1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "sandbox/linux/seccomp-bpf-helpers/syscall_parameters_restrictions.h"
#include <errno.h>
#include <fcntl.h>
#include <linux/elf.h>
#include <sched.h>
#include <sys/prctl.h>
#include <sys/ptrace.h>
#include <sys/resource.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/user.h>
#include <time.h>
#include <unistd.h>
#include "base/functional/bind.h"
#include "base/posix/eintr_wrapper.h"
#include "base/synchronization/waitable_event.h"
#include "base/system/sys_info.h"
#include "base/task/single_thread_task_runner.h"
#include "base/threading/thread.h"
#include "base/time/time.h"
#include "build/build_config.h"
#include "sandbox/linux/bpf_dsl/bpf_dsl.h"
#include "sandbox/linux/bpf_dsl/policy.h"
#include "sandbox/linux/seccomp-bpf-helpers/sigsys_handlers.h"
#include "sandbox/linux/seccomp-bpf/bpf_tests.h"
#include "sandbox/linux/seccomp-bpf/sandbox_bpf.h"
#include "sandbox/linux/seccomp-bpf/syscall.h"
#include "sandbox/linux/services/syscall_wrappers.h"
#include "sandbox/linux/system_headers/linux_ptrace.h"
#include "sandbox/linux/system_headers/linux_syscalls.h"
#include "sandbox/linux/system_headers/linux_time.h"
#include "sandbox/linux/tests/unit_tests.h"
namespace sandbox {
namespace {
// NOTE: most of the parameter restrictions are tested in
// baseline_policy_unittest.cc as a more end-to-end test.
using sandbox::bpf_dsl::Allow;
using sandbox::bpf_dsl::ResultExpr;
class RestrictClockIdPolicy : public bpf_dsl::Policy {
public:
RestrictClockIdPolicy() {}
~RestrictClockIdPolicy() override {}
ResultExpr EvaluateSyscall(int sysno) const override {
switch (sysno) {
case __NR_clock_gettime:
#if defined(__NR_clock_gettime64)
case __NR_clock_gettime64:
#endif
case __NR_clock_getres:
case __NR_clock_nanosleep:
#if defined(__NR_clock_nanosleep_time64)
case __NR_clock_nanosleep_time64:
#endif
return RestrictClockID();
default:
return Allow();
}
}
};
void CheckClock(clockid_t clockid) {
struct timespec ts;
ts.tv_sec = -1;
ts.tv_nsec = -1;
BPF_ASSERT_EQ(0, clock_getres(clockid, &ts));
BPF_ASSERT_EQ(0, ts.tv_sec);
BPF_ASSERT_LE(0, ts.tv_nsec);
ts.tv_sec = -1;
ts.tv_nsec = -1;
BPF_ASSERT_EQ(0, clock_gettime(clockid, &ts));
BPF_ASSERT_LE(0, ts.tv_sec);
BPF_ASSERT_LE(0, ts.tv_nsec);
}
BPF_TEST_C(ParameterRestrictions,
clock_gettime_allowed,
RestrictClockIdPolicy) {
CheckClock(CLOCK_MONOTONIC);
CheckClock(CLOCK_MONOTONIC_COARSE);
CheckClock(CLOCK_MONOTONIC_RAW);
CheckClock(CLOCK_PROCESS_CPUTIME_ID);
CheckClock(CLOCK_BOOTTIME);
CheckClock(CLOCK_REALTIME);
CheckClock(CLOCK_REALTIME_COARSE);
CheckClock(CLOCK_THREAD_CPUTIME_ID);
#if BUILDFLAG(IS_ANDROID)
clockid_t clock_id;
pthread_getcpuclockid(pthread_self(), &clock_id);
CheckClock(clock_id);
#endif
}
void CheckClockNanosleep(clockid_t clockid) {
struct timespec ts;
struct timespec out_ts;
ts.tv_sec = 0;
ts.tv_nsec = 0;
clock_nanosleep(clockid, 0, &ts, &out_ts);
}
BPF_TEST_C(ParameterRestrictions,
clock_nanosleep_allowed,
RestrictClockIdPolicy) {
CheckClockNanosleep(CLOCK_MONOTONIC);
CheckClockNanosleep(CLOCK_MONOTONIC_COARSE);
CheckClockNanosleep(CLOCK_MONOTONIC_RAW);
CheckClockNanosleep(CLOCK_BOOTTIME);
CheckClockNanosleep(CLOCK_REALTIME);
CheckClockNanosleep(CLOCK_REALTIME_COARSE);
}
BPF_DEATH_TEST_C(ParameterRestrictions,
clock_gettime_crash_clock_fd,
DEATH_SEGV_MESSAGE(sandbox::GetErrorMessageContentForTests()),
RestrictClockIdPolicy) {
struct timespec ts;
syscall(SYS_clock_gettime, (~0) | CLOCKFD, &ts);
}
BPF_DEATH_TEST_C(ParameterRestrictions,
clock_nanosleep_crash_clock_fd,
DEATH_SEGV_MESSAGE(sandbox::GetErrorMessageContentForTests()),
RestrictClockIdPolicy) {
struct timespec ts;
struct timespec out_ts;
ts.tv_sec = 0;
ts.tv_nsec = 0;
syscall(SYS_clock_nanosleep, (~0) | CLOCKFD, 0, &ts, &out_ts);
}
#if !BUILDFLAG(IS_ANDROID)
BPF_DEATH_TEST_C(ParameterRestrictions,
clock_gettime_crash_cpu_clock,
DEATH_SEGV_MESSAGE(sandbox::GetErrorMessageContentForTests()),
RestrictClockIdPolicy) {
// We can't use clock_getcpuclockid() because it's not implemented in newlib,
// and it might not work inside the sandbox anyway.
const pid_t kInitPID = 1;
const clockid_t kInitCPUClockID =
MAKE_PROCESS_CPUCLOCK(kInitPID, CPUCLOCK_SCHED);
struct timespec ts;
clock_gettime(kInitCPUClockID, &ts);
}
#endif // !BUILDFLAG(IS_ANDROID)
class RestrictSchedPolicy : public bpf_dsl::Policy {
public:
RestrictSchedPolicy() {}
~RestrictSchedPolicy() override {}
ResultExpr EvaluateSyscall(int sysno) const override {
switch (sysno) {
case __NR_sched_getparam:
return RestrictSchedTarget(getpid(), sysno);
default:
return Allow();
}
}
};
void CheckSchedGetParam(pid_t pid, struct sched_param* param) {
BPF_ASSERT_EQ(0, sched_getparam(pid, param));
}
void SchedGetParamThread(base::WaitableEvent* thread_run) {
const pid_t pid = getpid();
const pid_t tid = sys_gettid();
BPF_ASSERT_NE(pid, tid);
struct sched_param current_pid_param;
CheckSchedGetParam(pid, ¤t_pid_param);
struct sched_param zero_param;
CheckSchedGetParam(0, &zero_param);
struct sched_param tid_param;
CheckSchedGetParam(tid, &tid_param);
BPF_ASSERT_EQ(zero_param.sched_priority, tid_param.sched_priority);
// Verify that the SIGSYS handler sets errno properly.
errno = 0;
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wnonnull"
BPF_ASSERT_EQ(-1, sched_getparam(tid, NULL));
#pragma clang diagnostic pop
BPF_ASSERT_EQ(EINVAL, errno);
thread_run->Signal();
}
BPF_TEST_C(ParameterRestrictions,
sched_getparam_allowed,
RestrictSchedPolicy) {
base::WaitableEvent thread_run(
base::WaitableEvent::ResetPolicy::MANUAL,
base::WaitableEvent::InitialState::NOT_SIGNALED);
// Run the actual test in a new thread so that the current pid and tid are
// different.
base::Thread getparam_thread("sched_getparam_thread");
BPF_ASSERT(getparam_thread.Start());
getparam_thread.task_runner()->PostTask(
FROM_HERE, base::BindOnce(&SchedGetParamThread, &thread_run));
BPF_ASSERT(thread_run.TimedWait(base::Milliseconds(5000)));
getparam_thread.Stop();
}
BPF_DEATH_TEST_C(ParameterRestrictions,
sched_getparam_crash_non_zero,
DEATH_SEGV_MESSAGE(sandbox::GetErrorMessageContentForTests()),
RestrictSchedPolicy) {
const pid_t kInitPID = 1;
struct sched_param param;
sched_getparam(kInitPID, ¶m);
}
class RestrictPrlimit64Policy : public bpf_dsl::Policy {
public:
RestrictPrlimit64Policy() {}
~RestrictPrlimit64Policy() override {}
ResultExpr EvaluateSyscall(int sysno) const override {
switch (sysno) {
case __NR_prlimit64:
return RestrictPrlimit64(getpid());
default:
return Allow();
}
}
};
BPF_TEST_C(ParameterRestrictions, prlimit64_allowed, RestrictPrlimit64Policy) {
BPF_ASSERT_EQ(0, sys_prlimit64(0, RLIMIT_AS, NULL, NULL));
BPF_ASSERT_EQ(0, sys_prlimit64(getpid(), RLIMIT_AS, NULL, NULL));
}
BPF_DEATH_TEST_C(ParameterRestrictions,
prlimit64_crash_not_self,
DEATH_SEGV_MESSAGE(sandbox::GetErrorMessageContentForTests()),
RestrictPrlimit64Policy) {
const pid_t kInitPID = 1;
BPF_ASSERT_NE(kInitPID, getpid());
sys_prlimit64(kInitPID, RLIMIT_AS, NULL, NULL);
}
class RestrictGetrusagePolicy : public bpf_dsl::Policy {
public:
RestrictGetrusagePolicy() {}
~RestrictGetrusagePolicy() override {}
ResultExpr EvaluateSyscall(int sysno) const override {
switch (sysno) {
case __NR_getrusage:
return RestrictGetrusage();
default:
return Allow();
}
}
};
BPF_TEST_C(ParameterRestrictions, getrusage_allowed, RestrictGetrusagePolicy) {
struct rusage usage;
BPF_ASSERT_EQ(0, getrusage(RUSAGE_SELF, &usage));
}
BPF_DEATH_TEST_C(ParameterRestrictions,
getrusage_crash_not_self,
DEATH_SEGV_MESSAGE(sandbox::GetErrorMessageContentForTests()),
RestrictGetrusagePolicy) {
struct rusage usage;
getrusage(RUSAGE_CHILDREN, &usage);
}
// The following ptrace() tests do not actually set up a tracer/tracee
// relationship, so allowed operations return ESRCH errors. Blocked operations
// are tested with death tests.
class RestrictPtracePolicy : public bpf_dsl::Policy {
public:
RestrictPtracePolicy() = default;
~RestrictPtracePolicy() override = default;
ResultExpr EvaluateSyscall(int sysno) const override {
switch (sysno) {
case __NR_ptrace:
return RestrictPtrace();
default:
return Allow();
}
}
};
BPF_TEST_C(ParameterRestrictions,
ptrace_getregs_allowed,
RestrictPtracePolicy) {
#if defined(__arm__)
user_regs regs;
#else
user_regs_struct regs;
#endif
iovec iov;
iov.iov_base = ®s;
iov.iov_len = sizeof(regs);
errno = 0;
int rv = ptrace(PTRACE_GETREGSET, getpid(),
reinterpret_cast<void*>(NT_PRSTATUS), &iov);
BPF_ASSERT_EQ(-1, rv);
BPF_ASSERT_EQ(ESRCH, errno);
}
BPF_DEATH_TEST_C(
ParameterRestrictions,
ptrace_syscall_blocked,
DEATH_SEGV_MESSAGE(sandbox::GetPtraceErrorMessageContentForTests()),
RestrictPtracePolicy) {
ptrace(PTRACE_SYSCALL, getpid(), nullptr, nullptr);
}
BPF_DEATH_TEST_C(
ParameterRestrictions,
ptrace_setregs_blocked,
DEATH_SEGV_MESSAGE(sandbox::GetPtraceErrorMessageContentForTests()),
RestrictPtracePolicy) {
#if defined(__arm__)
user_regs regs{};
#else
user_regs_struct regs{};
#endif
iovec iov;
iov.iov_base = ®s;
iov.iov_len = sizeof(regs);
errno = 0;
ptrace(PTRACE_SETREGSET, getpid(), reinterpret_cast<void*>(NT_PRSTATUS),
&iov);
}
#if defined(__aarch64__)
BPF_DEATH_TEST_C(
ParameterRestrictions,
ptrace_getregs_nt_arm_paca_keys_blocked,
DEATH_SEGV_MESSAGE(sandbox::GetPtraceErrorMessageContentForTests()),
RestrictPtracePolicy) {
user_regs_struct regs{};
iovec iov;
iov.iov_base = ®s;
iov.iov_len = sizeof(regs);
errno = 0;
ptrace(PTRACE_GETREGSET, getpid(), reinterpret_cast<void*>(NT_ARM_PACA_KEYS),
&iov);
}
BPF_DEATH_TEST_C(
ParameterRestrictions,
ptrace_getregs_nt_arm_pacg_keys_blocked,
DEATH_SEGV_MESSAGE(sandbox::GetPtraceErrorMessageContentForTests()),
RestrictPtracePolicy) {
user_regs_struct regs{};
iovec iov;
iov.iov_base = ®s;
iov.iov_len = sizeof(regs);
errno = 0;
ptrace(PTRACE_GETREGSET, getpid(), reinterpret_cast<void*>(NT_ARM_PACG_KEYS),
&iov);
}
#endif
} // namespace
} // namespace sandbox
|