1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
|
/* ----------------------------------------------------------------------- *
*
* Copyright 1996-2020 The NASM Authors - All Rights Reserved
* See the file AUTHORS included with the NASM distribution for
* the specific copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following
* conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ----------------------------------------------------------------------- */
/*
* float.c floating-point constant support for the Netwide Assembler
*/
#include "compiler.h"
#include "nctype.h"
#include "nasm.h"
#include "floats.h"
#include "error.h"
/*
* -----------------
* local variables
* -----------------
*/
static bool daz = false; /* denormals as zero */
static enum float_round rc = FLOAT_RC_NEAR; /* rounding control */
/*
* -----------
* constants
* -----------
*/
/* "A limb is like a digit but bigger */
typedef uint32_t fp_limb;
typedef uint64_t fp_2limb;
#define LIMB_BITS 32
#define LIMB_BYTES (LIMB_BITS/8)
#define LIMB_TOP_BIT ((fp_limb)1 << (LIMB_BITS-1))
#define LIMB_MASK ((fp_limb)(~0))
#define LIMB_ALL_BYTES ((fp_limb)0x01010101)
#define LIMB_BYTE(x) ((x)*LIMB_ALL_BYTES)
/* 112 bits + 64 bits for accuracy + 16 bits for rounding */
#define MANT_LIMBS 6
/* 52 digits fit in 176 bits because 10^53 > 2^176 > 10^52 */
#define MANT_DIGITS 52
/* the format and the argument list depend on MANT_LIMBS */
#define MANT_FMT "%08x_%08x_%08x_%08x_%08x_%08x"
#define MANT_ARG SOME_ARG(mant, 0)
#define SOME_ARG(a,i) (a)[(i)+0], (a)[(i)+1], (a)[(i)+2], \
(a)[(i)+3], (a)[(i)+4], (a)[(i)+5]
/*
* ---------------------------------------------------------------------------
* emit a printf()-like debug message... but only if DEBUG_FLOAT was defined
* ---------------------------------------------------------------------------
*/
#ifdef DEBUG_FLOAT
#define dprintf(x) printf x
#else
#define dprintf(x) do { } while (0)
#endif
/*
* ---------------------------------------------------------------------------
* multiply
* ---------------------------------------------------------------------------
*/
static int float_multiply(fp_limb *to, fp_limb *from)
{
fp_2limb temp[MANT_LIMBS * 2];
int i, j;
/*
* guaranteed that top bit of 'from' is set -- so we only have
* to worry about _one_ bit shift to the left
*/
dprintf(("%s=" MANT_FMT "\n", "mul1", SOME_ARG(to, 0)));
dprintf(("%s=" MANT_FMT "\n", "mul2", SOME_ARG(from, 0)));
memset(temp, 0, sizeof temp);
for (i = 0; i < MANT_LIMBS; i++) {
for (j = 0; j < MANT_LIMBS; j++) {
fp_2limb n;
n = (fp_2limb) to[i] * (fp_2limb) from[j];
temp[i + j] += n >> LIMB_BITS;
temp[i + j + 1] += (fp_limb)n;
}
}
for (i = MANT_LIMBS * 2; --i;) {
temp[i - 1] += temp[i] >> LIMB_BITS;
temp[i] &= LIMB_MASK;
}
dprintf(("%s=" MANT_FMT "_" MANT_FMT "\n", "temp", SOME_ARG(temp, 0),
SOME_ARG(temp, MANT_LIMBS)));
if (temp[0] & LIMB_TOP_BIT) {
for (i = 0; i < MANT_LIMBS; i++) {
to[i] = temp[i] & LIMB_MASK;
}
dprintf(("%s=" MANT_FMT " (%i)\n", "prod", SOME_ARG(to, 0), 0));
return 0;
} else {
for (i = 0; i < MANT_LIMBS; i++) {
to[i] = (temp[i] << 1) + !!(temp[i + 1] & LIMB_TOP_BIT);
}
dprintf(("%s=" MANT_FMT " (%i)\n", "prod", SOME_ARG(to, 0), -1));
return -1;
}
}
/*
* ---------------------------------------------------------------------------
* read an exponent; returns INT32_MAX on error
* ---------------------------------------------------------------------------
*/
static int32_t read_exponent(const char *string, int32_t max)
{
int32_t i = 0;
bool neg = false;
if (*string == '+') {
string++;
} else if (*string == '-') {
neg = true;
string++;
}
while (*string) {
if (*string >= '0' && *string <= '9') {
i = (i * 10) + (*string - '0');
/*
* To ensure that underflows and overflows are
* handled properly we must avoid wraparounds of
* the signed integer value that is used to hold
* the exponent. Therefore we cap the exponent at
* +/-5000, which is slightly more/less than
* what's required for normal and denormal numbers
* in single, double, and extended precision, but
* sufficient to avoid signed integer wraparound.
*/
if (i > max)
i = max;
} else if (*string == '_') {
/* do nothing */
} else {
nasm_nonfatal("invalid character in floating-point constant %s: '%c'",
"exponent", *string);
return INT32_MAX;
}
string++;
}
return neg ? -i : i;
}
/*
* ---------------------------------------------------------------------------
* convert
* ---------------------------------------------------------------------------
*/
static bool ieee_flconvert(const char *string, fp_limb *mant,
int32_t * exponent)
{
char digits[MANT_DIGITS];
char *p, *q, *r;
fp_limb mult[MANT_LIMBS], bit;
fp_limb *m;
int32_t tenpwr, twopwr;
int32_t extratwos;
bool started, seendot, warned;
warned = false;
p = digits;
tenpwr = 0;
started = seendot = false;
while (*string && *string != 'E' && *string != 'e') {
if (*string == '.') {
if (!seendot) {
seendot = true;
} else {
nasm_nonfatal("too many periods in floating-point constant");
return false;
}
} else if (*string >= '0' && *string <= '9') {
if (*string == '0' && !started) {
if (seendot) {
tenpwr--;
}
} else {
started = true;
if (p < digits + sizeof(digits)) {
*p++ = *string - '0';
} else {
if (!warned) {
/*!
*!float-toolong [on] too many digits in floating-point number
*! warns about too many digits in floating-point numbers.
*/
nasm_warn(WARN_FLOAT_TOOLONG|ERR_PASS2,
"floating-point constant significand contains "
"more than %i digits", MANT_DIGITS);
warned = true;
}
}
if (!seendot) {
tenpwr++;
}
}
} else if (*string == '_') {
/* do nothing */
} else {
nasm_nonfatalf(ERR_PASS2,
"invalid character in floating-point constant %s: '%c'",
"significand", *string);
return false;
}
string++;
}
if (*string) {
int32_t e;
string++; /* eat the E */
e = read_exponent(string, 5000);
if (e == INT32_MAX)
return false;
tenpwr += e;
}
/*
* At this point, the memory interval [digits,p) contains a
* series of decimal digits zzzzzzz, such that our number X
* satisfies X = 0.zzzzzzz * 10^tenpwr.
*/
q = digits;
dprintf(("X = 0."));
while (q < p) {
dprintf(("%c", *q + '0'));
q++;
}
dprintf((" * 10^%i\n", tenpwr));
/*
* Now convert [digits,p) to our internal representation.
*/
bit = LIMB_TOP_BIT;
for (m = mant; m < mant + MANT_LIMBS; m++) {
*m = 0;
}
m = mant;
q = digits;
started = false;
twopwr = 0;
while (m < mant + MANT_LIMBS) {
fp_limb carry = 0;
while (p > q && !p[-1]) {
p--;
}
if (p <= q) {
break;
}
for (r = p; r-- > q;) {
int32_t i;
i = 2 * *r + carry;
if (i >= 10) {
carry = 1;
i -= 10;
} else {
carry = 0;
}
*r = i;
}
if (carry) {
*m |= bit;
started = true;
}
if (started) {
if (bit == 1) {
bit = LIMB_TOP_BIT;
m++;
} else {
bit >>= 1;
}
} else {
twopwr--;
}
}
twopwr += tenpwr;
/*
* At this point, the 'mant' array contains the first frac-
* tional places of a base-2^16 real number which when mul-
* tiplied by 2^twopwr and 5^tenpwr gives X.
*/
dprintf(("X = " MANT_FMT " * 2^%i * 5^%i\n", MANT_ARG, twopwr,
tenpwr));
/*
* Now multiply 'mant' by 5^tenpwr.
*/
if (tenpwr < 0) { /* mult = 5^-1 = 0.2 */
for (m = mult; m < mult + MANT_LIMBS - 1; m++) {
*m = LIMB_BYTE(0xcc);
}
mult[MANT_LIMBS - 1] = LIMB_BYTE(0xcc)+1;
extratwos = -2;
tenpwr = -tenpwr;
/*
* If tenpwr was 1000...000b, then it becomes 1000...000b. See
* the "ANSI C" comment below for more details on that case.
*
* Because we already truncated tenpwr to +5000...-5000 inside
* the exponent parsing code, this shouldn't happen though.
*/
} else if (tenpwr > 0) { /* mult = 5^+1 = 5.0 */
mult[0] = (fp_limb)5 << (LIMB_BITS-3); /* 0xA000... */
for (m = mult + 1; m < mult + MANT_LIMBS; m++) {
*m = 0;
}
extratwos = 3;
} else {
extratwos = 0;
}
while (tenpwr) {
dprintf(("loop=" MANT_FMT " * 2^%i * 5^%i (%i)\n", MANT_ARG,
twopwr, tenpwr, extratwos));
if (tenpwr & 1) {
dprintf(("mant*mult\n"));
twopwr += extratwos + float_multiply(mant, mult);
}
dprintf(("mult*mult\n"));
extratwos = extratwos * 2 + float_multiply(mult, mult);
tenpwr >>= 1;
/*
* In ANSI C, the result of right-shifting a signed integer is
* considered implementation-specific. To ensure that the loop
* terminates even if tenpwr was 1000...000b to begin with, we
* manually clear the MSB, in case a 1 was shifted in.
*
* Because we already truncated tenpwr to +5000...-5000 inside
* the exponent parsing code, this shouldn't matter; neverthe-
* less it is the right thing to do here.
*/
tenpwr &= (uint32_t) - 1 >> 1;
}
/*
* At this point, the 'mant' array contains the first frac-
* tional places of a base-2^16 real number in [0.5,1) that
* when multiplied by 2^twopwr gives X. Or it contains zero
* of course. We are done.
*/
*exponent = twopwr;
return true;
}
/*
* ---------------------------------------------------------------------------
* operations of specific bits
* ---------------------------------------------------------------------------
*/
/* Set a bit, using *bigendian* bit numbering (0 = MSB) */
static void set_bit(fp_limb *mant, int bit)
{
mant[bit/LIMB_BITS] |= LIMB_TOP_BIT >> (bit & (LIMB_BITS-1));
}
/* Test a single bit */
static int test_bit(const fp_limb *mant, int bit)
{
return (mant[bit/LIMB_BITS] >> (~bit & (LIMB_BITS-1))) & 1;
}
/* Report if the mantissa value is all zero */
static bool is_zero(const fp_limb *mant)
{
int i;
for (i = 0; i < MANT_LIMBS; i++)
if (mant[i])
return false;
return true;
}
/*
* ---------------------------------------------------------------------------
* round a mantissa off after i words
* ---------------------------------------------------------------------------
*/
#define ROUND_COLLECT_BITS \
do { \
m = mant[i] & (2*bit-1); \
for (j = i+1; j < MANT_LIMBS; j++) \
m = m | mant[j]; \
} while (0)
#define ROUND_ABS_DOWN \
do { \
mant[i] &= ~(bit-1); \
for (j = i+1; j < MANT_LIMBS; j++) \
mant[j] = 0; \
return false; \
} while (0)
#define ROUND_ABS_UP \
do { \
mant[i] = (mant[i] & ~(bit-1)) + bit; \
for (j = i+1; j < MANT_LIMBS; j++) \
mant[j] = 0; \
while (i > 0 && !mant[i]) \
++mant[--i]; \
return !mant[0]; \
} while (0)
static bool ieee_round(bool minus, fp_limb *mant, int bits)
{
fp_limb m = 0;
int32_t j;
int i = bits / LIMB_BITS;
int p = bits % LIMB_BITS;
fp_limb bit = LIMB_TOP_BIT >> p;
if (rc == FLOAT_RC_NEAR) {
if (mant[i] & bit) {
mant[i] &= ~bit;
ROUND_COLLECT_BITS;
mant[i] |= bit;
if (m) {
ROUND_ABS_UP;
} else {
if (test_bit(mant, bits-1)) {
ROUND_ABS_UP;
} else {
ROUND_ABS_DOWN;
}
}
} else {
ROUND_ABS_DOWN;
}
} else if (rc == FLOAT_RC_ZERO ||
rc == (minus ? FLOAT_RC_UP : FLOAT_RC_DOWN)) {
ROUND_ABS_DOWN;
} else {
/* rc == (minus ? FLOAT_RC_DOWN : FLOAT_RC_UP) */
/* Round toward +/- infinity */
ROUND_COLLECT_BITS;
if (m) {
ROUND_ABS_UP;
} else {
ROUND_ABS_DOWN;
}
}
return false;
}
/* Returns a value >= 16 if not a valid hex digit */
static unsigned int hexval(char c)
{
unsigned int v = (unsigned char) c;
if (v >= '0' && v <= '9')
return v - '0';
else
return (v|0x20) - 'a' + 10;
}
/* Handle floating-point numbers with radix 2^bits and binary exponent */
static bool ieee_flconvert_bin(const char *string, int bits,
fp_limb *mant, int32_t *exponent)
{
static const int log2tbl[16] =
{ -1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3 };
fp_limb mult[MANT_LIMBS + 1], *mp;
int ms;
int32_t twopwr;
bool seendot, seendigit;
unsigned char c;
const int radix = 1 << bits;
fp_limb v;
twopwr = 0;
seendot = seendigit = false;
ms = 0;
mp = NULL;
memset(mult, 0, sizeof mult);
while ((c = *string++) != '\0') {
if (c == '.') {
if (!seendot)
seendot = true;
else {
nasm_nonfatal("too many periods in floating-point constant");
return false;
}
} else if ((v = hexval(c)) < (unsigned int)radix) {
if (!seendigit && v) {
int l = log2tbl[v];
seendigit = true;
mp = mult;
ms = (LIMB_BITS-1)-l;
twopwr += l+1-bits;
}
if (seendigit) {
if (ms < 0) {
/* Cast to fp_2limb as ms == -LIMB_BITS is possible. */
*mp |= (fp_2limb)v >> -ms;
mp++;
if (mp > &mult[MANT_LIMBS])
mp = &mult[MANT_LIMBS]; /* Guard slot */
ms += LIMB_BITS;
}
*mp |= v << ms;
ms -= bits;
if (!seendot)
twopwr += bits;
} else {
if (seendot)
twopwr -= bits;
}
} else if (c == 'p' || c == 'P') {
int32_t e;
e = read_exponent(string, 20000);
if (e == INT32_MAX)
return false;
twopwr += e;
break;
} else if (c == '_') {
/* ignore */
} else {
nasm_nonfatal("floating-point constant: `%c' is invalid character", c);
return false;
}
}
if (!seendigit) {
memset(mant, 0, MANT_LIMBS*sizeof(fp_limb)); /* Zero */
*exponent = 0;
} else {
memcpy(mant, mult, MANT_LIMBS*sizeof(fp_limb));
*exponent = twopwr;
}
return true;
}
/*
* Shift a mantissa to the right by i bits.
*/
static void ieee_shr(fp_limb *mant, int i)
{
fp_limb n, m;
int j = 0;
int sr, sl, offs;
sr = i % LIMB_BITS; sl = LIMB_BITS-sr;
offs = i/LIMB_BITS;
if (sr == 0) {
if (offs)
for (j = MANT_LIMBS-1; j >= offs; j--)
mant[j] = mant[j-offs];
} else if (MANT_LIMBS-1-offs < 0) {
j = MANT_LIMBS-1;
} else {
n = mant[MANT_LIMBS-1-offs] >> sr;
for (j = MANT_LIMBS-1; j > offs; j--) {
m = mant[j-offs-1];
mant[j] = (m << sl) | n;
n = m >> sr;
}
mant[j--] = n;
}
while (j >= 0)
mant[j--] = 0;
}
/* Produce standard IEEE formats, with implicit or explicit integer
bit; this makes the following assumptions:
- the sign bit is the MSB, followed by the exponent,
followed by the integer bit if present.
- the sign bit plus exponent fit in 16 bits.
- the exponent bias is 2^(n-1)-1 for an n-bit exponent */
/*
* The 16- and 128-bit formats are expected to be in IEEE 754r.
* AMD SSE5 uses the 16-bit format.
*
* The 32- and 64-bit formats are the original IEEE 754 formats.
*
* The 80-bit format is x87-specific, but widely used.
*
* The 8-bit format appears to be the consensus 8-bit floating-point
* format. It is apparently used in graphics applications.
*
* The b16 format is a 16-bit format with smaller mantissa and larger
* exponent field. It is effectively a truncated version of the standard
* IEEE 32-bit (single) format, but is explicitly supported here in
* order to support proper rounding.
*
* This array must correspond to enum floatize in include/nasm.h.
* Note that there are some formats which have more than one enum;
* both need to be listed here with the appropriate offset into the
* floating-point byte array (use for the floatize operators.)
*
* FLOAT_ERR is a value that both represents "invalid format" and the
* size of this array.
*/
const struct ieee_format fp_formats[FLOAT_ERR] = {
{ 1, 3, 0, 4, 0 }, /* FLOAT_8 */
{ 2, 10, 0, 5, 0 }, /* FLOAT_16 */
{ 2, 7, 0, 8, 0 }, /* FLOAT_B16 */
{ 4, 23, 0, 8, 0 }, /* FLOAT_32 */
{ 8, 52, 0, 11, 0 }, /* FLOAT_64 */
{ 10, 63, 1, 15, 0 }, /* FLOAT_80M */
{ 10, 63, 1, 15, 8 }, /* FLOAT_80E */
{ 16, 112, 0, 15, 0 }, /* FLOAT_128L */
{ 16, 112, 0, 15, 8 } /* FLOAT_128H */
};
/* Types of values we can generate */
enum floats {
FL_ZERO,
FL_DENORMAL,
FL_NORMAL,
FL_INFINITY,
FL_QNAN,
FL_SNAN
};
static int to_packed_bcd(const char *str, const char *p,
int s, uint8_t *result,
const struct ieee_format *fmt)
{
int n = 0;
char c;
int tv = -1;
if (fmt->bytes != 10) {
nasm_nonfatal("packed BCD requires an 80-bit format");
return 0;
}
while (p >= str) {
c = *p--;
if (c >= '0' && c <= '9') {
if (tv < 0) {
if (n == 9)
nasm_warn(WARN_OTHER|ERR_PASS2, "packed BCD truncated to 18 digits");
tv = c-'0';
} else {
if (n < 9)
*result++ = tv + ((c-'0') << 4);
n++;
tv = -1;
}
} else if (c == '_') {
/* do nothing */
} else {
nasm_nonfatal("invalid character `%c' in packed BCD constant", c);
return 0;
}
}
if (tv >= 0) {
if (n < 9)
*result++ = tv;
n++;
}
while (n < 9) {
*result++ = 0;
n++;
}
*result = (s < 0) ? 0x80 : 0;
return 1; /* success */
}
int float_const(const char *str, int s, uint8_t *result, enum floatize ffmt)
{
const struct ieee_format *fmt = &fp_formats[ffmt];
fp_limb mant[MANT_LIMBS];
int32_t exponent = 0;
const int32_t expmax = 1 << (fmt->exponent - 1);
fp_limb one_mask = LIMB_TOP_BIT >>
((fmt->exponent+fmt->explicit) % LIMB_BITS);
const int one_pos = (fmt->exponent+fmt->explicit)/LIMB_BITS;
int i;
int shift;
enum floats type;
bool ok;
const bool minus = s < 0;
const int bits = fmt->bytes * 8;
const char *strend;
nasm_assert(str[0]);
strend = strchr(str, '\0');
if (strend[-1] == 'P' || strend[-1] == 'p')
return to_packed_bcd(str, strend-2, s, result, fmt);
if (str[0] == '_') {
/* Special tokens */
switch (str[3]) {
case 'n': /* __?nan?__ */
case 'N':
case 'q': /* __?qnan?__ */
case 'Q':
type = FL_QNAN;
break;
case 's': /* __?snan?__ */
case 'S':
type = FL_SNAN;
break;
case 'i': /* __?infinity?__ */
case 'I':
type = FL_INFINITY;
break;
default:
nasm_nonfatal("internal error: unknown FP constant token `%s'", str);
type = FL_QNAN;
break;
}
} else {
if (str[0] == '0') {
switch (str[1]) {
case 'x': case 'X':
case 'h': case 'H':
ok = ieee_flconvert_bin(str+2, 4, mant, &exponent);
break;
case 'o': case 'O':
case 'q': case 'Q':
ok = ieee_flconvert_bin(str+2, 3, mant, &exponent);
break;
case 'b': case 'B':
case 'y': case 'Y':
ok = ieee_flconvert_bin(str+2, 1, mant, &exponent);
break;
case 'd': case 'D':
case 't': case 'T':
ok = ieee_flconvert(str+2, mant, &exponent);
break;
case 'p': case 'P':
return to_packed_bcd(str+2, strend-1, s, result, fmt);
default:
/* Leading zero was just a zero? */
ok = ieee_flconvert(str, mant, &exponent);
break;
}
} else if (str[0] == '$') {
ok = ieee_flconvert_bin(str+1, 4, mant, &exponent);
} else {
ok = ieee_flconvert(str, mant, &exponent);
}
if (!ok) {
type = FL_QNAN;
} else if (mant[0] & LIMB_TOP_BIT) {
/*
* Non-zero.
*/
exponent--;
if (exponent >= 2 - expmax && exponent <= expmax) {
type = FL_NORMAL;
} else if (exponent > 0) {
nasm_warn(WARN_FLOAT_OVERFLOW|ERR_PASS2,
"overflow in floating-point constant");
type = FL_INFINITY;
} else {
/* underflow or denormal; the denormal code handles
actual underflow. */
type = FL_DENORMAL;
}
} else {
/* Zero */
type = FL_ZERO;
}
}
switch (type) {
case FL_ZERO:
zero:
memset(mant, 0, sizeof mant);
break;
case FL_DENORMAL:
{
shift = -(exponent + expmax - 2 - fmt->exponent)
+ fmt->explicit;
ieee_shr(mant, shift);
ieee_round(minus, mant, bits);
if (mant[one_pos] & one_mask) {
/* One's position is set, we rounded up into normal range */
exponent = 1;
if (!fmt->explicit)
mant[one_pos] &= ~one_mask; /* remove explicit one */
mant[0] |= exponent << (LIMB_BITS-1 - fmt->exponent);
} else {
if (daz || is_zero(mant)) {
/*!
*!float-underflow [off] floating point underflow
*! warns about floating point underflow (a nonzero
*! constant rounded to zero.)
*/
nasm_warn(WARN_FLOAT_UNDERFLOW|ERR_PASS2,
"underflow in floating-point constant");
goto zero;
} else {
/*!
*!float-denorm [off] floating point denormal
*! warns about denormal floating point constants.
*/
nasm_warn(WARN_FLOAT_DENORM|ERR_PASS2,
"denormal floating-point constant");
}
}
break;
}
case FL_NORMAL:
exponent += expmax - 1;
ieee_shr(mant, fmt->exponent+fmt->explicit);
ieee_round(minus, mant, bits);
/* did we scale up by one? */
if (test_bit(mant, fmt->exponent+fmt->explicit-1)) {
ieee_shr(mant, 1);
exponent++;
if (exponent >= (expmax << 1)-1) {
/*!
*!float-overflow [on] floating point overflow
*! warns about floating point underflow.
*/
nasm_warn(WARN_FLOAT_OVERFLOW|ERR_PASS2,
"overflow in floating-point constant");
type = FL_INFINITY;
goto overflow;
}
}
if (!fmt->explicit)
mant[one_pos] &= ~one_mask; /* remove explicit one */
mant[0] |= exponent << (LIMB_BITS-1 - fmt->exponent);
break;
case FL_INFINITY:
case FL_QNAN:
case FL_SNAN:
overflow:
memset(mant, 0, sizeof mant);
mant[0] = (((fp_limb)1 << fmt->exponent)-1)
<< (LIMB_BITS-1 - fmt->exponent);
if (fmt->explicit)
mant[one_pos] |= one_mask;
if (type == FL_QNAN)
set_bit(mant, fmt->exponent+fmt->explicit+1);
else if (type == FL_SNAN)
set_bit(mant, fmt->exponent+fmt->explicit+fmt->mantissa);
break;
}
mant[0] |= minus ? LIMB_TOP_BIT : 0;
for (i = fmt->bytes - 1; i >= 0; i--)
*result++ = mant[i/LIMB_BYTES] >> (((LIMB_BYTES-1)-(i%LIMB_BYTES))*8);
return 1; /* success */
}
/*
* Get the default floating point format for this specific field size.
* Used for the Dx pseudoops.
*/
enum floatize float_deffmt(int bytes)
{
enum floatize type;
for (type = 0; type < FLOAT_ERR; type++) {
if (fp_formats[type].bytes == bytes)
break;
}
return type; /* FLOAT_ERR if invalid */
}
/* Set floating-point options */
int float_option(const char *option)
{
if (!nasm_stricmp(option, "daz")) {
daz = true;
return 0;
} else if (!nasm_stricmp(option, "nodaz")) {
daz = false;
return 0;
} else if (!nasm_stricmp(option, "near")) {
rc = FLOAT_RC_NEAR;
return 0;
} else if (!nasm_stricmp(option, "down")) {
rc = FLOAT_RC_DOWN;
return 0;
} else if (!nasm_stricmp(option, "up")) {
rc = FLOAT_RC_UP;
return 0;
} else if (!nasm_stricmp(option, "zero")) {
rc = FLOAT_RC_ZERO;
return 0;
} else if (!nasm_stricmp(option, "default")) {
rc = FLOAT_RC_NEAR;
daz = false;
return 0;
} else {
return -1; /* Unknown option */
}
}
|