suffixes, in decreasing size. Compare against full data.
double prev_suffix_score = -1;
for (size_t i = 1; i <= n - 2; ++i) {
double score = suffix_histograms[i].Distance(suffix_histograms[0]);
// Positivity.
EXPECT_GT(score, 0.0);
// Symmetry.
EXPECT_EQ(score, suffix_histograms[0].Distance(suffix_histograms[i]));
// Distance should increase as suffix gets farther from full data.
if (prev_suffix_score != kUninitScore)
EXPECT_GT(score, prev_suffix_score);
prev_suffix_score = score;
}
}
} // namespace zucchini
|