1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
// Copyright 2020 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "protocol_core.h"
#include <algorithm>
#include <cassert>
#include <string>
namespace crdtp {
DeserializerState::DeserializerState(std::vector<uint8_t> bytes)
: storage_(new std::vector<uint8_t>(std::move(bytes))),
tokenizer_(*storage_) {}
DeserializerState::DeserializerState(Storage storage, span<uint8_t> span)
: storage_(std::move(storage)), tokenizer_(span) {}
void DeserializerState::RegisterError(Error error) {
assert(Error::OK != error);
if (tokenizer_.Status().ok())
status_ = Status{error, tokenizer_.Status().pos};
}
void DeserializerState::RegisterFieldPath(span<char> name) {
field_path_.push_back(name);
}
std::string DeserializerState::ErrorMessage(span<char> message_name) const {
std::string msg = "Failed to deserialize ";
msg.append(message_name.begin(), message_name.end());
for (int field = static_cast<int>(field_path_.size()) - 1; field >= 0;
--field) {
msg.append(".");
msg.append(field_path_[field].begin(), field_path_[field].end());
}
Status s = status();
if (!s.ok())
msg += " - " + s.ToASCIIString();
return msg;
}
Status DeserializerState::status() const {
if (!tokenizer_.Status().ok())
return tokenizer_.Status();
return status_;
}
namespace {
constexpr int32_t GetMandatoryFieldMask(
const DeserializerDescriptor::Field* fields,
size_t count) {
int32_t mask = 0;
for (size_t i = 0; i < count; ++i) {
if (!fields[i].is_optional)
mask |= (1 << i);
}
return mask;
}
} // namespace
DeserializerDescriptor::DeserializerDescriptor(const Field* fields,
size_t field_count)
: fields_(fields),
field_count_(field_count),
mandatory_field_mask_(GetMandatoryFieldMask(fields, field_count)) {}
bool DeserializerDescriptor::Deserialize(DeserializerState* state,
void* obj) const {
auto* tokenizer = state->tokenizer();
// As a special compatibility quirk, allow empty objects if
// no mandatory fields are required.
if (tokenizer->TokenTag() == cbor::CBORTokenTag::DONE &&
!mandatory_field_mask_) {
return true;
}
if (tokenizer->TokenTag() == cbor::CBORTokenTag::ENVELOPE)
tokenizer->EnterEnvelope();
if (tokenizer->TokenTag() != cbor::CBORTokenTag::MAP_START) {
state->RegisterError(Error::CBOR_MAP_START_EXPECTED);
return false;
}
tokenizer->Next();
int32_t seen_mandatory_fields = 0;
for (; tokenizer->TokenTag() != cbor::CBORTokenTag::STOP; tokenizer->Next()) {
if (tokenizer->TokenTag() != cbor::CBORTokenTag::STRING8) {
state->RegisterError(Error::CBOR_INVALID_MAP_KEY);
return false;
}
span<uint8_t> u_key = tokenizer->GetString8();
span<char> key(reinterpret_cast<const char*>(u_key.data()), u_key.size());
tokenizer->Next();
if (!DeserializeField(state, key, &seen_mandatory_fields, obj))
return false;
}
// Only compute mandatory fields once per type.
int32_t missing_fields = seen_mandatory_fields ^ mandatory_field_mask_;
if (missing_fields) {
int32_t idx = 0;
while ((missing_fields & 1) == 0) {
missing_fields >>= 1;
++idx;
}
state->RegisterError(Error::BINDINGS_MANDATORY_FIELD_MISSING);
state->RegisterFieldPath(fields_[idx].name);
return false;
}
return true;
}
bool DeserializerDescriptor::DeserializeField(DeserializerState* state,
span<char> name,
int* seen_mandatory_fields,
void* obj) const {
// TODO(caseq): consider checking if the sought field is the one
// after the last deserialized.
const auto* begin = fields_;
const auto* end = fields_ + field_count_;
auto entry = std::lower_bound(
begin, end, name, [](const Field& field_desc, span<char> field_name) {
return SpanLessThan(field_desc.name, field_name);
});
// Unknown field is not an error -- we may be working against an
// implementation of a later version of the protocol.
// TODO(caseq): support unknown arrays and maps not enclosed by an envelope.
if (entry == end || !SpanEquals(entry->name, name))
return true;
if (!entry->deserializer(state, obj)) {
state->RegisterFieldPath(name);
return false;
}
if (!entry->is_optional)
*seen_mandatory_fields |= 1 << (entry - begin);
return true;
}
bool ProtocolTypeTraits<bool>::Deserialize(DeserializerState* state,
bool* value) {
const auto tag = state->tokenizer()->TokenTag();
if (tag == cbor::CBORTokenTag::TRUE_VALUE) {
*value = true;
return true;
}
if (tag == cbor::CBORTokenTag::FALSE_VALUE) {
*value = false;
return true;
}
state->RegisterError(Error::BINDINGS_BOOL_VALUE_EXPECTED);
return false;
}
void ProtocolTypeTraits<bool>::Serialize(bool value,
std::vector<uint8_t>* bytes) {
bytes->push_back(value ? cbor::EncodeTrue() : cbor::EncodeFalse());
}
bool ProtocolTypeTraits<int32_t>::Deserialize(DeserializerState* state,
int32_t* value) {
if (state->tokenizer()->TokenTag() != cbor::CBORTokenTag::INT32) {
state->RegisterError(Error::BINDINGS_INT32_VALUE_EXPECTED);
return false;
}
*value = state->tokenizer()->GetInt32();
return true;
}
void ProtocolTypeTraits<int32_t>::Serialize(int32_t value,
std::vector<uint8_t>* bytes) {
cbor::EncodeInt32(value, bytes);
}
ContainerSerializer::ContainerSerializer(std::vector<uint8_t>* bytes,
uint8_t tag)
: bytes_(bytes) {
envelope_.EncodeStart(bytes_);
bytes_->push_back(tag);
}
void ContainerSerializer::EncodeStop() {
bytes_->push_back(cbor::EncodeStop());
envelope_.EncodeStop(bytes_);
}
ObjectSerializer::ObjectSerializer()
: serializer_(&owned_bytes_, cbor::EncodeIndefiniteLengthMapStart()) {}
ObjectSerializer::~ObjectSerializer() = default;
std::unique_ptr<Serializable> ObjectSerializer::Finish() {
serializer_.EncodeStop();
return Serializable::From(std::move(owned_bytes_));
}
bool ProtocolTypeTraits<double>::Deserialize(DeserializerState* state,
double* value) {
// Double values that round-trip through JSON may end up getting represented
// as an int32 (SIGNED, UNSIGNED) on the wire in CBOR. Therefore, we also
// accept an INT32 here.
if (state->tokenizer()->TokenTag() == cbor::CBORTokenTag::INT32) {
*value = state->tokenizer()->GetInt32();
return true;
}
if (state->tokenizer()->TokenTag() != cbor::CBORTokenTag::DOUBLE) {
state->RegisterError(Error::BINDINGS_DOUBLE_VALUE_EXPECTED);
return false;
}
*value = state->tokenizer()->GetDouble();
return true;
}
void ProtocolTypeTraits<double>::Serialize(double value,
std::vector<uint8_t>* bytes) {
cbor::EncodeDouble(value, bytes);
}
class IncomingDeferredMessage : public DeferredMessage {
public:
// Creates the state from the part of another message.
// Note storage is opaque and is mostly to retain ownership.
// It may be null in case caller owns the memory and will dispose
// of the message synchronously.
IncomingDeferredMessage(DeserializerState::Storage storage,
span<uint8_t> span)
: storage_(storage), span_(span) {}
private:
DeserializerState MakeDeserializer() const override {
return DeserializerState(storage_, span_);
}
void AppendSerialized(std::vector<uint8_t>* out) const override {
out->insert(out->end(), span_.begin(), span_.end());
}
DeserializerState::Storage storage_;
span<uint8_t> span_;
};
class OutgoingDeferredMessage : public DeferredMessage {
public:
OutgoingDeferredMessage() = default;
explicit OutgoingDeferredMessage(std::unique_ptr<Serializable> serializable)
: serializable_(std::move(serializable)) {
assert(!!serializable_);
}
private:
DeserializerState MakeDeserializer() const override {
return DeserializerState(serializable_->Serialize());
}
void AppendSerialized(std::vector<uint8_t>* out) const override {
serializable_->AppendSerialized(out);
}
std::unique_ptr<Serializable> serializable_;
};
// static
std::unique_ptr<DeferredMessage> DeferredMessage::FromSerializable(
std::unique_ptr<Serializable> serializeable) {
return std::make_unique<OutgoingDeferredMessage>(std::move(serializeable));
}
// static
std::unique_ptr<DeferredMessage> DeferredMessage::FromSpan(
span<uint8_t> bytes) {
return std::make_unique<IncomingDeferredMessage>(nullptr, bytes);
}
bool ProtocolTypeTraits<std::unique_ptr<DeferredMessage>>::Deserialize(
DeserializerState* state,
std::unique_ptr<DeferredMessage>* value) {
if (state->tokenizer()->TokenTag() != cbor::CBORTokenTag::ENVELOPE) {
state->RegisterError(Error::CBOR_INVALID_ENVELOPE);
return false;
}
*value = std::make_unique<IncomingDeferredMessage>(
state->storage(), state->tokenizer()->GetEnvelope());
return true;
}
void ProtocolTypeTraits<DeferredMessage>::Serialize(
const DeferredMessage& value,
std::vector<uint8_t>* bytes) {
value.AppendSerialized(bytes);
}
} // namespace crdtp
|