1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
# -*- perl -*-
#
# Perfect Minimal Hash Generator written in Perl, which produces
# C output.
#
require 'random_sv_vectors.ph';
require 'crc64.ph';
#
# Compute the prehash for a key
#
# prehash(key, sv, N)
#
sub prehash($$$) {
my($key, $n, $sv) = @_;
my @c = crc64($sv, $key);
my $nmask = ($n << 1) - 2;
# Create a bipartite graph...
$k1 = ($c[1] & $nmask) + 0; # low word
$k2 = ($c[0] & $nmask) + 1; # high word
return ($k1, $k2);
}
#
# Walk the assignment graph, return true on success
#
sub walk_graph($$$$) {
my($nodeval,$nodeneigh,$n,$v) = @_;
my $nx;
# print STDERR "Vertex $n value $v\n";
$$nodeval[$n] = $v;
foreach $nx (@{$$nodeneigh[$n]}) {
# $nx -> [neigh, hash]
my ($o, $e) = @$nx;
# print STDERR "Edge $n,$o value $e: ";
my $ov;
if (defined($ov = $$nodeval[$o])) {
if ($v+$ov != $e) {
# Cyclic graph with collision
# print STDERR "error, should be ", $v+$ov, "\n";
return 0;
} else {
# print STDERR "ok\n";
}
} else {
return 0 unless (walk_graph($nodeval, $nodeneigh, $o, $e-$v));
}
}
return 1;
}
#
# Generate the function assuming a given N.
#
# gen_hash_n(N, sv, \%data, run)
#
sub gen_hash_n($$$$) {
my($n, $sv, $href, $run) = @_;
my @keys = keys(%{$href});
my $i;
my $gr;
my ($k, $v);
my $gsize = 2*$n;
my @nodeval;
my @nodeneigh;
my %edges;
for ($i = 0; $i < $gsize; $i++) {
$nodeneigh[$i] = [];
}
%edges = ();
foreach $k (@keys) {
my ($pf1, $pf2) = prehash($k, $n, $sv);
($pf1,$pf2) = ($pf2,$pf1) if ($pf1 > $pf2); # Canonicalize order
my $pf = "$pf1,$pf2";
my $e = ${$href}{$k};
my $xkey;
if (defined($xkey = $edges{$pf})) {
next if ($e == ${$href}{$xkey}); # Duplicate hash, safe to ignore
if (defined($run)) {
print STDERR "$run: Collision: $pf: $k with $xkey\n";
}
return;
}
# print STDERR "Edge $pf value $e from $k\n";
$edges{$pf} = $k;
push(@{$nodeneigh[$pf1]}, [$pf2, $e]);
push(@{$nodeneigh[$pf2]}, [$pf1, $e]);
}
# Now we need to assign values to each vertex, so that for each
# edge, the sum of the values for the two vertices give the value
# for the edge (which is our hash index.) If we find an impossible
# situation, the graph was cyclic.
@nodeval = (undef) x $gsize;
for ($i = 0; $i < $gsize; $i++) {
if (scalar(@{$nodeneigh[$i]})) {
# This vertex has neighbors (is used)
if (!defined($nodeval[$i])) {
# First vertex in a cluster
unless (walk_graph(\@nodeval, \@nodeneigh, $i, 0)) {
if (defined($run)) {
print STDERR "$run: Graph is cyclic\n";
}
return;
}
}
}
}
# for ($i = 0; $i < $n; $i++) {
# print STDERR "Vertex ", $i, ": ", $g[$i], "\n";
# }
if (defined($run)) {
printf STDERR "$run: Done: n = $n, sv = [0x%08x, 0x%08x]\n",
$$sv[0], $$sv[1];
}
return ($n, $sv, \@nodeval);
}
#
# Driver for generating the function
#
# gen_perfect_hash(\%data)
#
sub gen_perfect_hash($) {
my($href) = @_;
my @keys = keys(%{$href});
my @hashinfo;
my ($n, $i, $j, $sv, $maxj);
my $run = 1;
# Minimal power of 2 value for N with enough wiggle room.
# The scaling constant must be larger than 0.5 in order for the
# algorithm to ever terminate. The higher the scaling constant,
# the more space does the hash take up, but the less likely is it
# that an invalid token will require a string comparison.
my $room = int(scalar(@keys)*1.6);
$n = 1;
while ($n < $room) {
$n <<= 1;
}
# Number of times to try...
$maxj = scalar @random_sv_vectors;
for ($i = 0; $i < 4; $i++) {
printf STDERR "%d vectors, trying n = %d...\n",
scalar @keys, $n;
for ($j = 0; $j < $maxj; $j++) {
$sv = $random_sv_vectors[$j];
@hashinfo = gen_hash_n($n, $sv, $href, $run++);
return @hashinfo if (@hashinfo);
}
$n <<= 1;
}
return;
}
#
# Verify that the hash table is actually correct...
#
sub verify_hash_table($$)
{
my ($href, $hashinfo) = @_;
my ($n, $sv, $g) = @{$hashinfo};
my $k;
my $err = 0;
foreach $k (keys(%$href)) {
my ($pf1, $pf2) = prehash($k, $n, $sv);
my $g1 = ${$g}[$pf1];
my $g2 = ${$g}[$pf2];
if ($g1+$g2 != ${$href}{$k}) {
printf STDERR "%s(%d,%d): %d+%d = %d != %d\n",
$k, $pf1, $pf2, $g1, $g2, $g1+$g2, ${$href}{$k};
$err = 1;
} else {
# printf STDERR "%s: %d+%d = %d ok\n",
# $k, $g1, $g2, $g1+$g2;
}
}
die "$0: hash validation error\n" if ($err);
}
1;
|