1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This file has the unit tests for the IdAllocator class.
#include "gpu/command_buffer/common/id_allocator.h"
#include <stdint.h>
#include <array>
#include "testing/gtest/include/gtest/gtest.h"
namespace gpu {
class IdAllocatorTest : public testing::Test {
protected:
void SetUp() override {}
void TearDown() override {}
IdAllocator* id_allocator() { return &id_allocator_; }
private:
IdAllocator id_allocator_;
};
// Checks basic functionality: AllocateID, FreeID, InUse.
TEST_F(IdAllocatorTest, TestBasic) {
IdAllocator *allocator = id_allocator();
// Check that resource 1 is not in use
EXPECT_FALSE(allocator->InUse(1));
// Allocate an ID, check that it's in use.
ResourceId id1 = allocator->AllocateID();
EXPECT_TRUE(allocator->InUse(id1));
// Allocate another ID, check that it's in use, and different from the first
// one.
ResourceId id2 = allocator->AllocateID();
EXPECT_TRUE(allocator->InUse(id2));
EXPECT_NE(id1, id2);
// Free one of the IDs, check that it's not in use any more.
allocator->FreeID(id1);
EXPECT_FALSE(allocator->InUse(id1));
// Frees the other ID, check that it's not in use any more.
allocator->FreeID(id2);
EXPECT_FALSE(allocator->InUse(id2));
}
// Checks that the resource IDs are re-used after being freed.
TEST_F(IdAllocatorTest, TestAdvanced) {
IdAllocator *allocator = id_allocator();
// Allocate the highest possible ID, to make life awkward.
allocator->AllocateIDAtOrAbove(~static_cast<ResourceId>(0));
// Allocate a significant number of resources.
const unsigned int kNumResources = 100;
std::array<ResourceId, kNumResources> ids;
for (unsigned int i = 0; i < kNumResources; ++i) {
ids[i] = allocator->AllocateID();
EXPECT_TRUE(allocator->InUse(ids[i]));
}
// Check that a new allocation re-uses the resource we just freed.
ResourceId id1 = ids[kNumResources / 2];
allocator->FreeID(id1);
EXPECT_FALSE(allocator->InUse(id1));
ResourceId id2 = allocator->AllocateID();
EXPECT_TRUE(allocator->InUse(id2));
EXPECT_EQ(id1, id2);
}
// Checks that we can choose our own ids and they won't be reused.
TEST_F(IdAllocatorTest, MarkAsUsed) {
IdAllocator* allocator = id_allocator();
ResourceId id = allocator->AllocateID();
allocator->FreeID(id);
EXPECT_FALSE(allocator->InUse(id));
EXPECT_TRUE(allocator->MarkAsUsed(id));
EXPECT_TRUE(allocator->InUse(id));
ResourceId id2 = allocator->AllocateID();
EXPECT_NE(id, id2);
EXPECT_TRUE(allocator->MarkAsUsed(id2 + 1));
ResourceId id3 = allocator->AllocateID();
// Checks our algorithm. If the algorithm changes this check should be
// changed.
EXPECT_EQ(id3, id2 + 2);
}
// Checks AllocateIdAtOrAbove.
TEST_F(IdAllocatorTest, AllocateIdAtOrAbove) {
const ResourceId kOffset = 123456;
IdAllocator* allocator = id_allocator();
ResourceId id1 = allocator->AllocateIDAtOrAbove(kOffset);
EXPECT_EQ(kOffset, id1);
ResourceId id2 = allocator->AllocateIDAtOrAbove(kOffset);
EXPECT_GT(id2, kOffset);
ResourceId id3 = allocator->AllocateIDAtOrAbove(kOffset);
EXPECT_GT(id3, kOffset);
}
// Checks that AllocateIdAtOrAbove wraps around at the maximum value.
TEST_F(IdAllocatorTest, AllocateIdAtOrAboveWrapsAround) {
const ResourceId kMaxPossibleOffset = ~static_cast<ResourceId>(0);
IdAllocator* allocator = id_allocator();
ResourceId id1 = allocator->AllocateIDAtOrAbove(kMaxPossibleOffset);
EXPECT_EQ(kMaxPossibleOffset, id1);
ResourceId id2 = allocator->AllocateIDAtOrAbove(kMaxPossibleOffset);
EXPECT_EQ(1u, id2);
ResourceId id3 = allocator->AllocateIDAtOrAbove(kMaxPossibleOffset);
EXPECT_EQ(2u, id3);
}
TEST_F(IdAllocatorTest, RedundantFreeIsIgnored) {
IdAllocator* allocator = id_allocator();
ResourceId id1 = allocator->AllocateID();
allocator->FreeID(0);
allocator->FreeID(id1);
allocator->FreeID(id1);
allocator->FreeID(id1 + 1);
ResourceId id2 = allocator->AllocateID();
ResourceId id3 = allocator->AllocateID();
EXPECT_NE(id2, id3);
EXPECT_NE(kInvalidResource, id2);
EXPECT_NE(kInvalidResource, id3);
}
TEST_F(IdAllocatorTest, AllocateIDRange) {
const ResourceId kMaxPossibleOffset = std::numeric_limits<ResourceId>::max();
IdAllocator* allocator = id_allocator();
ResourceId id1 = allocator->AllocateIDRange(1);
EXPECT_EQ(1u, id1);
ResourceId id2 = allocator->AllocateIDRange(2);
EXPECT_EQ(2u, id2);
ResourceId id3 = allocator->AllocateIDRange(3);
EXPECT_EQ(4u, id3);
ResourceId id4 = allocator->AllocateID();
EXPECT_EQ(7u, id4);
allocator->FreeID(3);
ResourceId id5 = allocator->AllocateIDRange(1);
EXPECT_EQ(3u, id5);
allocator->FreeID(5);
allocator->FreeID(2);
allocator->FreeID(4);
ResourceId id6 = allocator->AllocateIDRange(2);
EXPECT_EQ(4u, id6);
ResourceId id7 = allocator->AllocateIDAtOrAbove(kMaxPossibleOffset);
EXPECT_EQ(kMaxPossibleOffset, id7);
ResourceId id8 = allocator->AllocateIDAtOrAbove(kMaxPossibleOffset);
EXPECT_EQ(2u, id8);
ResourceId id9 = allocator->AllocateIDRange(50);
EXPECT_EQ(8u, id9);
ResourceId id10 = allocator->AllocateIDRange(50);
EXPECT_EQ(58u, id10);
// Remove all the low-numbered ids.
allocator->FreeID(1);
allocator->FreeID(15);
allocator->FreeIDRange(2, 107);
ResourceId id11 = allocator->AllocateIDRange(100);
EXPECT_EQ(1u, id11);
allocator->FreeID(kMaxPossibleOffset);
ResourceId id12 = allocator->AllocateIDRange(100);
EXPECT_EQ(101u, id12);
ResourceId id13 = allocator->AllocateIDAtOrAbove(kMaxPossibleOffset - 2u);
EXPECT_EQ(kMaxPossibleOffset - 2u, id13);
ResourceId id14 = allocator->AllocateIDRange(3);
EXPECT_EQ(201u, id14);
}
TEST_F(IdAllocatorTest, AllocateIDRangeEndNoEffect) {
const ResourceId kMaxPossibleOffset = std::numeric_limits<ResourceId>::max();
IdAllocator* allocator = id_allocator();
ResourceId id1 = allocator->AllocateIDAtOrAbove(kMaxPossibleOffset - 2u);
EXPECT_EQ(kMaxPossibleOffset - 2u, id1);
ResourceId id3 = allocator->AllocateIDRange(3);
EXPECT_EQ(1u, id3);
ResourceId id2 = allocator->AllocateIDRange(2);
EXPECT_EQ(4u, id2);
}
TEST_F(IdAllocatorTest, AllocateFullIDRange) {
const uint32_t kMaxPossibleRange = std::numeric_limits<uint32_t>::max();
const ResourceId kFreedId = 555u;
IdAllocator* allocator = id_allocator();
ResourceId id1 = allocator->AllocateIDRange(kMaxPossibleRange);
EXPECT_EQ(1u, id1);
ResourceId id2 = allocator->AllocateID();
EXPECT_EQ(0u, id2);
allocator->FreeID(kFreedId);
ResourceId id3 = allocator->AllocateID();
EXPECT_EQ(kFreedId, id3);
ResourceId id4 = allocator->AllocateID();
EXPECT_EQ(0u, id4);
allocator->FreeID(kFreedId + 1u);
allocator->FreeID(kFreedId + 4u);
allocator->FreeID(kFreedId + 3u);
allocator->FreeID(kFreedId + 5u);
allocator->FreeID(kFreedId + 2u);
ResourceId id5 = allocator->AllocateIDRange(5);
EXPECT_EQ(kFreedId + 1u, id5);
}
TEST_F(IdAllocatorTest, AllocateIDRangeNoWrapInRange) {
const uint32_t kMaxPossibleRange = std::numeric_limits<uint32_t>::max();
const ResourceId kAllocId = 10u;
IdAllocator* allocator = id_allocator();
ResourceId id1 = allocator->AllocateIDAtOrAbove(kAllocId);
EXPECT_EQ(kAllocId, id1);
ResourceId id2 = allocator->AllocateIDRange(kMaxPossibleRange - 5u);
EXPECT_EQ(0u, id2);
ResourceId id3 = allocator->AllocateIDRange(kMaxPossibleRange - kAllocId);
EXPECT_EQ(kAllocId + 1u, id3);
}
TEST_F(IdAllocatorTest, AllocateIdMax) {
const uint32_t kMaxPossibleRange = std::numeric_limits<uint32_t>::max();
IdAllocator* allocator = id_allocator();
ResourceId id = allocator->AllocateIDRange(kMaxPossibleRange);
EXPECT_EQ(1u, id);
allocator->FreeIDRange(id, kMaxPossibleRange - 1u);
ResourceId id2 = allocator->AllocateIDRange(kMaxPossibleRange);
EXPECT_EQ(0u, id2);
allocator->FreeIDRange(id, kMaxPossibleRange);
ResourceId id3 = allocator->AllocateIDRange(kMaxPossibleRange);
EXPECT_EQ(1u, id3);
}
TEST_F(IdAllocatorTest, ZeroIdCases) {
IdAllocator* allocator = id_allocator();
EXPECT_FALSE(allocator->InUse(0));
ResourceId id1 = allocator->AllocateIDAtOrAbove(0);
EXPECT_NE(0u, id1);
EXPECT_FALSE(allocator->InUse(0));
allocator->FreeID(0);
EXPECT_FALSE(allocator->InUse(0));
EXPECT_TRUE(allocator->InUse(id1));
allocator->FreeID(id1);
EXPECT_FALSE(allocator->InUse(id1));
}
} // namespace gpu
|