1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
|
/*
* Copyright 2012 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/third_party/sigslot/sigslot.h"
#include "test/gtest.h"
// This function, when passed a has_slots or signalx, will break the build if
// its threading requirement is not single threaded
static bool TemplateIsST(const sigslot::single_threaded* p) {
return true;
}
// This function, when passed a has_slots or signalx, will break the build if
// its threading requirement is not multi threaded
static bool TemplateIsMT(const sigslot::multi_threaded_local* p) {
return true;
}
class SigslotDefault : public ::testing::Test, public sigslot::has_slots<> {
protected:
sigslot::signal0<> signal_;
};
template <class slot_policy = sigslot::single_threaded,
class signal_policy = sigslot::single_threaded>
class SigslotReceiver : public sigslot::has_slots<slot_policy> {
public:
SigslotReceiver() : signal_(nullptr), signal_count_(0) {}
~SigslotReceiver() override {}
// Provide copy constructor so that tests can exercise the has_slots copy
// constructor.
SigslotReceiver(const SigslotReceiver&) = default;
void Connect(sigslot::signal0<signal_policy>* signal) {
if (!signal)
return;
Disconnect();
signal_ = signal;
signal->connect(this,
&SigslotReceiver<slot_policy, signal_policy>::OnSignal);
}
void Disconnect() {
if (!signal_)
return;
signal_->disconnect(this);
signal_ = nullptr;
}
void OnSignal() { ++signal_count_; }
int signal_count() { return signal_count_; }
private:
sigslot::signal0<signal_policy>* signal_;
int signal_count_;
};
template <class slot_policy = sigslot::single_threaded,
class mt_signal_policy = sigslot::multi_threaded_local>
class SigslotSlotTest : public ::testing::Test {
protected:
SigslotSlotTest() {
mt_signal_policy mt_policy;
TemplateIsMT(&mt_policy);
}
void SetUp() override { Connect(); }
void TearDown() override { Disconnect(); }
void Disconnect() {
st_receiver_.Disconnect();
mt_receiver_.Disconnect();
}
void Connect() {
st_receiver_.Connect(&SignalSTLoopback);
mt_receiver_.Connect(&SignalMTLoopback);
}
int st_loop_back_count() { return st_receiver_.signal_count(); }
int mt_loop_back_count() { return mt_receiver_.signal_count(); }
sigslot::signal0<> SignalSTLoopback;
SigslotReceiver<slot_policy, sigslot::single_threaded> st_receiver_;
sigslot::signal0<mt_signal_policy> SignalMTLoopback;
SigslotReceiver<slot_policy, mt_signal_policy> mt_receiver_;
};
typedef SigslotSlotTest<> SigslotSTSlotTest;
typedef SigslotSlotTest<sigslot::multi_threaded_local,
sigslot::multi_threaded_local>
SigslotMTSlotTest;
class multi_threaded_local_fake : public sigslot::multi_threaded_local {
public:
multi_threaded_local_fake() : lock_count_(0), unlock_count_(0) {}
void lock() { ++lock_count_; }
void unlock() { ++unlock_count_; }
int lock_count() { return lock_count_; }
bool InCriticalSection() { return lock_count_ != unlock_count_; }
protected:
int lock_count_;
int unlock_count_;
};
typedef SigslotSlotTest<multi_threaded_local_fake, multi_threaded_local_fake>
SigslotMTLockBase;
class SigslotMTLockTest : public SigslotMTLockBase {
protected:
SigslotMTLockTest() {}
void SetUp() override {
EXPECT_EQ(0, SlotLockCount());
SigslotMTLockBase::SetUp();
// Connects to two signals (ST and MT). However,
// SlotLockCount() only gets the count for the
// MT signal (there are two separate SigslotReceiver which
// keep track of their own count).
EXPECT_EQ(1, SlotLockCount());
}
void TearDown() override {
const int previous_lock_count = SlotLockCount();
SigslotMTLockBase::TearDown();
// Disconnects from two signals. Note analogous to SetUp().
EXPECT_EQ(previous_lock_count + 1, SlotLockCount());
}
int SlotLockCount() { return mt_receiver_.lock_count(); }
void Signal() { SignalMTLoopback(); }
int SignalLockCount() { return SignalMTLoopback.lock_count(); }
int signal_count() { return mt_loop_back_count(); }
bool InCriticalSection() { return SignalMTLoopback.InCriticalSection(); }
};
// This test will always succeed. However, if the default template instantiation
// changes from single threaded to multi threaded it will break the build here.
TEST_F(SigslotDefault, DefaultIsST) {
EXPECT_TRUE(TemplateIsST(this));
EXPECT_TRUE(TemplateIsST(&signal_));
}
// ST slot, ST signal
TEST_F(SigslotSTSlotTest, STLoopbackTest) {
SignalSTLoopback();
EXPECT_EQ(1, st_loop_back_count());
EXPECT_EQ(0, mt_loop_back_count());
}
// ST slot, MT signal
TEST_F(SigslotSTSlotTest, MTLoopbackTest) {
SignalMTLoopback();
EXPECT_EQ(1, mt_loop_back_count());
EXPECT_EQ(0, st_loop_back_count());
}
// ST slot, both ST and MT (separate) signal
TEST_F(SigslotSTSlotTest, AllLoopbackTest) {
SignalSTLoopback();
SignalMTLoopback();
EXPECT_EQ(1, mt_loop_back_count());
EXPECT_EQ(1, st_loop_back_count());
}
TEST_F(SigslotSTSlotTest, Reconnect) {
SignalSTLoopback();
SignalMTLoopback();
EXPECT_EQ(1, mt_loop_back_count());
EXPECT_EQ(1, st_loop_back_count());
Disconnect();
SignalSTLoopback();
SignalMTLoopback();
EXPECT_EQ(1, mt_loop_back_count());
EXPECT_EQ(1, st_loop_back_count());
Connect();
SignalSTLoopback();
SignalMTLoopback();
EXPECT_EQ(2, mt_loop_back_count());
EXPECT_EQ(2, st_loop_back_count());
}
// MT slot, ST signal
TEST_F(SigslotMTSlotTest, STLoopbackTest) {
SignalSTLoopback();
EXPECT_EQ(1, st_loop_back_count());
EXPECT_EQ(0, mt_loop_back_count());
}
// MT slot, MT signal
TEST_F(SigslotMTSlotTest, MTLoopbackTest) {
SignalMTLoopback();
EXPECT_EQ(1, mt_loop_back_count());
EXPECT_EQ(0, st_loop_back_count());
}
// MT slot, both ST and MT (separate) signal
TEST_F(SigslotMTSlotTest, AllLoopbackTest) {
SignalMTLoopback();
SignalSTLoopback();
EXPECT_EQ(1, st_loop_back_count());
EXPECT_EQ(1, mt_loop_back_count());
}
// Test that locks are acquired and released correctly.
TEST_F(SigslotMTLockTest, LockSanity) {
const int lock_count = SignalLockCount();
Signal();
EXPECT_FALSE(InCriticalSection());
EXPECT_EQ(lock_count + 1, SignalLockCount());
EXPECT_EQ(1, signal_count());
}
// Destroy signal and slot in different orders.
TEST(SigslotDestructionOrder, SignalFirst) {
sigslot::signal0<>* signal = new sigslot::signal0<>;
SigslotReceiver<>* receiver = new SigslotReceiver<>();
receiver->Connect(signal);
(*signal)();
EXPECT_EQ(1, receiver->signal_count());
delete signal;
delete receiver;
}
TEST(SigslotDestructionOrder, SlotFirst) {
sigslot::signal0<>* signal = new sigslot::signal0<>;
SigslotReceiver<>* receiver = new SigslotReceiver<>();
receiver->Connect(signal);
(*signal)();
EXPECT_EQ(1, receiver->signal_count());
delete receiver;
(*signal)();
delete signal;
}
// Test that if a signal is copied, its slot connections are copied as well.
TEST(SigslotTest, CopyConnectedSignal) {
sigslot::signal<> signal;
SigslotReceiver<> receiver;
receiver.Connect(&signal);
// Fire the copied signal, expecting the receiver to be notified.
sigslot::signal<> copied_signal(signal);
copied_signal();
EXPECT_EQ(1, receiver.signal_count());
}
// Test that if a slot is copied, its signal connections are copied as well.
TEST(SigslotTest, CopyConnectedSlot) {
sigslot::signal<> signal;
SigslotReceiver<> receiver;
receiver.Connect(&signal);
// Fire the signal after copying the receiver, expecting the copied receiver
// to be notified.
SigslotReceiver<> copied_receiver(receiver);
signal();
EXPECT_EQ(1, copied_receiver.signal_count());
}
// Just used for the test below.
class Disconnector : public sigslot::has_slots<> {
public:
Disconnector(SigslotReceiver<>* receiver1, SigslotReceiver<>* receiver2)
: receiver1_(receiver1), receiver2_(receiver2) {}
void Connect(sigslot::signal<>* signal) {
signal_ = signal;
signal->connect(this, &Disconnector::Disconnect);
}
private:
void Disconnect() {
receiver1_->Disconnect();
receiver2_->Disconnect();
signal_->disconnect(this);
}
sigslot::signal<>* signal_;
SigslotReceiver<>* receiver1_;
SigslotReceiver<>* receiver2_;
};
// Test that things work as expected if a signal is disconnected from a slot
// while it's firing.
TEST(SigslotTest, DisconnectFromSignalWhileFiring) {
sigslot::signal<> signal;
SigslotReceiver<> receiver1;
SigslotReceiver<> receiver2;
SigslotReceiver<> receiver3;
Disconnector disconnector(&receiver1, &receiver2);
// From this ordering, receiver1 should receive the signal, then the
// disconnector will be invoked, causing receiver2 to be disconnected before
// it receives the signal. And receiver3 should also receive the signal,
// since it was never disconnected.
receiver1.Connect(&signal);
disconnector.Connect(&signal);
receiver2.Connect(&signal);
receiver3.Connect(&signal);
signal();
EXPECT_EQ(1, receiver1.signal_count());
EXPECT_EQ(0, receiver2.signal_count());
EXPECT_EQ(1, receiver3.signal_count());
}
// Uses disconnect_all instead of disconnect.
class Disconnector2 : public sigslot::has_slots<> {
public:
void Connect(sigslot::signal<>* signal) {
signal_ = signal;
signal->connect(this, &Disconnector2::Disconnect);
}
private:
void Disconnect() { signal_->disconnect_all(); }
sigslot::signal<>* signal_;
};
// Test that things work as expected if a signal is disconnected from a slot
// while it's firing using disconnect_all.
TEST(SigslotTest, CallDisconnectAllWhileSignalFiring) {
sigslot::signal<> signal;
SigslotReceiver<> receiver1;
SigslotReceiver<> receiver2;
Disconnector2 disconnector;
// From this ordering, receiver1 should receive the signal, then the
// disconnector will be invoked, causing receiver2 to be disconnected before
// it receives the signal.
receiver1.Connect(&signal);
disconnector.Connect(&signal);
receiver2.Connect(&signal);
signal();
EXPECT_EQ(1, receiver1.signal_count());
EXPECT_EQ(0, receiver2.signal_count());
}
|