1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
/*
* Copyright 2004 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "pc/srtp_session.h"
#include <string.h>
#include <cstdint>
#include <cstring>
#include <limits>
#include <vector>
#include "api/field_trials.h"
#include "media/base/fake_rtp.h"
#include "pc/test/srtp_test_util.h"
#include "rtc_base/buffer.h"
#include "rtc_base/byte_order.h"
#include "rtc_base/copy_on_write_buffer.h"
#include "rtc_base/ssl_stream_adapter.h" // For webrtc::SRTP_*
#include "system_wrappers/include/metrics.h"
#include "test/create_test_field_trials.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "third_party/libsrtp/include/srtp.h"
using ::testing::ElementsAre;
using ::testing::Pair;
namespace webrtc {
std::vector<int> kEncryptedHeaderExtensionIds;
class SrtpSessionTest : public ::testing::Test {
public:
SrtpSessionTest() : s1_(field_trials_), s2_(field_trials_) {
metrics::Reset();
}
protected:
void SetUp() override {
rtp_len_ = sizeof(kPcmuFrame);
rtcp_len_ = sizeof(kRtcpReport);
rtp_packet_.EnsureCapacity(rtp_len_ + 10);
rtp_packet_.SetData(kPcmuFrame, rtp_len_);
rtcp_packet_.EnsureCapacity(rtcp_len_ + 4 + 10);
rtcp_packet_.SetData(kRtcpReport, rtcp_len_);
}
void TestProtectRtp(int crypto_suite) {
EXPECT_TRUE(s1_.ProtectRtp(rtp_packet_));
EXPECT_EQ(rtp_packet_.size(), rtp_len_ + rtp_auth_tag_len(crypto_suite));
// Check that Protect changed the content (up to the original length).
EXPECT_NE(0, std::memcmp(kPcmuFrame, rtp_packet_.data(), rtp_len_));
rtp_len_ = rtp_packet_.size();
}
void TestProtectRtcp(int crypto_suite) {
EXPECT_TRUE(s1_.ProtectRtcp(rtcp_packet_));
EXPECT_EQ(rtcp_packet_.size(),
rtcp_len_ + 4 + rtcp_auth_tag_len(crypto_suite));
// Check that Protect changed the content (up to the original length).
EXPECT_NE(0, std::memcmp(kRtcpReport, rtcp_packet_.data(), rtcp_len_));
rtcp_len_ = rtcp_packet_.size();
}
void TestUnprotectRtp(int crypto_suite) {
EXPECT_TRUE(s2_.UnprotectRtp(rtp_packet_));
EXPECT_EQ(rtp_packet_.size(), sizeof(kPcmuFrame));
EXPECT_EQ(0,
std::memcmp(kPcmuFrame, rtp_packet_.data(), rtp_packet_.size()));
}
void TestUnprotectRtcp(int crypto_suite) {
EXPECT_TRUE(s2_.UnprotectRtcp(rtcp_packet_));
EXPECT_EQ(rtcp_packet_.size(), sizeof(kRtcpReport));
EXPECT_EQ(
0, std::memcmp(kRtcpReport, rtcp_packet_.data(), rtcp_packet_.size()));
}
FieldTrials field_trials_ = CreateTestFieldTrials();
SrtpSession s1_;
SrtpSession s2_;
CopyOnWriteBuffer rtp_packet_;
CopyOnWriteBuffer rtcp_packet_;
size_t rtp_len_;
size_t rtcp_len_;
};
// Test that we can set up the session and keys properly.
TEST_F(SrtpSessionTest, TestGoodSetup) {
EXPECT_TRUE(s1_.SetSend(kSrtpAes128CmSha1_80, kTestKey1,
kEncryptedHeaderExtensionIds));
EXPECT_TRUE(s2_.SetReceive(kSrtpAes128CmSha1_80, kTestKey1,
kEncryptedHeaderExtensionIds));
}
// Test that we can't change the keys once set.
TEST_F(SrtpSessionTest, TestBadSetup) {
EXPECT_TRUE(s1_.SetSend(kSrtpAes128CmSha1_80, kTestKey1,
kEncryptedHeaderExtensionIds));
EXPECT_TRUE(s2_.SetReceive(kSrtpAes128CmSha1_80, kTestKey1,
kEncryptedHeaderExtensionIds));
EXPECT_FALSE(s1_.SetSend(kSrtpAes128CmSha1_80, kTestKey2,
kEncryptedHeaderExtensionIds));
EXPECT_FALSE(s2_.SetReceive(kSrtpAes128CmSha1_80, kTestKey2,
kEncryptedHeaderExtensionIds));
}
// Test that we fail keys of the wrong length.
TEST_F(SrtpSessionTest, TestKeysTooShort) {
EXPECT_FALSE(s1_.SetSend(kSrtpAes128CmSha1_80,
ZeroOnFreeBuffer<uint8_t>(kTestKey1.data(), 1),
kEncryptedHeaderExtensionIds));
EXPECT_FALSE(s2_.SetReceive(kSrtpAes128CmSha1_80,
ZeroOnFreeBuffer<uint8_t>(kTestKey1.data(), 1),
kEncryptedHeaderExtensionIds));
}
// Test that we can encrypt and decrypt RTP/RTCP using AES_CM_128_HMAC_SHA1_80.
TEST_F(SrtpSessionTest, TestProtect_AES_CM_128_HMAC_SHA1_80) {
EXPECT_TRUE(s1_.SetSend(kSrtpAes128CmSha1_80, kTestKey1,
kEncryptedHeaderExtensionIds));
EXPECT_TRUE(s2_.SetReceive(kSrtpAes128CmSha1_80, kTestKey1,
kEncryptedHeaderExtensionIds));
TestProtectRtp(kSrtpAes128CmSha1_80);
TestProtectRtcp(kSrtpAes128CmSha1_80);
TestUnprotectRtp(kSrtpAes128CmSha1_80);
TestUnprotectRtcp(kSrtpAes128CmSha1_80);
}
// Test that we can encrypt and decrypt RTP/RTCP using AES_CM_128_HMAC_SHA1_32.
TEST_F(SrtpSessionTest, TestProtect_AES_CM_128_HMAC_SHA1_32) {
EXPECT_TRUE(s1_.SetSend(kSrtpAes128CmSha1_32, kTestKey1,
kEncryptedHeaderExtensionIds));
EXPECT_TRUE(s2_.SetReceive(kSrtpAes128CmSha1_32, kTestKey1,
kEncryptedHeaderExtensionIds));
TestProtectRtp(kSrtpAes128CmSha1_32);
TestProtectRtcp(kSrtpAes128CmSha1_32);
TestUnprotectRtp(kSrtpAes128CmSha1_32);
TestUnprotectRtcp(kSrtpAes128CmSha1_32);
}
TEST_F(SrtpSessionTest, TestGetSendStreamPacketIndex) {
EXPECT_TRUE(s1_.SetSend(kSrtpAes128CmSha1_32, kTestKey1,
kEncryptedHeaderExtensionIds));
int64_t index;
EXPECT_TRUE(s1_.ProtectRtp(rtp_packet_, &index));
// `index` will be shifted by 16.
int64_t be64_index = static_cast<int64_t>(NetworkToHost64(1 << 16));
EXPECT_EQ(be64_index, index);
}
// Test that we fail to unprotect if someone tampers with the RTP/RTCP paylaods.
TEST_F(SrtpSessionTest, TestTamperReject) {
EXPECT_TRUE(s1_.SetSend(kSrtpAes128CmSha1_80, kTestKey1,
kEncryptedHeaderExtensionIds));
EXPECT_TRUE(s2_.SetReceive(kSrtpAes128CmSha1_80, kTestKey1,
kEncryptedHeaderExtensionIds));
TestProtectRtp(kSrtpAes128CmSha1_80);
rtp_packet_.MutableData<uint8_t>()[0] = 0x12;
EXPECT_FALSE(s2_.UnprotectRtp(rtp_packet_));
EXPECT_METRIC_THAT(
metrics::Samples("WebRTC.PeerConnection.SrtpUnprotectError"),
ElementsAre(Pair(srtp_err_status_bad_param, 1)));
TestProtectRtcp(kSrtpAes128CmSha1_80);
rtcp_packet_.MutableData<uint8_t>()[1] = 0x34;
EXPECT_FALSE(s2_.UnprotectRtcp(rtcp_packet_));
EXPECT_METRIC_THAT(
metrics::Samples("WebRTC.PeerConnection.SrtcpUnprotectError"),
ElementsAre(Pair(srtp_err_status_auth_fail, 1)));
}
// Test that we fail to unprotect if the payloads are not authenticated.
TEST_F(SrtpSessionTest, TestUnencryptReject) {
EXPECT_TRUE(s1_.SetSend(kSrtpAes128CmSha1_80, kTestKey1,
kEncryptedHeaderExtensionIds));
EXPECT_TRUE(s2_.SetReceive(kSrtpAes128CmSha1_80, kTestKey1,
kEncryptedHeaderExtensionIds));
EXPECT_FALSE(s2_.UnprotectRtp(rtp_packet_));
EXPECT_METRIC_THAT(
metrics::Samples("WebRTC.PeerConnection.SrtpUnprotectError"),
ElementsAre(Pair(srtp_err_status_auth_fail, 1)));
EXPECT_FALSE(s2_.UnprotectRtcp(rtcp_packet_));
EXPECT_METRIC_THAT(
metrics::Samples("WebRTC.PeerConnection.SrtcpUnprotectError"),
ElementsAre(Pair(srtp_err_status_cant_check, 1)));
}
// Test that we fail when using buffers that are too small.
TEST_F(SrtpSessionTest, TestBuffersTooSmall) {
EXPECT_TRUE(s1_.SetSend(kSrtpAes128CmSha1_80, kTestKey1,
kEncryptedHeaderExtensionIds));
// This buffer does not have extra capacity which we treat as an error.
CopyOnWriteBuffer rtp_packet(rtp_packet_.data(), rtp_packet_.size(),
rtp_packet_.size());
EXPECT_FALSE(s1_.ProtectRtp(rtp_packet));
// This buffer does not have extra capacity which we treat as an error.
CopyOnWriteBuffer rtcp_packet(rtcp_packet_.data(), rtcp_packet_.size(),
rtcp_packet_.size());
EXPECT_FALSE(s1_.ProtectRtcp(rtcp_packet));
}
TEST_F(SrtpSessionTest, TestReplay) {
static const uint16_t kMaxSeqnum = std::numeric_limits<uint16_t>::max() - 1;
static const uint16_t seqnum_big = 62275;
static const uint16_t seqnum_small = 10;
static const uint16_t replay_window = 1024;
EXPECT_TRUE(s1_.SetSend(kSrtpAes128CmSha1_80, kTestKey1,
kEncryptedHeaderExtensionIds));
EXPECT_TRUE(s2_.SetReceive(kSrtpAes128CmSha1_80, kTestKey1,
kEncryptedHeaderExtensionIds));
// Initial sequence number.
SetBE16(rtp_packet_.MutableData<uint8_t>() + 2, seqnum_big);
EXPECT_TRUE(s1_.ProtectRtp(rtp_packet_));
rtp_packet_.SetData(kPcmuFrame, sizeof(kPcmuFrame));
// Replay within the 1024 window should succeed.
SetBE16(rtp_packet_.MutableData<uint8_t>() + 2,
seqnum_big - replay_window + 1);
EXPECT_TRUE(s1_.ProtectRtp(rtp_packet_));
rtp_packet_.SetData(kPcmuFrame, sizeof(kPcmuFrame));
// Replay out side of the 1024 window should fail.
SetBE16(rtp_packet_.MutableData<uint8_t>() + 2,
seqnum_big - replay_window - 1);
EXPECT_FALSE(s1_.ProtectRtp(rtp_packet_));
rtp_packet_.SetData(kPcmuFrame, sizeof(kPcmuFrame));
// Increment sequence number to a small number.
SetBE16(rtp_packet_.MutableData<uint8_t>() + 2, seqnum_small);
EXPECT_TRUE(s1_.ProtectRtp(rtp_packet_));
// Replay around 0 but out side of the 1024 window should fail.
SetBE16(rtp_packet_.MutableData<uint8_t>() + 2,
kMaxSeqnum + seqnum_small - replay_window - 1);
EXPECT_FALSE(s1_.ProtectRtp(rtp_packet_));
rtp_packet_.SetData(kPcmuFrame, sizeof(kPcmuFrame));
// Replay around 0 but within the 1024 window should succeed.
for (uint16_t seqnum = 65000; seqnum < 65003; ++seqnum) {
SetBE16(rtp_packet_.MutableData<uint8_t>() + 2, seqnum);
EXPECT_TRUE(s1_.ProtectRtp(rtp_packet_));
rtp_packet_.SetData(kPcmuFrame, sizeof(kPcmuFrame));
}
// Go back to normal sequence nubmer.
// NOTE: without the fix in libsrtp, this would fail. This is because
// without the fix, the loop above would keep incrementing local sequence
// number in libsrtp, eventually the new sequence number would go out side
// of the window.
SetBE16(rtp_packet_.MutableData<uint8_t>() + 2, seqnum_small + 1);
EXPECT_TRUE(s1_.ProtectRtp(rtp_packet_));
}
TEST_F(SrtpSessionTest, RemoveSsrc) {
EXPECT_TRUE(s1_.SetSend(kSrtpAes128CmSha1_80, kTestKey1,
kEncryptedHeaderExtensionIds));
EXPECT_TRUE(s2_.SetReceive(kSrtpAes128CmSha1_80, kTestKey1,
kEncryptedHeaderExtensionIds));
// Encrypt and decrypt the packet once.
EXPECT_TRUE(s1_.ProtectRtp(rtp_packet_));
EXPECT_TRUE(s2_.UnprotectRtp(rtp_packet_));
EXPECT_EQ(sizeof(kPcmuFrame), rtp_packet_.size());
EXPECT_EQ(0, std::memcmp(kPcmuFrame, rtp_packet_.data(), rtp_packet_.size()));
// Recreate the original packet and encrypt again.
rtp_packet_.SetData(kPcmuFrame, sizeof(kPcmuFrame));
EXPECT_TRUE(s1_.ProtectRtp(rtp_packet_));
// Attempting to decrypt will fail as a replay attack.
// (srtp_err_status_replay_fail) since the sequence number was already seen.
EXPECT_FALSE(s2_.UnprotectRtp(rtp_packet_));
// Remove the fake packet SSRC 1 from the session.
EXPECT_TRUE(s2_.RemoveSsrcFromSession(1));
EXPECT_FALSE(s2_.RemoveSsrcFromSession(1));
// Since the SRTP state was discarded, this is no longer a replay attack.
EXPECT_TRUE(s2_.UnprotectRtp(rtp_packet_));
EXPECT_EQ(sizeof(kPcmuFrame), rtp_packet_.size());
EXPECT_EQ(0, std::memcmp(kPcmuFrame, rtp_packet_.data(), rtp_packet_.size()));
EXPECT_TRUE(s2_.RemoveSsrcFromSession(1));
}
TEST_F(SrtpSessionTest, ProtectUnprotectWrapAroundRocMismatch) {
// This unit tests demonstrates why you should be careful when
// choosing the initial RTP sequence number as there can be decryption
// failures when it wraps around with packet loss. Pick your starting
// sequence number in the lower half of the range for robustness reasons,
// see packet_sequencer.cc for the code doing so.
EXPECT_TRUE(s1_.SetSend(kSrtpAes128CmSha1_80, kTestKey1,
kEncryptedHeaderExtensionIds));
EXPECT_TRUE(s2_.SetReceive(kSrtpAes128CmSha1_80, kTestKey1,
kEncryptedHeaderExtensionIds));
// Buffers include enough room for the 10 byte SRTP auth tag so we can
// encrypt in place.
unsigned char kFrame1[] = {
// clang-format off
// PT=0, SN=65535, TS=0, SSRC=1
0x80, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
0xBE, 0xEF, // data bytes
// Space for the SRTP auth tag
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
// clang-format on
};
CopyOnWriteBuffer packet1(kFrame1, sizeof(kFrame1) - 10, sizeof(kFrame1));
unsigned char kFrame2[] = {
// clang-format off
// PT=0, SN=1, TS=0, SSRC=1
0x80, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
0xBE, 0xEF, // data bytes
// Space for the SRTP auth tag
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
// clang-format on
};
CopyOnWriteBuffer packet2(kFrame2, sizeof(kFrame2) - 10, sizeof(kFrame1));
const unsigned char kPayload[] = {0xBE, 0xEF};
// Encrypt the frames in-order. There is a sequence number rollover from
// 65535 to 1 (skipping 0) and the second packet gets encrypted with a
// roll-over counter (ROC) of 1. See
// https://datatracker.ietf.org/doc/html/rfc3711#section-3.3.1
EXPECT_TRUE(s1_.ProtectRtp(packet1));
EXPECT_EQ(packet1.size(), 24u);
EXPECT_TRUE(s1_.ProtectRtp(packet2));
EXPECT_EQ(packet2.size(), 24u);
// If we decrypt frame 2 first it will have a ROC of 1 but the receiver
// does not know this is a rollover so will attempt with a ROC of 0.
// Note: If libsrtp is modified to attempt to decrypt with ROC=1 for this
// case, this test will fail and needs to be modified accordingly to unblock
// the roll. See https://issues.webrtc.org/353565743 for details.
EXPECT_FALSE(s2_.UnprotectRtp(packet2));
// Decrypt frame 1.
EXPECT_TRUE(s2_.UnprotectRtp(packet1));
ASSERT_EQ(packet1.size(), 14u);
EXPECT_EQ(0, std::memcmp(packet1.data() + 12, kPayload, sizeof(kPayload)));
// Now decrypt frame 2 again. A rollover is detected which increases
// the ROC to 1 so this succeeds.
EXPECT_TRUE(s2_.UnprotectRtp(packet2));
ASSERT_EQ(packet2.size(), 14u);
EXPECT_EQ(0, std::memcmp(packet2.data() + 12, kPayload, sizeof(kPayload)));
}
TEST_F(SrtpSessionTest, ProtectGetPacketIndex) {
EXPECT_TRUE(s1_.SetSend(kSrtpAes128CmSha1_80, kTestKey1,
kEncryptedHeaderExtensionIds));
EXPECT_TRUE(s2_.SetReceive(kSrtpAes128CmSha1_80, kTestKey1,
kEncryptedHeaderExtensionIds));
// Buffers include enough room for the 10 byte SRTP auth tag so we can
// encrypt in place.
unsigned char kFrame1[] = {
// clang-format off
// PT=0, SN=65535, TS=0, SSRC=1
0x80, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
0xBE, 0xEF, // data bytes
// Space for the SRTP auth tag
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
// clang-format on
};
CopyOnWriteBuffer packet1(kFrame1, sizeof(kFrame1) - 10, sizeof(kFrame1));
unsigned char kFrame2[] = {
// clang-format off
// PT=0, SN=1, TS=0, SSRC=1
0x80, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
0xBE, 0xEF, // data bytes
// Space for the SRTP auth tag
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
// clang-format on
};
CopyOnWriteBuffer packet2(kFrame2, sizeof(kFrame2) - 10, sizeof(kFrame1));
// Encrypt the frames in-order. There is a sequence number rollover from
// 65535 to 1 (skipping 0) and the second packet gets encrypted with a
// roll-over counter (ROC) of 1. See
// https://datatracker.ietf.org/doc/html/rfc3711#section-3.3.1
int64_t index;
EXPECT_TRUE(s1_.ProtectRtp(packet1, &index));
EXPECT_EQ(packet1.size(), 24u);
EXPECT_EQ(index, 0xffff00000000); // ntohl(65535 << 16)
EXPECT_TRUE(s1_.ProtectRtp(packet2, &index));
EXPECT_EQ(packet2.size(), 24u);
EXPECT_EQ(index, 0x10001000000); // ntohl(65537 << 16)
}
} // namespace webrtc
|