1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/390223051): Remove C-library calls to fix the errors.
#pragma allow_unsafe_libc_calls
#endif
#include "net/cert/ct_log_verifier.h"
#include <string.h>
#include <bit>
#include <string_view>
#include <vector>
#include "base/logging.h"
#include "base/notreached.h"
#include "crypto/openssl_util.h"
#include "crypto/sha2.h"
#include "net/cert/ct_log_verifier_util.h"
#include "net/cert/ct_serialization.h"
#include "net/cert/merkle_audit_proof.h"
#include "net/cert/merkle_consistency_proof.h"
#include "net/cert/signed_tree_head.h"
#include "third_party/boringssl/src/include/openssl/bytestring.h"
#include "third_party/boringssl/src/include/openssl/evp.h"
namespace net {
namespace {
// The SHA-256 hash of the empty string.
const unsigned char kSHA256EmptyStringHash[ct::kSthRootHashLength] = {
0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4,
0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b,
0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55};
const EVP_MD* GetEvpAlg(ct::DigitallySigned::HashAlgorithm alg) {
switch (alg) {
case ct::DigitallySigned::HASH_ALGO_MD5:
return EVP_md5();
case ct::DigitallySigned::HASH_ALGO_SHA1:
return EVP_sha1();
case ct::DigitallySigned::HASH_ALGO_SHA224:
return EVP_sha224();
case ct::DigitallySigned::HASH_ALGO_SHA256:
return EVP_sha256();
case ct::DigitallySigned::HASH_ALGO_SHA384:
return EVP_sha384();
case ct::DigitallySigned::HASH_ALGO_SHA512:
return EVP_sha512();
case ct::DigitallySigned::HASH_ALGO_NONE:
default:
NOTREACHED();
}
}
} // namespace
// static
scoped_refptr<const CTLogVerifier> CTLogVerifier::Create(
std::string_view public_key,
std::string description) {
auto result = base::WrapRefCounted(new CTLogVerifier(std::move(description)));
if (!result->Init(public_key))
return nullptr;
return result;
}
CTLogVerifier::CTLogVerifier(std::string description)
: description_(std::move(description)) {}
bool CTLogVerifier::Verify(const ct::SignedEntryData& entry,
const ct::SignedCertificateTimestamp& sct) const {
std::string serialized_log_entry;
std::string serialized_data;
return sct.log_id == key_id_ && SignatureParametersMatch(sct.signature) &&
ct::EncodeSignedEntry(entry, &serialized_log_entry) &&
ct::EncodeV1SCTSignedData(sct.timestamp, serialized_log_entry,
sct.extensions, &serialized_data) &&
VerifySignature(serialized_data, sct.signature.signature_data);
}
bool CTLogVerifier::VerifySignedTreeHead(
const ct::SignedTreeHead& signed_tree_head) const {
std::string serialized_data;
if (!SignatureParametersMatch(signed_tree_head.signature) ||
!ct::EncodeTreeHeadSignature(signed_tree_head, &serialized_data) ||
!VerifySignature(serialized_data,
signed_tree_head.signature.signature_data)) {
return false;
}
if (signed_tree_head.tree_size == 0) {
// Root hash must equate SHA256 hash of the empty string.
return memcmp(signed_tree_head.sha256_root_hash, kSHA256EmptyStringHash,
ct::kSthRootHashLength) == 0;
}
return true;
}
bool CTLogVerifier::SignatureParametersMatch(
const ct::DigitallySigned& signature) const {
return signature.SignatureParametersMatch(hash_algorithm_,
signature_algorithm_);
}
bool CTLogVerifier::VerifyConsistencyProof(
const ct::MerkleConsistencyProof& proof,
const std::string& old_tree_hash,
const std::string& new_tree_hash) const {
// Proof does not originate from this log.
if (key_id_ != proof.log_id)
return false;
// Cannot prove consistency from a tree of a certain size to a tree smaller
// than that - only the other way around.
if (proof.first_tree_size > proof.second_tree_size)
return false;
// If the proof is between trees of the same size, then the 'proof'
// is really just a statement that the tree hasn't changed. If this
// is the case, there should be no proof nodes, and both the old
// and new hash should be equivalent.
if (proof.first_tree_size == proof.second_tree_size)
return proof.nodes.empty() && old_tree_hash == new_tree_hash;
// It is possible to call this method to prove consistency between the
// initial state of a log (i.e. an empty tree) and a later root. In that
// case, the only valid proof is an empty proof.
if (proof.first_tree_size == 0)
return proof.nodes.empty();
// Implement the algorithm described in
// https://tools.ietf.org/html/draft-ietf-trans-rfc6962-bis-12#section-9.4.2
//
// It maintains a pair of hashes |fr| and |sr|, initialized to the same
// value. Each node in |proof| will be hashed to the left of both |fr| and
// |sr| or to the right of only |sr|. The proof is then valid if |fr| is
// |old_tree_hash| and |sr| is |new_tree_hash|, proving that tree nodes which
// make up |old_tree_hash| are a prefix of |new_tree_hash|.
// At this point, the algorithm's preconditions must be satisfied.
DCHECK_LT(0u, proof.first_tree_size);
DCHECK_LT(proof.first_tree_size, proof.second_tree_size);
// 1. If "first" is an exact power of 2, then prepend "first_hash" to the
// "consistency_path" array.
std::string_view first_proof_node = old_tree_hash;
auto iter = proof.nodes.begin();
if (!std::has_single_bit(proof.first_tree_size)) {
if (iter == proof.nodes.end())
return false;
first_proof_node = *iter;
++iter;
}
// iter now points to the second node in the modified proof.nodes.
// 2. Set "fn" to "first - 1" and "sn" to "second - 1".
uint64_t fn = proof.first_tree_size - 1;
uint64_t sn = proof.second_tree_size - 1;
// 3. If "LSB(fn)" is set, then right-shift both "fn" and "sn" equally until
// "LSB(fn)" is not set.
while (fn & 1) {
fn >>= 1;
sn >>= 1;
}
// 4. Set both "fr" and "sr" to the first value in the "consistency_path"
// array.
std::string fr(first_proof_node);
std::string sr(first_proof_node);
// 5. For each subsequent value "c" in the "consistency_path" array:
for (; iter != proof.nodes.end(); ++iter) {
// If "sn" is 0, stop the iteration and fail the proof verification.
if (sn == 0)
return false;
// If "LSB(fn)" is set, or if "fn" is equal to "sn", then:
if ((fn & 1) || fn == sn) {
// 1. Set "fr" to "HASH(0x01 || c || fr)"
// Set "sr" to "HASH(0x01 || c || sr)"
fr = ct::internal::HashNodes(*iter, fr);
sr = ct::internal::HashNodes(*iter, sr);
// 2. If "LSB(fn)" is not set, then right-shift both "fn" and "sn" equally
// until either "LSB(fn)" is set or "fn" is "0".
while (!(fn & 1) && fn != 0) {
fn >>= 1;
sn >>= 1;
}
} else { // Otherwise:
// Set "sr" to "HASH(0x01 || sr || c)"
sr = ct::internal::HashNodes(sr, *iter);
}
// Finally, right-shift both "fn" and "sn" one time.
fn >>= 1;
sn >>= 1;
}
// 6. After completing iterating through the "consistency_path" array as
// described above, verify that the "fr" calculated is equal to the
// "first_hash" supplied, that the "sr" calculated is equal to the
// "second_hash" supplied and that "sn" is 0.
return fr == old_tree_hash && sr == new_tree_hash && sn == 0;
}
bool CTLogVerifier::VerifyAuditProof(const ct::MerkleAuditProof& proof,
const std::string& root_hash,
const std::string& leaf_hash) const {
// Implements the algorithm described in
// https://tools.ietf.org/html/draft-ietf-trans-rfc6962-bis-19#section-10.4.1
//
// It maintains a hash |r|, initialized to |leaf_hash|, and hashes nodes from
// |proof| into it. The proof is then valid if |r| is |root_hash|, proving
// that |root_hash| includes |leaf_hash|.
// 1. Compare "leaf_index" against "tree_size". If "leaf_index" is
// greater than or equal to "tree_size" fail the proof verification.
if (proof.leaf_index >= proof.tree_size)
return false;
// 2. Set "fn" to "leaf_index" and "sn" to "tree_size - 1".
uint64_t fn = proof.leaf_index;
uint64_t sn = proof.tree_size - 1;
// 3. Set "r" to "hash".
std::string r = leaf_hash;
// 4. For each value "p" in the "inclusion_path" array:
for (const std::string& p : proof.nodes) {
// If "sn" is 0, stop the iteration and fail the proof verification.
if (sn == 0)
return false;
// If "LSB(fn)" is set, or if "fn" is equal to "sn", then:
if ((fn & 1) || fn == sn) {
// 1. Set "r" to "HASH(0x01 || p || r)"
r = ct::internal::HashNodes(p, r);
// 2. If "LSB(fn)" is not set, then right-shift both "fn" and "sn"
// equally until either "LSB(fn)" is set or "fn" is "0".
while (!(fn & 1) && fn != 0) {
fn >>= 1;
sn >>= 1;
}
} else { // Otherwise:
// Set "r" to "HASH(0x01 || r || p)"
r = ct::internal::HashNodes(r, p);
}
// Finally, right-shift both "fn" and "sn" one time.
fn >>= 1;
sn >>= 1;
}
// 5. Compare "sn" to 0. Compare "r" against the "root_hash". If "sn"
// is equal to 0, and "r" and the "root_hash" are equal, then the
// log has proven the inclusion of "hash". Otherwise, fail the
// proof verification.
return sn == 0 && r == root_hash;
}
CTLogVerifier::~CTLogVerifier() = default;
bool CTLogVerifier::Init(std::string_view public_key) {
crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE);
CBS cbs;
CBS_init(&cbs, reinterpret_cast<const uint8_t*>(public_key.data()),
public_key.size());
public_key_.reset(EVP_parse_public_key(&cbs));
if (!public_key_ || CBS_len(&cbs) != 0)
return false;
key_id_ = crypto::SHA256HashString(public_key);
// Right now, only RSASSA-PKCS1v15 with SHA-256 and ECDSA with SHA-256 are
// supported.
switch (EVP_PKEY_id(public_key_.get())) {
case EVP_PKEY_RSA:
hash_algorithm_ = ct::DigitallySigned::HASH_ALGO_SHA256;
signature_algorithm_ = ct::DigitallySigned::SIG_ALGO_RSA;
break;
case EVP_PKEY_EC:
hash_algorithm_ = ct::DigitallySigned::HASH_ALGO_SHA256;
signature_algorithm_ = ct::DigitallySigned::SIG_ALGO_ECDSA;
break;
default:
return false;
}
// Extra safety check: Require RSA keys of at least 2048 bits.
// EVP_PKEY_size returns the size in bytes. 256 = 2048-bit RSA key.
if (signature_algorithm_ == ct::DigitallySigned::SIG_ALGO_RSA &&
EVP_PKEY_size(public_key_.get()) < 256) {
return false;
}
return true;
}
bool CTLogVerifier::VerifySignature(std::string_view data_to_sign,
std::string_view signature) const {
crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE);
const EVP_MD* hash_alg = GetEvpAlg(hash_algorithm_);
bssl::ScopedEVP_MD_CTX ctx;
return hash_alg &&
EVP_DigestVerifyInit(ctx.get(), nullptr, hash_alg, nullptr,
public_key_.get()) &&
EVP_DigestVerifyUpdate(ctx.get(), data_to_sign.data(),
data_to_sign.size()) &&
EVP_DigestVerifyFinal(
ctx.get(), reinterpret_cast<const uint8_t*>(signature.data()),
signature.size());
}
} // namespace net
|