1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
|
#!/usr/bin/env python
# Copyright 2019 The Chromium Authors
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
"""Script which analyze power measurement test results from bots.
Such analysis provides insights into power data to better understand
Intel Power Gadget.
Related design doc:
https://docs.google.com/document/d/1s3L2IYguQmPHInsKkbHh06hXCXo8ggo5iPIhOaCNwVw
"""
import enum
import json
import logging
import math
import os
import sys
_TESTS = [
'Basic', 'Video_720_MP4', 'Video_720_MP4_Fullscreen',
'Video_720_MP4_Underlay', 'Video_720_MP4_Underlay_Fullscreen'
]
_MEASUREMENTS = ['DRAM', 'Processor']
_RESULTS_PATH = os.path.join(
os.path.dirname(os.path.abspath(__file__)), 'win10_intel_hd_630')
_RESULTS_JSON_FILES = [
'build_4370_4425_repeat3.json',
'build_4426_4759_repeat3.json',
'build_4760_5047_repeat3.json',
]
MIN_RUNS_PER_BOT = 8
class RepeatStrategy(enum.Enum):
COUNT_EACH = 1 # count each run individually
COUNT_MINIMUM = 2 # count the run with minimum power
COUNT_AVERAGE = 3 # count the average power of all runs
COUNT_MEDIAN = 4 # count the median_low (power wise) of all runs
COUNT_MINIMUM_FIRST_TWO = 5 # for the first 2, count the run with less power
@classmethod
def ToString(cls, strategy):
if strategy == cls.COUNT_EACH:
return 'each'
if strategy == cls.COUNT_MINIMUM:
return 'minimum'
if strategy == cls.COUNT_AVERAGE:
return 'average'
if strategy == cls.COUNT_MEDIAN:
return 'median'
assert strategy == cls.COUNT_MINIMUM_FIRST_TWO
return 'minimum (first two)'
def LoadResultsJsonFiles():
jsons = []
for json_filename in _RESULTS_JSON_FILES:
json_path = os.path.join(_RESULTS_PATH, json_filename)
with open(json_path, 'r', encoding='utf-8') as json_file:
logging.debug('Loading %s', json_path)
jsons.append(json.load(json_file))
return jsons
def DetermineResultsFromMultipleRuns(measurements, repeat_strategy):
if repeat_strategy == RepeatStrategy.COUNT_EACH:
return measurements
if repeat_strategy == RepeatStrategy.COUNT_MINIMUM:
measurements.sort()
return [measurements[0]]
if repeat_strategy == RepeatStrategy.COUNT_AVERAGE:
return [Mean(measurements)]
if repeat_strategy == RepeatStrategy.COUNT_MEDIAN:
return [MedianLow(measurements)]
if repeat_strategy == RepeatStrategy.COUNT_MINIMUM_FIRST_TWO:
assert len(measurements) >= 2
first_two = measurements[0:2]
first_two.sort()
return [first_two[0]]
assert False
return []
# pylint: disable=too-many-locals
def ProcessJsonData(jsons,
per_bot=False,
repeat_strategy=RepeatStrategy.COUNT_MINIMUM):
min_build = sys.maxsize
max_build = -1
results = {}
bots = set()
for j in jsons:
for build in j.get('builds', []):
build_number = build.get('number', -1)
if build_number > 0:
min_build = min(build_number, min_build)
max_build = max(build_number, max_build)
bot = build['bot']
bots.add(bot)
for test in build['tests']:
name = test['name'].split('.')[-1]
assert name in _TESTS
if results.get(name, None) is None:
if per_bot:
results[name] = {}
else:
results[name] = []
test_data = results[name]
if per_bot:
if test_data.get(bot, None) is None:
test_data[bot] = []
test_data = test_data[bot]
measurements = [0]
for measurement_name in _MEASUREMENTS:
actual_measurement_name = measurement_name + ' Power_0'
data = test[actual_measurement_name]
count = len(data)
while len(measurements) < count:
measurements.append(0)
for ii in range(count):
measurements[ii] = measurements[ii] + data[ii]
assert measurements
test_data.extend(
DetermineResultsFromMultipleRuns(measurements, repeat_strategy))
return {
'min_build': min_build,
'max_build': max_build,
'bots': list(bots),
'results': results,
}
# pylint: enable=too-many-locals
def Mean(data):
assert len(data) > 0
total = 0
for num in data:
total = total + num
return total / len(data)
def Stdev(data):
assert len(data) > 0
mean = Mean(data)
total = 0
for num in data:
total = total + (num - mean) * (num - mean)
return math.sqrt(total / len(data))
def MedianLow(data):
# Assume list is sorted.
assert len(data) > 0
index = int((len(data) - 1) / 2)
return data[index]
def MarkSection():
print('')
def MarkExperiment(description):
print('')
print('**************************************************************')
print(description)
print('**************************************************************')
print('')
def GetBotBuilds(jsons, bot_name):
build_numbers = []
for j in jsons:
builds = j.get('builds', [])
for build in builds:
build_number = build.get('number', -1)
if build_number > 0:
bot = build['bot']
if bot == bot_name:
build_numbers.append(build_number)
return build_numbers
def GetOutliers(data, variation_threshold):
mean = Mean(data)
max_value = mean + mean * variation_threshold
min_value = mean - mean * variation_threshold
outliers = []
for value in data:
if value > max_value or value < min_value:
outliers.append(value)
return outliers
# pylint: disable=too-many-locals
def FindBuild(jsons, selected_bots, test_name, result):
for j in jsons:
for build in j.get('builds', []):
build_number = build.get('number', -1)
if build_number < 0:
continue
bot = build['bot']
if bot not in selected_bots:
continue
for test in build['tests']:
name = test['name'].split('.')[-1]
assert name in _TESTS
if name != test_name:
continue
# Use RepeatStrategy.COUNT_MINIMUM
measurements = [0]
for measurement_name in _MEASUREMENTS:
actual_measurement_name = measurement_name + ' Power_0'
data = test[actual_measurement_name]
count = len(data)
while len(measurements) < count:
measurements.append(0)
for ii in range(count):
measurements[ii] = measurements[ii] + data[ii]
assert measurements
measurements.sort()
if measurements[0] == result:
return {'bot': bot, 'build': build_number}
return None
# pylint: enable=too-many-locals
def RunExperiment_BadBots(jsons,
stdev_threshold,
repeat_strategy=RepeatStrategy.COUNT_MINIMUM):
MarkExperiment(f'Locate potential bad bots: thresh={stdev_threshold:.2f}, '
f'repeat={RepeatStrategy.ToString(repeat_strategy)}')
outcome = ProcessJsonData(
jsons, per_bot=True, repeat_strategy=repeat_strategy)
logging.debug('Processed builds: [%d, %d]', outcome['min_build'],
outcome['max_build'])
logging.debug('Total number of bots: %d', len(outcome['bots']))
results = outcome['results']
total_bad_bots = set()
for test_name, test_results in results.items():
if test_name == 'Basic':
# Ignore Basic test results. They seem more unstable.
continue
MarkSection()
logging.debug('Results for test: %s', test_name)
bots_considered = 0
bad_bots = []
for bot_name, bot_results in test_results.items():
if len(bot_results) < MIN_RUNS_PER_BOT:
continue
bots_considered = bots_considered + 1
stdev = Stdev(bot_results)
bot_results.sort()
if stdev > stdev_threshold:
bad_bots.append(bot_name)
logging.debug('Potential bad bot %s: stdev = %f', bot_name, stdev)
total_bad_bots |= set(bad_bots)
logging.debug('Total bots considered: %d', bots_considered)
logging.debug('Bad bots: %d', len(bad_bots))
logging.debug('%s', bad_bots)
MarkSection()
total_bad_bots = list(total_bad_bots)
total_bad_bots.sort()
logging.debug('All potential bad bots: %d', len(total_bad_bots))
logging.debug('%s', total_bad_bots)
MarkSection()
for bot in total_bad_bots:
build_numbers = GetBotBuilds(jsons, bot)
build_numbers.sort()
logging.debug('Bad bot %s builds: %s', bot, build_numbers)
return total_bad_bots
# pylint: disable=too-many-locals
def RunExperiment_GoodBots(jsons,
bad_bots=None,
repeat_strategy=RepeatStrategy.COUNT_MINIMUM):
bad_bots = bad_bots or []
STDEV_GOOD_BOT_THRESHOLD = 0.2
GOOD_BOT_RANGE_PERC = 0.08
REGULAR_BOT_RANGE_PERC = 0.15
MarkExperiment(
f'Locate potential good bots: thresh={STDEV_GOOD_BOT_THRESHOLD:.2f}, '
f'repeat={RepeatStrategy.ToString(repeat_strategy)}')
outcome = ProcessJsonData(
jsons, per_bot=True, repeat_strategy=repeat_strategy)
logging.debug('Processed builds: [%d, %d]', outcome['min_build'],
outcome['max_build'])
logging.debug('Total number of bots: %d', len(outcome['bots']))
total_good_bots = set(outcome['bots'])
for test_name, test_results in outcome['results'].items():
if test_name == 'Basic':
# Ignore Basic test results. They seem more unstable.
continue
MarkSection()
logging.debug('Results for test: %s', test_name)
bots_considered = 0
stdev_list = []
good_bots = []
for bot_name, bot_results in test_results.items():
if len(bot_results) < MIN_RUNS_PER_BOT:
continue
stdev = Stdev(bot_results)
stdev_list.append(stdev)
if bot_name in bad_bots:
continue
bot_results.sort()
bots_considered = bots_considered + 1
mean = Mean(bot_results)
if stdev < STDEV_GOOD_BOT_THRESHOLD:
good_bots.append(bot_name)
logging.debug('Potential good bot %s: mean = %f, stdev = %f', bot_name,
mean, stdev)
outliers = GetOutliers(bot_results, GOOD_BOT_RANGE_PERC)
if outliers:
logging.debug('Good bot %s: %d runs out of %d%% range', bot_name,
len(outliers), GOOD_BOT_RANGE_PERC * 100)
else:
outliers = GetOutliers(bot_results, REGULAR_BOT_RANGE_PERC)
if outliers:
logging.debug('Regular bot %s: %d runs out of %d%% range', bot_name,
len(outliers), REGULAR_BOT_RANGE_PERC * 100)
total_good_bots &= set(good_bots)
logging.debug('Total bots considered: %d', bots_considered)
logging.debug('Good bots: %d', len(good_bots))
logging.debug('%s', good_bots)
logging.debug('Average per bot stdev: %f', Mean(stdev_list))
MarkSection()
total_good_bots = list(total_good_bots)
total_good_bots.sort()
logging.debug('All potential good bots: %d', len(total_good_bots))
logging.debug('%s', total_good_bots)
MarkSection()
for bot in total_good_bots:
build_numbers = GetBotBuilds(jsons, bot)
build_numbers.sort()
logging.debug('Good bot %s builds: %s', bot, build_numbers)
return total_good_bots
# pylint: enable=too-many-locals
# This could definitely use some refactoring to be more readable and make
# pylint happier, but currently difficult to change confidently without any
# unittests.
# pylint: disable=too-many-locals,too-many-branches,too-many-statements
def RunExperiment_BestVariations(jsons, find_m_bots, variation_threshold):
GET_RID_OF_N_BOTS_WITH_WORST_STDEV = 10
MarkExperiment(f'Find {find_m_bots} bots with best variations, threshold = '
f'{variation_threshold * 100:.2f}%')
outcome = ProcessJsonData(
jsons, per_bot=True, repeat_strategy=RepeatStrategy.COUNT_MINIMUM)
candidates_per_test = {}
candidate_bots_per_test = {}
for test_name, test_results in outcome['results'].items():
if test_name == 'Basic':
# Ignore Basic test results. They seem more unstable.
continue
bots_considered = 0
candidates = []
stdev_list = []
# Remove N bots with worst stdev
for bot_name, bot_results in test_results.items():
if len(bot_results) < MIN_RUNS_PER_BOT:
continue
bots_considered = bots_considered + 1
mean = Mean(bot_results)
stdev = Stdev(bot_results)
candidates.append({
'bot': bot_name,
'mean': mean,
'stdev': stdev,
'data': bot_results,
})
stdev_list.append(stdev)
stdev_list.sort()
guard_stdev = stdev_list[-GET_RID_OF_N_BOTS_WITH_WORST_STDEV]
candidates_with_good_stdev = []
mean_list = []
for candidate in candidates:
if candidate['stdev'] < guard_stdev:
candidates_with_good_stdev.append(candidate)
mean_list.append(candidate['mean'])
assert (len(candidates) - GET_RID_OF_N_BOTS_WITH_WORST_STDEV == len(
candidates_with_good_stdev))
assert len(candidates_with_good_stdev) > find_m_bots
# Find M bots with minimum range of means
mean_list.sort()
min_range = mean_list[-1] - mean_list[0]
candidate_index = 0
for low_index in range(len(candidates_with_good_stdev) - find_m_bots + 1):
high_index = low_index + find_m_bots - 1
mean_range = mean_list[high_index] - mean_list[low_index]
if mean_range < min_range:
min_range = mean_range
candidate_index = low_index
min_mean = mean_list[candidate_index]
max_mean = mean_list[candidate_index + find_m_bots - 1]
candidates = []
candidate_bots = []
for candidate in candidates_with_good_stdev:
if candidate['mean'] >= min_mean and candidate['mean'] <= max_mean:
candidates.append(candidate)
candidate_bots.append(candidate['bot'])
assert len(candidates) == find_m_bots
candidate_bots_per_test[test_name] = set(candidate_bots)
candidates_per_test[test_name] = candidates
# Now find the list of bots that work well for all tests
selected_bots = None
for test_name, bots in candidate_bots_per_test.items():
if selected_bots is None:
selected_bots = bots
else:
selected_bots = selected_bots & bots
logging.debug('Intended to find %d bots, actually found %d', find_m_bots,
len(selected_bots))
selected_bots = list(selected_bots)
selected_bots.sort()
logging.debug(selected_bots)
# Validate: check variations are within a range
for test_name, candidates in candidates_per_test.items():
MarkSection()
results = []
for candidate in candidates:
if candidate['bot'] in selected_bots:
results.extend(candidate['data'])
mean = Mean(results)
stdev = Stdev(results)
logging.debug('Validate test %s: mean = %f, stdev = %f', test_name, mean,
stdev)
outliers = GetOutliers(results, variation_threshold)
if outliers:
# Find corresponding builds
builds = []
for outlier in outliers:
build = FindBuild(jsons, selected_bots, test_name, outlier)
assert build is not None
builds.append(build)
logging.debug('%d runs out of %d are not within %0.2f%% range: %s',
len(outliers), len(results), (variation_threshold * 100),
outliers)
logging.debug(builds)
# pylint: enable=too-many-locals,too-many-branches,too-many-statements
def main():
logging.basicConfig(level=logging.DEBUG)
jsons = LoadResultsJsonFiles()
bad_bots = RunExperiment_BadBots(jsons, 0.5, RepeatStrategy.COUNT_EACH)
RunExperiment_GoodBots(jsons, bad_bots, RepeatStrategy.COUNT_EACH)
bad_bots = RunExperiment_BadBots(jsons, 0.5, RepeatStrategy.COUNT_AVERAGE)
RunExperiment_GoodBots(jsons, bad_bots, RepeatStrategy.COUNT_AVERAGE)
bad_bots = RunExperiment_BadBots(jsons, 0.5, RepeatStrategy.COUNT_MEDIAN)
RunExperiment_GoodBots(jsons, bad_bots, RepeatStrategy.COUNT_MEDIAN)
bad_bots = RunExperiment_BadBots(jsons, 0.5,
RepeatStrategy.COUNT_MINIMUM_FIRST_TWO)
RunExperiment_GoodBots(jsons, bad_bots,
RepeatStrategy.COUNT_MINIMUM_FIRST_TWO)
bad_bots = RunExperiment_BadBots(jsons, 0.5, RepeatStrategy.COUNT_MINIMUM)
RunExperiment_GoodBots(jsons, bad_bots, RepeatStrategy.COUNT_MINIMUM)
RunExperiment_BestVariations(jsons, 25, 0.12)
return 0
if __name__ == '__main__':
sys.exit(main())
|