1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "call/receive_time_calculator.h"
#include <stdlib.h>
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <optional>
#include <vector>
#include "api/field_trials.h"
#include "rtc_base/random.h"
#include "rtc_base/time_utils.h"
#include "test/create_test_field_trials.h"
#include "test/gtest.h"
namespace webrtc {
namespace test {
namespace {
class EmulatedClock {
public:
explicit EmulatedClock(int seed, float drift = 0.0f)
: random_(seed), clock_us_(random_.Rand<uint32_t>()), drift_(drift) {}
virtual ~EmulatedClock() = default;
int64_t GetClockUs() const { return clock_us_; }
protected:
int64_t UpdateClock(int64_t time_us) {
if (!last_query_us_)
last_query_us_ = time_us;
int64_t skip_us = time_us - *last_query_us_;
accumulated_drift_us_ += skip_us * drift_;
int64_t drift_correction_us = static_cast<int64_t>(accumulated_drift_us_);
accumulated_drift_us_ -= drift_correction_us;
clock_us_ += skip_us + drift_correction_us;
last_query_us_ = time_us;
return skip_us;
}
Random random_;
private:
int64_t clock_us_;
std::optional<int64_t> last_query_us_;
float drift_;
float accumulated_drift_us_ = 0;
};
class EmulatedMonotoneousClock : public EmulatedClock {
public:
explicit EmulatedMonotoneousClock(int seed) : EmulatedClock(seed) {}
~EmulatedMonotoneousClock() override = default;
int64_t Query(int64_t time_us) {
int64_t skip_us = UpdateClock(time_us);
// In a stall
if (stall_recovery_time_us_ > 0) {
if (GetClockUs() > stall_recovery_time_us_) {
stall_recovery_time_us_ = 0;
return GetClockUs();
} else {
return stall_recovery_time_us_;
}
}
// Check if we enter a stall
for (int k = 0; k < skip_us; ++k) {
if (random_.Rand<double>() < kChanceOfStallPerUs) {
int64_t stall_duration_us =
static_cast<int64_t>(random_.Rand<float>() * kMaxStallDurationUs);
stall_recovery_time_us_ = GetClockUs() + stall_duration_us;
return stall_recovery_time_us_;
}
}
return GetClockUs();
}
void ForceStallUs() {
int64_t stall_duration_us =
static_cast<int64_t>(random_.Rand<float>() * kMaxStallDurationUs);
stall_recovery_time_us_ = GetClockUs() + stall_duration_us;
}
bool Stalled() const { return stall_recovery_time_us_ > 0; }
int64_t GetRemainingStall(int64_t /* time_us */) const {
return stall_recovery_time_us_ > 0 ? stall_recovery_time_us_ - GetClockUs()
: 0;
}
const int64_t kMaxStallDurationUs = kNumMicrosecsPerSec;
private:
const float kChanceOfStallPerUs = 5e-6f;
int64_t stall_recovery_time_us_ = 0;
};
class EmulatedNonMonotoneousClock : public EmulatedClock {
public:
EmulatedNonMonotoneousClock(int seed, int64_t duration_us, float drift = 0)
: EmulatedClock(seed, drift) {
Pregenerate(duration_us);
}
~EmulatedNonMonotoneousClock() override = default;
void Pregenerate(int64_t duration_us) {
int64_t time_since_reset_us = kMinTimeBetweenResetsUs;
int64_t clock_offset_us = 0;
for (int64_t time_us = 0; time_us < duration_us; time_us += kResolutionUs) {
int64_t skip_us = UpdateClock(time_us);
time_since_reset_us += skip_us;
int64_t reset_us = 0;
if (time_since_reset_us >= kMinTimeBetweenResetsUs) {
for (int k = 0; k < skip_us; ++k) {
if (random_.Rand<double>() < kChanceOfResetPerUs) {
reset_us = static_cast<int64_t>(2 * random_.Rand<float>() *
kMaxAbsResetUs) -
kMaxAbsResetUs;
clock_offset_us += reset_us;
time_since_reset_us = 0;
break;
}
}
}
pregenerated_clock_.emplace_back(GetClockUs() + clock_offset_us);
resets_us_.emplace_back(reset_us);
}
}
int64_t Query(int64_t time_us) {
size_t ixStart =
(last_reset_query_time_us_ + (kResolutionUs >> 1)) / kResolutionUs + 1;
size_t ixEnd = (time_us + (kResolutionUs >> 1)) / kResolutionUs;
if (ixEnd >= pregenerated_clock_.size())
return -1;
last_reset_size_us_ = 0;
for (size_t ix = ixStart; ix <= ixEnd; ++ix) {
if (resets_us_[ix] != 0) {
last_reset_size_us_ = resets_us_[ix];
}
}
last_reset_query_time_us_ = time_us;
return pregenerated_clock_[ixEnd];
}
bool WasReset() const { return last_reset_size_us_ != 0; }
bool WasNegativeReset() const { return last_reset_size_us_ < 0; }
int64_t GetLastResetUs() const { return last_reset_size_us_; }
private:
const float kChanceOfResetPerUs = 1e-6f;
const int64_t kMaxAbsResetUs = kNumMicrosecsPerSec;
const int64_t kMinTimeBetweenResetsUs = 3 * kNumMicrosecsPerSec;
const int64_t kResolutionUs = kNumMicrosecsPerMillisec;
int64_t last_reset_query_time_us_ = 0;
int64_t last_reset_size_us_ = 0;
std::vector<int64_t> pregenerated_clock_;
std::vector<int64_t> resets_us_;
};
TEST(ClockRepair, NoClockDrift) {
FieldTrials field_trials = CreateTestFieldTrials();
const int kSeeds = 10;
const int kFirstSeed = 1;
const int64_t kRuntimeUs = 10 * kNumMicrosecsPerSec;
const float kDrift = 0.0f;
const int64_t kMaxPacketInterarrivalUs = 50 * kNumMicrosecsPerMillisec;
for (int seed = kFirstSeed; seed < kSeeds + kFirstSeed; ++seed) {
EmulatedMonotoneousClock monotone_clock(seed);
EmulatedNonMonotoneousClock non_monotone_clock(
seed + 1, kRuntimeUs + kNumMicrosecsPerSec, kDrift);
ReceiveTimeCalculator reception_time_tracker(field_trials);
int64_t corrected_clock_0 = 0;
int64_t reset_during_stall_tol_us = 0;
bool initial_clock_stall = true;
int64_t accumulated_upper_bound_tolerance_us = 0;
int64_t accumulated_lower_bound_tolerance_us = 0;
Random random(1);
monotone_clock.ForceStallUs();
int64_t last_time_us = 0;
bool add_tolerance_on_next_packet = false;
int64_t monotone_noise_us = 1000;
for (int64_t time_us = 0; time_us < kRuntimeUs;
time_us += static_cast<int64_t>(random.Rand<float>() *
kMaxPacketInterarrivalUs)) {
int64_t socket_time_us = non_monotone_clock.Query(time_us);
int64_t monotone_us = monotone_clock.Query(time_us) +
2 * random.Rand<float>() * monotone_noise_us -
monotone_noise_us;
int64_t system_time_us = non_monotone_clock.Query(
time_us + monotone_clock.GetRemainingStall(time_us));
int64_t corrected_clock_us = reception_time_tracker.ReconcileReceiveTimes(
socket_time_us, system_time_us, monotone_us);
if (time_us == 0)
corrected_clock_0 = corrected_clock_us;
if (add_tolerance_on_next_packet)
accumulated_lower_bound_tolerance_us -= (time_us - last_time_us);
// Perfect repair cannot be achiveved if non-monotone clock resets during
// a monotone clock stall.
add_tolerance_on_next_packet = false;
if (monotone_clock.Stalled() && non_monotone_clock.WasReset()) {
reset_during_stall_tol_us =
std::max(reset_during_stall_tol_us, time_us - last_time_us);
if (non_monotone_clock.WasNegativeReset()) {
add_tolerance_on_next_packet = true;
}
if (initial_clock_stall && !non_monotone_clock.WasNegativeReset()) {
// Positive resets during an initial clock stall cannot be repaired
// and error will propagate through rest of trace.
accumulated_upper_bound_tolerance_us +=
std::abs(non_monotone_clock.GetLastResetUs());
}
} else {
reset_during_stall_tol_us = 0;
initial_clock_stall = false;
}
int64_t err = corrected_clock_us - corrected_clock_0 - time_us;
// Resets during stalls may lead to small errors temporarily.
int64_t lower_tol_us = accumulated_lower_bound_tolerance_us -
reset_during_stall_tol_us - monotone_noise_us -
2 * kNumMicrosecsPerMillisec;
EXPECT_GE(err, lower_tol_us);
int64_t upper_tol_us = accumulated_upper_bound_tolerance_us +
monotone_noise_us + 2 * kNumMicrosecsPerMillisec;
EXPECT_LE(err, upper_tol_us);
last_time_us = time_us;
}
}
}
} // namespace
} // namespace test
} // namespace webrtc
|