1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "content/browser/webid/jwt_signer.h"
#include <map>
#include "base/base64.h"
#include "base/base64url.h"
#include "base/containers/span.h"
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/json/json_reader.h"
#include "base/json/json_writer.h"
#include "base/logging.h"
#include "base/values.h"
#include "content/browser/webid/sd_jwt.h"
#include "crypto/openssl_util.h"
#include "crypto/random.h"
#include "crypto/sign.h"
#include "third_party/boringssl/src/include/openssl/base.h"
#include "third_party/boringssl/src/include/openssl/bn.h"
#include "third_party/boringssl/src/include/openssl/bytestring.h"
#include "third_party/boringssl/src/include/openssl/ec.h"
#include "third_party/boringssl/src/include/openssl/ec_key.h"
#include "third_party/boringssl/src/include/openssl/ecdsa.h"
#include "third_party/boringssl/src/include/openssl/evp.h"
#include "third_party/boringssl/src/include/openssl/mem.h"
#include "third_party/boringssl/src/include/openssl/nid.h"
#include "url/gurl.h"
#include "url/origin.h"
namespace content::sdjwt {
namespace {
// Rounds a bit count (up) to the nearest byte count.
//
// This is mathematically equivalent to (x + 7) / 8, however has no
// possibility of integer overflow.
template <typename T>
T NumBitsToBytes(T x) {
return (x / 8) + (7 + (x % 8)) / 8;
}
int GetGroupDegreeInBytes(EC_KEY* ec) {
const EC_GROUP* group = EC_KEY_get0_group(ec);
return NumBitsToBytes(EC_GROUP_get_degree(group));
}
bool IsEcdsaP256(EVP_PKEY* evp_key) {
if (EVP_PKEY_base_id(evp_key) != EVP_PKEY_EC) {
return false;
}
EC_KEY* ec_key = EVP_PKEY_get0_EC_KEY(evp_key);
CHECK(ec_key);
return EC_KEY_get0_group(ec_key) == EC_group_p256();
}
std::optional<std::string> BIGNUMToPadded(const BIGNUM* value,
size_t padded_length) {
std::vector<uint8_t> padded_bytes(padded_length);
if (!BN_bn2bin_padded(padded_bytes.data(), padded_bytes.size(), value)) {
return std::nullopt;
}
std::string base64;
base::Base64UrlEncode(base::as_byte_span(padded_bytes),
base::Base64UrlEncodePolicy::OMIT_PADDING, &base64);
return base64;
}
// Given a DER-encoded ECDSA-Sig-Value, unpack it into a raw ECDSA signature:
// (r, s) represented as two big-endian, zero-padded 256-bit integers. This
// function requires that the input be a valid ECDSA signature and that both r
// and s are <= 256 bits.
std::vector<uint8_t> UnpackDERSignature(base::span<const uint8_t> der_sig) {
crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE);
// Create ECDSA_SIG object from DER-encoded data.
bssl::UniquePtr<ECDSA_SIG> ecdsa_sig(
ECDSA_SIG_from_bytes(der_sig.data(), der_sig.size()));
CHECK(ecdsa_sig.get());
// The result is made of two 32-byte vectors.
const size_t kMaxBytesPerBN = 32;
std::vector<uint8_t> result(2 * kMaxBytesPerBN);
CHECK(BN_bn2bin_padded(&result[0], kMaxBytesPerBN, ecdsa_sig->r));
CHECK(
BN_bn2bin_padded(&result[kMaxBytesPerBN], kMaxBytesPerBN, ecdsa_sig->s));
return result;
}
std::optional<std::vector<uint8_t>> SignJwt(
crypto::keypair::PrivateKey private_key,
const std::string_view& message) {
// The signature unpacking step won't work if the key uses a curve other than
// P-256.
if (!IsEcdsaP256(private_key.key())) {
return std::nullopt;
}
const auto sig = crypto::sign::Sign(crypto::sign::SignatureKind::ECDSA_SHA256,
private_key, base::as_byte_span(message));
return UnpackDERSignature(sig);
}
} // namespace
std::optional<Jwk> ExportPublicKey(
const crypto::keypair::PrivateKey& private_pkey) {
EC_KEY* ec = EVP_PKEY_get0_EC_KEY(private_pkey.key());
if (!ec) {
return std::nullopt;
}
Jwk jwk;
jwk.kty = "EC";
jwk.crv = "P-256";
// Get public key
bssl::UniquePtr<BIGNUM> x(BN_new());
bssl::UniquePtr<BIGNUM> y(BN_new());
const EC_GROUP* group = EC_KEY_get0_group(ec);
const EC_POINT* point = EC_KEY_get0_public_key(ec);
if (!EC_POINT_get_affine_coordinates_GFp(group, point, x.get(), y.get(),
nullptr)) {
return std::nullopt;
}
int degree_bytes = GetGroupDegreeInBytes(ec);
auto x_base64 = BIGNUMToPadded(x.get(), degree_bytes);
if (!x_base64) {
return std::nullopt;
}
jwk.x = *x_base64;
auto y_base64 = BIGNUMToPadded(y.get(), degree_bytes);
if (!y_base64) {
return std::nullopt;
}
jwk.y = *y_base64;
return jwk;
}
Signer CreateJwtSigner(crypto::keypair::PrivateKey private_key) {
return base::BindOnce(SignJwt, std::move(private_key));
}
} // namespace content::sdjwt
|