1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
|
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*
*/
#include "call/bitrate_allocator.h"
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <map>
#include <optional>
#include <string>
#include <vector>
#include "absl/algorithm/container.h"
#include "api/call/bitrate_allocation.h"
#include "api/field_trials_view.h"
#include "api/sequence_checker.h"
#include "api/transport/network_types.h"
#include "api/units/data_rate.h"
#include "api/units/time_delta.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/field_trial_parser.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/numerics/safe_minmax.h"
#include "system_wrappers/include/metrics.h"
namespace webrtc {
namespace {
using bitrate_allocator_impl::AllocatableTrack;
// Allow packets to be transmitted in up to 2 times max video bitrate if the
// bandwidth estimate allows it.
const uint8_t kTransmissionMaxBitrateMultiplier = 2;
const int kDefaultBitrateBps = 300000;
// Require a bitrate increase of max(10%, 20kbps) to resume paused streams.
const double kToggleFactor = 0.1;
const uint32_t kMinToggleBitrateBps = 20000;
const int64_t kBweLogIntervalMs = 5000;
double MediaRatio(uint32_t allocated_bitrate, uint32_t protection_bitrate) {
RTC_DCHECK_GT(allocated_bitrate, 0);
if (protection_bitrate == 0)
return 1.0;
uint32_t media_bitrate = allocated_bitrate - protection_bitrate;
return media_bitrate / static_cast<double>(allocated_bitrate);
}
bool EnoughBitrateForAllObservers(
const std::vector<AllocatableTrack>& allocatable_tracks,
uint32_t bitrate,
uint32_t sum_min_bitrates) {
if (bitrate < sum_min_bitrates)
return false;
uint32_t extra_bitrate_per_observer =
(bitrate - sum_min_bitrates) /
static_cast<uint32_t>(allocatable_tracks.size());
for (const auto& observer_config : allocatable_tracks) {
if (observer_config.config.min_bitrate_bps + extra_bitrate_per_observer <
observer_config.MinBitrateWithHysteresis()) {
return false;
}
}
return true;
}
// Splits `bitrate` evenly to observers already in `allocation`.
// `include_zero_allocations` decides if zero allocations should be part of
// the distribution or not. The allowed max bitrate is `max_multiplier` x
// observer max bitrate.
void DistributeBitrateEvenly(
const std::vector<AllocatableTrack>& allocatable_tracks,
uint32_t bitrate,
bool include_zero_allocations,
int max_multiplier,
std::map<BitrateAllocatorObserver*, int>* allocation) {
RTC_DCHECK_EQ(allocation->size(), allocatable_tracks.size());
std::multimap<uint32_t, const AllocatableTrack*> list_max_bitrates;
for (const auto& observer_config : allocatable_tracks) {
if (include_zero_allocations ||
allocation->at(observer_config.observer) != 0) {
list_max_bitrates.insert(
{observer_config.config.max_bitrate_bps, &observer_config});
}
}
auto it = list_max_bitrates.begin();
while (it != list_max_bitrates.end()) {
RTC_DCHECK_GT(bitrate, 0);
uint32_t extra_allocation =
bitrate / static_cast<uint32_t>(list_max_bitrates.size());
uint32_t total_allocation =
extra_allocation + allocation->at(it->second->observer);
bitrate -= extra_allocation;
if (total_allocation > max_multiplier * it->first) {
// There is more than we can fit for this observer, carry over to the
// remaining observers.
bitrate += total_allocation - max_multiplier * it->first;
total_allocation = max_multiplier * it->first;
}
// Finally, update the allocation for this observer.
allocation->at(it->second->observer) = total_allocation;
it = list_max_bitrates.erase(it);
}
}
// From the available `bitrate`, each observer will be allocated a
// proportional amount based upon its bitrate priority. If that amount is
// more than the observer's capacity, it will be allocated its capacity, and
// the excess bitrate is still allocated proportionally to other observers.
// Allocating the proportional amount means an observer with twice the
// bitrate_priority of another will be allocated twice the bitrate.
void DistributeBitrateRelatively(
const std::vector<AllocatableTrack>& allocatable_tracks,
uint32_t remaining_bitrate,
const std::map<BitrateAllocatorObserver*, int>& observers_capacities,
std::map<BitrateAllocatorObserver*, int>* allocation) {
RTC_DCHECK_EQ(allocation->size(), allocatable_tracks.size());
RTC_DCHECK_EQ(observers_capacities.size(), allocatable_tracks.size());
struct PriorityRateObserverConfig {
BitrateAllocatorObserver* allocation_key;
// The amount of bitrate bps that can be allocated to this observer.
int capacity_bps;
double bitrate_priority;
};
double bitrate_priority_sum = 0;
std::vector<PriorityRateObserverConfig> priority_rate_observers;
for (const auto& observer_config : allocatable_tracks) {
priority_rate_observers.push_back(PriorityRateObserverConfig{
observer_config.observer,
observers_capacities.at(observer_config.observer),
observer_config.config.bitrate_priority});
bitrate_priority_sum += observer_config.config.bitrate_priority;
}
// Iterate in the order observers can be allocated their full capacity.
// We want to sort by which observers will be allocated their full capacity
// first. By dividing each observer's capacity by its bitrate priority we
// are "normalizing" the capacity of an observer by the rate it will be
// filled. This is because the amount allocated is based upon bitrate
// priority. We allocate twice as much bitrate to an observer with twice the
// bitrate priority of another.
absl::c_sort(priority_rate_observers, [](const auto& a, const auto& b) {
return a.capacity_bps / a.bitrate_priority <
b.capacity_bps / b.bitrate_priority;
});
size_t i;
for (i = 0; i < priority_rate_observers.size(); ++i) {
const auto& priority_rate_observer = priority_rate_observers[i];
// We allocate the full capacity to an observer only if its relative
// portion from the remaining bitrate is sufficient to allocate its full
// capacity. This means we aren't greedily allocating the full capacity, but
// that it is only done when there is also enough bitrate to allocate the
// proportional amounts to all other observers.
double observer_share =
priority_rate_observer.bitrate_priority / bitrate_priority_sum;
double allocation_bps = observer_share * remaining_bitrate;
bool enough_bitrate = allocation_bps >= priority_rate_observer.capacity_bps;
if (!enough_bitrate)
break;
allocation->at(priority_rate_observer.allocation_key) +=
priority_rate_observer.capacity_bps;
remaining_bitrate -= priority_rate_observer.capacity_bps;
bitrate_priority_sum -= priority_rate_observer.bitrate_priority;
}
// From the remaining bitrate, allocate the proportional amounts to the
// observers that aren't allocated their max capacity.
for (; i < priority_rate_observers.size(); ++i) {
const auto& priority_rate_observer = priority_rate_observers[i];
double fraction_allocated =
priority_rate_observer.bitrate_priority / bitrate_priority_sum;
allocation->at(priority_rate_observer.allocation_key) +=
fraction_allocated * remaining_bitrate;
}
}
// Allocates bitrate to observers when there isn't enough to allocate the
// minimum to all observers.
std::map<BitrateAllocatorObserver*, int> LowRateAllocation(
const std::vector<AllocatableTrack>& allocatable_tracks,
uint32_t bitrate) {
std::map<BitrateAllocatorObserver*, int> allocation;
// Start by allocating bitrate to observers enforcing a min bitrate, hence
// remaining_bitrate might turn negative.
int64_t remaining_bitrate = bitrate;
for (const auto& observer_config : allocatable_tracks) {
int32_t allocated_bitrate = 0;
if (observer_config.config.enforce_min_bitrate)
allocated_bitrate = observer_config.config.min_bitrate_bps;
allocation[observer_config.observer] = allocated_bitrate;
remaining_bitrate -= allocated_bitrate;
}
// Allocate bitrate to all previously active streams.
if (remaining_bitrate > 0) {
for (const auto& observer_config : allocatable_tracks) {
if (observer_config.config.enforce_min_bitrate ||
observer_config.LastAllocatedBitrate() == 0)
continue;
uint32_t required_bitrate = observer_config.MinBitrateWithHysteresis();
if (remaining_bitrate >= required_bitrate) {
allocation[observer_config.observer] = required_bitrate;
remaining_bitrate -= required_bitrate;
}
}
}
// Allocate bitrate to previously paused streams.
if (remaining_bitrate > 0) {
for (const auto& observer_config : allocatable_tracks) {
if (observer_config.LastAllocatedBitrate() != 0)
continue;
// Add a hysteresis to avoid toggling.
uint32_t required_bitrate = observer_config.MinBitrateWithHysteresis();
if (remaining_bitrate >= required_bitrate) {
allocation[observer_config.observer] = required_bitrate;
remaining_bitrate -= required_bitrate;
}
}
}
// Split a possible remainder evenly on all streams with an allocation.
if (remaining_bitrate > 0)
DistributeBitrateEvenly(allocatable_tracks, remaining_bitrate, false, 1,
&allocation);
RTC_DCHECK_EQ(allocation.size(), allocatable_tracks.size());
return allocation;
}
// Allocates bitrate to all observers when the available bandwidth is enough
// to allocate the minimum to all observers but not enough to allocate the
// max bitrate of each observer.
// Allocates the bitrate based on the bitrate priority of each observer. This
// bitrate priority defines the priority for bitrate to be allocated to that
// observer in relation to other observers. For example with two observers, if
// observer 1 had a bitrate_priority = 1.0, and observer 2 has a
// bitrate_priority = 2.0, the expected behavior is that observer 2 will be
// allocated twice the bitrate as observer 1 above the each observer's
// min_bitrate_bps values, until one of the observers hits its max_bitrate_bps.
std::map<BitrateAllocatorObserver*, int> NormalRateAllocation(
const std::vector<AllocatableTrack>& allocatable_tracks,
uint32_t bitrate,
uint32_t sum_min_bitrates) {
std::map<BitrateAllocatorObserver*, int> allocation;
std::map<BitrateAllocatorObserver*, int> observers_capacities;
for (const auto& observer_config : allocatable_tracks) {
allocation[observer_config.observer] =
observer_config.config.min_bitrate_bps;
observers_capacities[observer_config.observer] =
observer_config.config.max_bitrate_bps -
observer_config.config.min_bitrate_bps;
}
bitrate -= sum_min_bitrates;
// TODO(srte): Implement fair sharing between prioritized streams, currently
// they are treated on a first come first serve basis.
for (const auto& observer_config : allocatable_tracks) {
int64_t priority_margin = observer_config.config.priority_bitrate_bps -
allocation[observer_config.observer];
if (priority_margin > 0 && bitrate > 0) {
int64_t extra_bitrate = std::min<int64_t>(priority_margin, bitrate);
allocation[observer_config.observer] += dchecked_cast<int>(extra_bitrate);
observers_capacities[observer_config.observer] -= extra_bitrate;
bitrate -= extra_bitrate;
}
}
// From the remaining bitrate, allocate a proportional amount to each observer
// above the min bitrate already allocated.
if (bitrate > 0)
DistributeBitrateRelatively(allocatable_tracks, bitrate,
observers_capacities, &allocation);
return allocation;
}
// Allocates bitrate to observers when there is enough available bandwidth
// for all observers to be allocated their max bitrate.
std::map<BitrateAllocatorObserver*, int> MaxRateAllocation(
const std::vector<AllocatableTrack>& allocatable_tracks,
uint32_t bitrate,
uint32_t /* sum_max_bitrates */) {
std::map<BitrateAllocatorObserver*, int> allocation;
for (const auto& observer_config : allocatable_tracks) {
allocation[observer_config.observer] =
observer_config.config.max_bitrate_bps;
bitrate -= observer_config.config.max_bitrate_bps;
}
DistributeBitrateEvenly(allocatable_tracks, bitrate, true,
kTransmissionMaxBitrateMultiplier, &allocation);
return allocation;
}
// Allocates zero bitrate to all observers.
std::map<BitrateAllocatorObserver*, int> ZeroRateAllocation(
const std::vector<AllocatableTrack>& allocatable_tracks) {
std::map<BitrateAllocatorObserver*, int> allocation;
for (const auto& observer_config : allocatable_tracks)
allocation[observer_config.observer] = 0;
return allocation;
}
// Returns new allocation if modified, std::nullopt otherwise.
std::optional<std::map<BitrateAllocatorObserver*, int>> MaybeApplySurplus(
const std::map<BitrateAllocatorObserver*, int>& allocation,
const std::vector<AllocatableTrack>& allocatable_tracks,
DataRate bitrate,
DataRate upper_elastic_limit) {
if (upper_elastic_limit.IsZero())
return std::nullopt;
// In this first pass looping over all `allocatable_tracks`, we aggregates
// - `surplus`: sum of unused rates for all kCanContribute* tracks,
// - `sum_demand`: sum of `bitrate_priority` for all tracks that can consume
// more bitrate to allow proportional sharing of surplus later,
// - `sum_allocated`: sum of allocated bitrates for all tracks, which might
// be larger than `bitrate` e.g. when min_bitrate_bps are enforced.
DataRate surplus = DataRate::Zero();
double sum_demand = 0.0;
DataRate sum_allocated = DataRate::Zero();
for (const auto& observer_config : allocatable_tracks) {
const auto it = allocation.find(observer_config.observer);
if (it == allocation.end()) {
// No allocation for this track.
continue;
}
const DataRate allocated = DataRate::BitsPerSec(it->second);
sum_allocated += allocated;
if (const std::optional<TrackRateElasticity> elasticity =
observer_config.config.rate_elasticity) {
bool inactive_can_contribute_and_consume = false;
if (elasticity == TrackRateElasticity::kCanContributeUnusedRate ||
elasticity == TrackRateElasticity::kCanContributeAndConsume) {
if (const std::optional<DataRate> used =
observer_config.observer->GetUsedRate()) {
if (*used < allocated) {
surplus += allocated - *used;
if (elasticity == TrackRateElasticity::kCanContributeAndConsume &&
*used < allocated / 2) {
inactive_can_contribute_and_consume = true;
}
}
}
}
if (!inactive_can_contribute_and_consume &&
(elasticity == TrackRateElasticity::kCanConsumeExtraRate ||
elasticity == TrackRateElasticity::kCanContributeAndConsume)) {
sum_demand += observer_config.config.bitrate_priority;
}
}
}
// `sum_allocated` can exceed `bitrate` if sum minBitrates exceeds
// estimated rate. The real `surplus` should cover the difference.
DataRate overshoot =
(sum_allocated >= bitrate) ? (sum_allocated - bitrate) : DataRate::Zero();
if (sum_demand < 0.0001 || overshoot > surplus) {
// No demand for extra bitrate or no available surplus.
return std::nullopt;
}
surplus -= overshoot;
auto new_allocation = allocation;
// We loop over all allocatable_tracks again, and proportionally assign
// `surplus` to each track according to `bitrate_priority`.
for (const auto& observer_config : allocatable_tracks) {
auto it = new_allocation.find(observer_config.observer);
if (it == new_allocation.end()) {
// No allocation for this track.
continue;
}
std::optional<TrackRateElasticity> elasticity =
observer_config.config.rate_elasticity;
if (elasticity == TrackRateElasticity::kCanConsumeExtraRate ||
elasticity == TrackRateElasticity::kCanContributeAndConsume) {
DataRate allocated = DataRate::BitsPerSec(it->second);
if (allocated < upper_elastic_limit) {
allocated +=
surplus * (observer_config.config.bitrate_priority / sum_demand);
if (allocated > upper_elastic_limit)
allocated = upper_elastic_limit;
}
DataRate max_bitrate =
DataRate::BitsPerSec(observer_config.config.max_bitrate_bps);
if (allocated > max_bitrate) {
allocated = max_bitrate;
}
// Save new allocated rate back to `new_allocation`.
it->second = allocated.bps();
}
}
return new_allocation;
}
std::map<BitrateAllocatorObserver*, int> AllocateBitrates(
const std::vector<AllocatableTrack>& allocatable_tracks,
uint32_t bitrate,
DataRate upper_elastic_limit) {
if (allocatable_tracks.empty())
return std::map<BitrateAllocatorObserver*, int>();
if (bitrate == 0)
return ZeroRateAllocation(allocatable_tracks);
uint32_t sum_min_bitrates = 0;
uint32_t sum_max_bitrates = 0;
for (const auto& observer_config : allocatable_tracks) {
sum_min_bitrates += observer_config.config.min_bitrate_bps;
sum_max_bitrates += observer_config.config.max_bitrate_bps;
}
// Not enough for all observers to get an allocation, allocate according to:
// enforced min bitrate -> allocated bitrate previous round -> restart paused
// streams.
if (!EnoughBitrateForAllObservers(allocatable_tracks, bitrate,
sum_min_bitrates))
return LowRateAllocation(allocatable_tracks, bitrate);
// All observers will get their min bitrate plus a share of the rest. This
// share is allocated to each observer based on its bitrate_priority.
if (bitrate <= sum_max_bitrates) {
auto allocation =
NormalRateAllocation(allocatable_tracks, bitrate, sum_min_bitrates);
return MaybeApplySurplus(allocation, allocatable_tracks,
DataRate::BitsPerSec(bitrate), upper_elastic_limit)
.value_or(allocation);
}
// All observers will get up to transmission_max_bitrate_multiplier_ x max.
return MaxRateAllocation(allocatable_tracks, bitrate, sum_max_bitrates);
}
} // namespace
BitrateAllocator::BitrateAllocator(LimitObserver* limit_observer,
DataRate upper_elastic_rate_limit)
: limit_observer_(limit_observer),
last_target_bps_(0),
last_non_zero_bitrate_bps_(kDefaultBitrateBps),
last_fraction_loss_(0),
last_rtt_(0),
last_bwe_period_ms_(1000),
num_pause_events_(0),
last_bwe_log_time_(0),
upper_elastic_rate_limit_(upper_elastic_rate_limit) {
sequenced_checker_.Detach();
}
BitrateAllocator::~BitrateAllocator() {
RTC_HISTOGRAM_COUNTS_100("WebRTC.Call.NumberOfPauseEvents",
num_pause_events_);
}
void BitrateAllocator::UpdateStartRate(uint32_t start_rate_bps) {
RTC_DCHECK_RUN_ON(&sequenced_checker_);
last_non_zero_bitrate_bps_ = start_rate_bps;
}
void BitrateAllocator::OnNetworkEstimateChanged(TargetTransferRate msg) {
RTC_DCHECK_RUN_ON(&sequenced_checker_);
last_target_bps_ = msg.target_rate.bps();
last_non_zero_bitrate_bps_ =
last_target_bps_ > 0 ? last_target_bps_ : last_non_zero_bitrate_bps_;
int loss_ratio_255 = msg.network_estimate.loss_rate_ratio * 255;
last_fraction_loss_ =
dchecked_cast<uint8_t>(SafeClamp(loss_ratio_255, 0, 255));
last_rtt_ = msg.network_estimate.round_trip_time.ms();
last_bwe_period_ms_ = msg.network_estimate.bwe_period.ms();
// Periodically log the incoming BWE.
int64_t now = msg.at_time.ms();
if (now > last_bwe_log_time_ + kBweLogIntervalMs) {
RTC_LOG(LS_INFO) << "Current BWE " << last_target_bps_;
last_bwe_log_time_ = now;
}
auto allocation = AllocateBitrates(allocatable_tracks_, last_target_bps_,
upper_elastic_rate_limit_);
for (auto& track : allocatable_tracks_) {
uint32_t allocated_bitrate = allocation[track.observer];
BitrateAllocationUpdate update;
update.target_bitrate = DataRate::BitsPerSec(allocated_bitrate);
update.packet_loss_ratio = last_fraction_loss_ / 256.0;
update.round_trip_time = TimeDelta::Millis(last_rtt_);
update.bwe_period = TimeDelta::Millis(last_bwe_period_ms_);
update.cwnd_reduce_ratio = msg.cwnd_reduce_ratio;
uint32_t protection_bitrate = track.observer->OnBitrateUpdated(update);
if (allocated_bitrate == 0 && track.allocated_bitrate_bps > 0) {
if (last_target_bps_ > 0)
++num_pause_events_;
// The protection bitrate is an estimate based on the ratio between media
// and protection used before this observer was muted.
uint32_t predicted_protection_bps =
(1.0 - track.media_ratio) * track.config.min_bitrate_bps;
RTC_LOG(LS_INFO) << "Pausing observer " << track.observer
<< " with configured min bitrate "
<< track.config.min_bitrate_bps
<< " and current estimate of " << last_target_bps_
<< " and protection bitrate "
<< predicted_protection_bps;
} else if (allocated_bitrate > 0 && track.allocated_bitrate_bps == 0) {
if (last_target_bps_ > 0)
++num_pause_events_;
RTC_LOG(LS_INFO) << "Resuming observer " << track.observer
<< ", configured min bitrate "
<< track.config.min_bitrate_bps
<< ", current allocation " << allocated_bitrate
<< " and protection bitrate " << protection_bitrate;
}
// Only update the media ratio if the observer got an allocation.
if (allocated_bitrate > 0)
track.media_ratio = MediaRatio(allocated_bitrate, protection_bitrate);
track.allocated_bitrate_bps = allocated_bitrate;
track.last_used_bitrate = track.observer->GetUsedRate();
}
UpdateAllocationLimits();
}
void BitrateAllocator::AddObserver(BitrateAllocatorObserver* observer,
MediaStreamAllocationConfig config) {
RTC_DCHECK_RUN_ON(&sequenced_checker_);
RTC_DCHECK_GT(config.bitrate_priority, 0);
RTC_DCHECK(std::isnormal(config.bitrate_priority));
auto it = absl::c_find_if(
allocatable_tracks_,
[observer](const auto& config) { return config.observer == observer; });
// Update settings if the observer already exists, create a new one otherwise.
if (it != allocatable_tracks_.end()) {
it->config = config;
} else {
allocatable_tracks_.push_back(AllocatableTrack(observer, config));
}
if (last_target_bps_ > 0) {
// Calculate a new allocation and update all observers.
auto allocation = AllocateBitrates(allocatable_tracks_, last_target_bps_,
upper_elastic_rate_limit_);
for (auto& track : allocatable_tracks_) {
uint32_t allocated_bitrate = allocation[track.observer];
BitrateAllocationUpdate update;
update.target_bitrate = DataRate::BitsPerSec(allocated_bitrate);
update.packet_loss_ratio = last_fraction_loss_ / 256.0;
update.round_trip_time = TimeDelta::Millis(last_rtt_);
update.bwe_period = TimeDelta::Millis(last_bwe_period_ms_);
uint32_t protection_bitrate = track.observer->OnBitrateUpdated(update);
track.allocated_bitrate_bps = allocated_bitrate;
track.last_used_bitrate = track.observer->GetUsedRate();
if (allocated_bitrate > 0)
track.media_ratio = MediaRatio(allocated_bitrate, protection_bitrate);
}
} else {
// Currently, an encoder is not allowed to produce frames.
// But we still have to return the initial config bitrate + let the
// observer know that it can not produce frames.
BitrateAllocationUpdate update;
update.target_bitrate = DataRate::Zero();
update.packet_loss_ratio = last_fraction_loss_ / 256.0;
update.round_trip_time = TimeDelta::Millis(last_rtt_);
update.bwe_period = TimeDelta::Millis(last_bwe_period_ms_);
observer->OnBitrateUpdated(update);
}
UpdateAllocationLimits();
}
bool BitrateAllocator::RecomputeAllocationIfNeeded() {
RTC_DCHECK_RUN_ON(&sequenced_checker_);
if (upper_elastic_rate_limit_.IsZero()) {
return false;
}
bool need_recompute = false;
bool has_contributor = false;
bool has_consumer = false;
// Recomputes if there is a kCanContribute* track whose current bitrate usage
// has a jump (i.e., increase only) larger than 20% of allocated_bitrate.
constexpr double kUsageJumpRatioThreshold = 0.2;
for (auto& track : allocatable_tracks_) {
if (track.config.rate_elasticity.has_value()) {
const TrackRateElasticity elasticity = *track.config.rate_elasticity;
if (elasticity == TrackRateElasticity::kCanContributeUnusedRate ||
elasticity == TrackRateElasticity::kCanContributeAndConsume) {
DataRate current_usage =
track.observer->GetUsedRate().value_or(DataRate::Zero());
DataRate last_usage =
track.last_used_bitrate.value_or(DataRate::Zero());
if (!last_usage.IsZero()) {
has_contributor = true;
DataRate recompute_threshold =
DataRate::BitsPerSec(track.LastAllocatedBitrate()) *
kUsageJumpRatioThreshold;
if (current_usage > last_usage + recompute_threshold) {
need_recompute = true;
}
}
}
if (elasticity == TrackRateElasticity::kCanConsumeExtraRate ||
elasticity == TrackRateElasticity::kCanContributeAndConsume) {
has_consumer = true;
}
}
}
if (has_contributor == false || has_consumer == false)
return false;
if (need_recompute && last_target_bps_ > 0) {
// Calculate a new allocation and update all observers.
auto allocation = AllocateBitrates(allocatable_tracks_, last_target_bps_,
upper_elastic_rate_limit_);
for (auto& track : allocatable_tracks_) {
DataRate allocated_bitrate =
DataRate::BitsPerSec(allocation[track.observer]);
BitrateAllocationUpdate update;
update.target_bitrate = allocated_bitrate;
update.packet_loss_ratio = last_fraction_loss_ / 256.0;
update.round_trip_time = TimeDelta::Millis(last_rtt_);
update.bwe_period = TimeDelta::Millis(last_bwe_period_ms_);
DataRate protection_bitrate =
DataRate::BitsPerSec(track.observer->OnBitrateUpdated(update));
track.allocated_bitrate_bps = allocated_bitrate.bps();
track.last_used_bitrate = track.observer->GetUsedRate();
if (allocated_bitrate.bps() > 0)
track.media_ratio =
MediaRatio(allocated_bitrate.bps(), protection_bitrate.bps());
}
UpdateAllocationLimits();
}
return true;
}
void BitrateAllocator::UpdateAllocationLimits() {
BitrateAllocationLimits limits;
for (const auto& track : allocatable_tracks_) {
uint32_t stream_padding = track.config.pad_up_bitrate_bps;
if (track.config.enforce_min_bitrate) {
limits.min_allocatable_rate +=
DataRate::BitsPerSec(track.config.min_bitrate_bps);
} else if (track.allocated_bitrate_bps == 0) {
stream_padding =
std::max(track.MinBitrateWithHysteresis(), stream_padding);
}
limits.max_padding_rate += DataRate::BitsPerSec(stream_padding);
limits.max_allocatable_rate +=
DataRate::BitsPerSec(track.config.max_bitrate_bps);
}
if (limits.min_allocatable_rate == current_limits_.min_allocatable_rate &&
limits.max_allocatable_rate == current_limits_.max_allocatable_rate &&
limits.max_padding_rate == current_limits_.max_padding_rate) {
return;
}
current_limits_ = limits;
RTC_LOG(LS_INFO) << "UpdateAllocationLimits : total_requested_min_bitrate: "
<< ToString(limits.min_allocatable_rate)
<< ", total_requested_padding_bitrate: "
<< ToString(limits.max_padding_rate)
<< ", total_requested_max_bitrate: "
<< ToString(limits.max_allocatable_rate);
limit_observer_->OnAllocationLimitsChanged(limits);
}
void BitrateAllocator::RemoveObserver(BitrateAllocatorObserver* observer) {
RTC_DCHECK_RUN_ON(&sequenced_checker_);
for (auto it = allocatable_tracks_.begin(); it != allocatable_tracks_.end();
++it) {
if (it->observer == observer) {
allocatable_tracks_.erase(it);
break;
}
}
UpdateAllocationLimits();
}
int BitrateAllocator::GetStartBitrate(
BitrateAllocatorObserver* observer) const {
RTC_DCHECK_RUN_ON(&sequenced_checker_);
auto it = absl::c_find_if(
allocatable_tracks_,
[observer](const auto& config) { return config.observer == observer; });
if (it == allocatable_tracks_.end()) {
// This observer hasn't been added yet, just give it its fair share.
return last_non_zero_bitrate_bps_ /
static_cast<int>((allocatable_tracks_.size() + 1));
} else if (it->allocated_bitrate_bps == -1) {
// This observer hasn't received an allocation yet, so do the same.
return last_non_zero_bitrate_bps_ /
static_cast<int>(allocatable_tracks_.size());
} else {
// This observer already has an allocation.
return it->allocated_bitrate_bps;
}
}
uint32_t bitrate_allocator_impl::AllocatableTrack::LastAllocatedBitrate()
const {
// Return the configured minimum bitrate for newly added observers, to avoid
// requiring an extra high bitrate for the observer to get an allocated
// bitrate.
return allocated_bitrate_bps == -1 ? config.min_bitrate_bps
: allocated_bitrate_bps;
}
uint32_t bitrate_allocator_impl::AllocatableTrack::MinBitrateWithHysteresis()
const {
uint32_t min_bitrate = config.min_bitrate_bps;
if (LastAllocatedBitrate() == 0) {
min_bitrate += std::max(static_cast<uint32_t>(kToggleFactor * min_bitrate),
kMinToggleBitrateBps);
}
// Account for protection bitrate used by this observer in the previous
// allocation.
// Note: the ratio will only be updated when the stream is active, meaning a
// paused stream won't get any ratio updates. This might lead to waiting a bit
// longer than necessary if the network condition improves, but this is to
// avoid too much toggling.
if (media_ratio > 0.0 && media_ratio < 1.0)
min_bitrate += min_bitrate * (1.0 - media_ratio);
return min_bitrate;
}
// TODO(b/350555527): Remove after experiment
const char kElasticBitrateAllocator[] = "WebRTC-ElasticBitrateAllocation";
DataRate GetElasticRateAllocationFieldTrialParameter(
const FieldTrialsView& field_trials) {
FieldTrialParameter<DataRate> elastic_rate_limit("upper_limit",
DataRate::Zero());
std::string trial_string = field_trials.Lookup(kElasticBitrateAllocator);
ParseFieldTrial({&elastic_rate_limit}, trial_string);
return elastic_rate_limit.Get();
}
} // namespace webrtc
|