1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
/* ----------------------------------------------------------------------- *
*
* Copyright 1996-2020 The NASM Authors - All Rights Reserved
* See the file AUTHORS included with the NASM distribution for
* the specific copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following
* conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ----------------------------------------------------------------------- */
/*
* rbtree.c
*
* Simple implementation of a "left-leaning threaded red-black tree"
* with 64-bit integer keys. The search operation will return the
* highest node <= the key; only search and insert are supported, but
* additional standard llrbtree operations can be coded up at will.
*
* See http://www.cs.princeton.edu/~rs/talks/LLRB/RedBlack.pdf for
* information about left-leaning red-black trees.
*
* The "threaded" part means that left and right pointers that would
* otherwise be NULL are pointers to the in-order predecessor or
* successor node. The only pointers that are NULL are the very left-
* and rightmost, for which no corresponding side node exists.
*
* This, among other things, allows for efficient predecessor and
* successor operations without requiring dedicated space for a parent
* pointer.
*
* This implementation is robust for identical key values; such keys
* will not have their insertion order preserved, and after insertion
* of unrelated keys a lookup may return a different node for the
* duplicated key, but the prev/next operations will always enumerate
* all entries.
*
* The NULL pointers at the end are considered predecessor/successor
* pointers, so if the corresponding flags are clear it is always safe
* to access the pointed-to object without an explicit NULL pointer
* check.
*/
#include "rbtree.h"
#include "nasmlib.h"
struct rbtree *rb_search(const struct rbtree *tree, uint64_t key)
{
const struct rbtree *best = NULL;
if (tree) {
while (true) {
if (tree->key > key) {
if (tree->m.flags & RBTREE_NODE_PRED)
break;
tree = tree->m.left;
} else {
best = tree;
if (tree->key == key || (tree->m.flags & RBTREE_NODE_SUCC))
break;
tree = tree->m.right;
}
}
}
return (struct rbtree *)best;
}
struct rbtree *rb_search_exact(const struct rbtree *tree, uint64_t key)
{
struct rbtree *rv;
rv = rb_search(tree, key);
return (rv && rv->key == key) ? rv : NULL;
}
/* Reds two left in a row? */
static inline bool is_red_left_left(struct rbtree *h)
{
return !(h->m.flags & RBTREE_NODE_PRED) &&
!(h->m.left->m.flags & (RBTREE_NODE_BLACK|RBTREE_NODE_PRED)) &&
!(h->m.left->m.left->m.flags & RBTREE_NODE_BLACK);
}
/* Node to the right is red? */
static inline bool is_red_right(struct rbtree *h)
{
return !(h->m.flags & RBTREE_NODE_SUCC) &&
!(h->m.right->m.flags & RBTREE_NODE_BLACK);
}
/* Both the left and right hand nodes are red? */
static inline bool is_red_both(struct rbtree *h)
{
return !(h->m.flags & (RBTREE_NODE_PRED|RBTREE_NODE_SUCC))
&& !(h->m.left->m.flags & h->m.right->m.flags & RBTREE_NODE_BLACK);
}
static inline struct rbtree *rotate_left(struct rbtree *h)
{
struct rbtree *x = h->m.right;
enum rbtree_node_flags hf = h->m.flags;
enum rbtree_node_flags xf = x->m.flags;
if (xf & RBTREE_NODE_PRED) {
h->m.right = x;
h->m.flags = (hf & RBTREE_NODE_PRED) | RBTREE_NODE_SUCC;
} else {
h->m.right = x->m.left;
h->m.flags = hf & RBTREE_NODE_PRED;
}
x->m.flags = (hf & RBTREE_NODE_BLACK) | (xf & RBTREE_NODE_SUCC);
x->m.left = h;
return x;
}
static inline struct rbtree *rotate_right(struct rbtree *h)
{
struct rbtree *x = h->m.left;
enum rbtree_node_flags hf = h->m.flags;
enum rbtree_node_flags xf = x->m.flags;
if (xf & RBTREE_NODE_SUCC) {
h->m.left = x;
h->m.flags = (hf & RBTREE_NODE_SUCC) | RBTREE_NODE_PRED;
} else {
h->m.left = x->m.right;
h->m.flags = hf & RBTREE_NODE_SUCC;
}
x->m.flags = (hf & RBTREE_NODE_BLACK) | (xf & RBTREE_NODE_PRED);
x->m.right = h;
return x;
}
static inline void color_flip(struct rbtree *h)
{
h->m.flags ^= RBTREE_NODE_BLACK;
h->m.left->m.flags ^= RBTREE_NODE_BLACK;
h->m.right->m.flags ^= RBTREE_NODE_BLACK;
}
static struct rbtree *
_rb_insert(struct rbtree *tree, struct rbtree *node);
struct rbtree *rb_insert(struct rbtree *tree, struct rbtree *node)
{
/* Initialize node as if it was the sole member of the tree */
nasm_zero(node->m);
node->m.flags = RBTREE_NODE_PRED|RBTREE_NODE_SUCC;
if (unlikely(!tree))
return node;
return _rb_insert(tree, node);
}
static struct rbtree *
_rb_insert(struct rbtree *tree, struct rbtree *node)
{
/* Recursive part of the algorithm */
/* Red on both sides? */
if (is_red_both(tree))
color_flip(tree);
if (node->key < tree->key) {
node->m.right = tree; /* Potential successor */
if (tree->m.flags & RBTREE_NODE_PRED) {
node->m.left = tree->m.left;
tree->m.flags &= ~RBTREE_NODE_PRED;
tree->m.left = node;
} else {
tree->m.left = _rb_insert(tree->m.left, node);
}
} else {
node->m.left = tree; /* Potential predecessor */
if (tree->m.flags & RBTREE_NODE_SUCC) {
node->m.right = tree->m.right;
tree->m.flags &= ~RBTREE_NODE_SUCC;
tree->m.right = node;
} else {
tree->m.right = _rb_insert(tree->m.right, node);
}
}
if (is_red_right(tree))
tree = rotate_left(tree);
if (is_red_left_left(tree))
tree = rotate_right(tree);
return tree;
}
struct rbtree *rb_first(const struct rbtree *tree)
{
if (unlikely(!tree))
return NULL;
while (!(tree->m.flags & RBTREE_NODE_PRED))
tree = tree->m.left;
return (struct rbtree *)tree;
}
struct rbtree *rb_last(const struct rbtree *tree)
{
if (unlikely(!tree))
return NULL;
while (!(tree->m.flags & RBTREE_NODE_SUCC))
tree = tree->m.right;
return (struct rbtree *)tree;
}
struct rbtree *rb_prev(const struct rbtree *node)
{
struct rbtree *np = node->m.left;
if (node->m.flags & RBTREE_NODE_PRED)
return np;
else
return rb_last(np);
}
struct rbtree *rb_next(const struct rbtree *node)
{
struct rbtree *np = node->m.right;
if (node->m.flags & RBTREE_NODE_SUCC)
return np;
else
return rb_first(np);
}
|