File: matching.cpp

package info (click to toggle)
chromium 139.0.7258.127-2
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 6,122,156 kB
  • sloc: cpp: 35,100,771; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (927 lines) | stat: -rw-r--r-- 32,617 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
#include <zxcvbn/matching.hpp>

#include <zxcvbn/adjacency_graphs.hpp>
#include <zxcvbn/common.hpp>
#include <zxcvbn/optional.hpp>
#include <zxcvbn/frequency_lists.hpp>
#include <zxcvbn/scoring.hpp>
#include <zxcvbn/util.hpp>

#include <algorithm>
#include <array>
#include <functional>
#include <initializer_list>
#include <regex>
#include <sstream>
#include <string>
#include <vector>
#include <unordered_map>
#include <utility>
#include <unordered_set>

#include "base/no_destructor.h"
#include "base/strings/string_util.h"
#include "third_party/icu/source/common/unicode/unistr.h"
#include "third_party/icu/source/i18n/unicode/regex.h"

namespace zxcvbn {

// TODO: make this a constexpr
const std::vector<std::pair<std::string, std::vector<std::string>>>&
L33T_TABLE() {
  static base::NoDestructor<
      std::vector<std::pair<std::string, std::vector<std::string>>>>
      leet_table({
          {"a", {"4", "@"}},
          {"b", {"8"}},
          {"c", {"(", "{", "[", "<"}},
          {"e", {"3"}},
          {"g", {"6", "9"}},
          {"i", {"1", "!", "|"}},
          {"l", {"1", "|", "7"}},
          {"o", {"0"}},
          {"s", {"$", "5"}},
          {"t", {"+", "7"}},
          {"x", {"%"}},
          {"z", {"2"}},
      });

  return *leet_table;
}

// TODO: make this constexpr
const std::vector<std::pair<RegexTag, std::regex>>& REGEXEN() {
  static base::NoDestructor<std::vector<std::pair<RegexTag, std::regex>>>
      regexen({
          {RegexTag::RECENT_YEAR, std::regex(R"(19\d\d|200\d|201\d)")},
      });
  return *regexen;
}

const auto DATE_MAX_YEAR = 2050;
const auto DATE_MIN_YEAR = 1000;
constexpr std::initializer_list<std::pair<int, int>> DATE_SPLITS[] = {
  {      // for length-4 strings, eg 1191 or 9111, two ways to split:
    {1, 2}, // 1 1 91 (2nd split starts at index 1, 3rd at index 2)
    {2, 3}, // 91 1 1
  },
  {
    {1, 3}, // 1 11 91
    {2, 3}, // 11 1 91
  },
  {
    {1, 2}, // 1 1 1991
    {2, 4}, // 11 11 91
    {4, 5}, // 1991 1 1
  },
  {
    {1, 3}, // 1 11 1991
    {2, 3}, // 11 1 1991
    {4, 5}, // 1991 1 11
    {4, 6}, // 1991 11 1
  },
  {
    {2, 4}, // 11 11 1991
    {4, 6}, // 1991 11 11
  },
};

static
std::string translate(const std::string & string,
                      const std::unordered_map<std::string, std::string> & chr_map) {
  std::string toret;
  auto bit = std::back_inserter(toret);
  toret.reserve(string.size());
  for (auto it = string.begin(); it != string.end();) {
    auto nextit = util::utf8_iter(it, string.end());
    auto ch = std::string(it, nextit);
    auto mit = chr_map.find(ch);
    if (mit != chr_map.end()) {
      ch = mit->second;
    }
    std::copy(ch.begin(), ch.end(), bit);
    it = nextit;
  }
  return toret;
}

static
std::vector<Match> & sorted(std::vector<Match> & matches) {
  std::sort(matches.begin(), matches.end(),
            [&] (const Match & m1, const Match & m2) -> bool {
              return std::make_pair(m1.i, m1.j) < std::make_pair(m2.i, m2.j);
            });
  return matches;
}

static
std::string dict_normalize(const std::string & str) {
  // NB: we only have ascii strings in the dictionaries
  // TODO: when we have more complex strings in the dictionaries,
  //       do a more complex normalization
  return util::ascii_lower(str);
}

std::vector<Match> omnimatch(const std::string& password) {
  RankedDicts& ranked_dictionaries = default_ranked_dicts();

  std::vector<Match> matches;
  std::function<std::vector<Match>(const std::string&)> matchers[] = {
      std::bind(dictionary_match, std::placeholders::_1,
                std::cref(ranked_dictionaries)),
      std::bind(reverse_dictionary_match, std::placeholders::_1,
                std::cref(ranked_dictionaries)),
      std::bind(l33t_match, std::placeholders::_1,
                std::cref(ranked_dictionaries), std::cref(L33T_TABLE())),
      std::bind(spatial_match, std::placeholders::_1, std::cref(graphs())),
      repeat_match,
      sequence_match,
      std::bind(regex_match, std::placeholders::_1, std::cref(REGEXEN())),
      date_match,
  };
  for (const auto & matcher : matchers) {
    auto ret = matcher(password);
    std::move(ret.begin(), ret.end(), std::back_inserter(matches));
  }
  return sorted(matches);
}

//-------------------------------------------------------------------------------
//  dictionary match (common passwords, english, last names, etc) ----------------
//-------------------------------------------------------------------------------

std::vector<Match> dictionary_match(const std::string & password,
                                    const RankedDicts & ranked_dictionaries) {
  std::vector<Match> matches;
  size_t len = password.length();
  std::string password_lower = dict_normalize(password);
  for (size_t i = 0, idx = 0; idx < len;
       util::utf8_decode(password, idx), ++i) {
    for (size_t j = i, jdx = idx; jdx < len; ++j) {
      // j is inclusive, but jdx is not so eagerly iterate jdx
      util::utf8_decode(password, jdx);

      std::string word = password_lower.substr(idx, jdx - idx);
      absl::optional<rank_t> result = ranked_dictionaries.Find(word);
      if (result.has_value()) {
        rank_t rank = *result;
        matches.emplace_back(i, j, password.substr(idx, jdx - idx),
                             DictionaryMatch{word, rank, false, false, {}, ""});
        matches.back().idx = idx;
        matches.back().jdx = jdx;
      }
    }
  }
  return sorted(matches);
}

std::vector<Match> reverse_dictionary_match(const std::string & password,
                                            const RankedDicts & ranked_dictionaries) {
  auto clen = util::character_len(password);
  auto reversed_password = util::reverse_string(password);
  auto matches = dictionary_match(reversed_password, ranked_dictionaries);
  for (auto & match : matches) {
    match.token = util::reverse_string(match.token); // reverse back
    match.get_dictionary().reversed = true;
    // map coordinates back to original string
    std::tie(match.i, match.j) = std::make_tuple(
      clen - 1 - match.j,
      clen - 1 - match.i
      );
    std::tie(match.idx, match.jdx) = std::make_tuple(
      password.length() - match.jdx,
      password.length() - match.idx
      );
  }
  return sorted(matches);
}

//-------------------------------------------------------------------------------
// dictionary match with common l33t substitutions ------------------------------
//-------------------------------------------------------------------------------

// makes a pruned copy of l33t_table that only includes password's possible substitutions
std::unordered_map<std::string, std::vector<std::string>> relevant_l33t_subtable(const std::string & password, const std::vector<std::pair<std::string, std::vector<std::string>>> & table) {
  std::unordered_map<std::string, std::vector<std::string>> subtable;
  for (const auto & item : table) {
    auto & letter = item.first;
    auto & subs = item.second;
    std::vector<std::string> relevant_subs;
    for (const auto & sub : subs) {
      if (password.find(sub) != password.npos) {
        relevant_subs.push_back(sub);
      }
    }

    if (relevant_subs.size()) {
      subtable.insert(std::make_pair(letter, relevant_subs));
    }
  }
  return subtable;
}

// returns the list of possible 1337 replacement dictionaries for a given password
std::vector<std::unordered_map<std::string, std::string>> enumerate_l33t_subs(const std::unordered_map<std::string, std::vector<std::string>> & table) {
  using SubsType = std::vector<std::vector<std::pair<std::string, std::string>>>;
  SubsType subs = {{}};

  auto dedup = [] (const SubsType & subs) {
    SubsType deduped;
    std::unordered_set<std::string> members;
    for (const auto & sub : subs) {
      auto assoc = sub;
      std::sort(assoc.begin(), assoc.end());
      std::ostringstream label_stream;
      for (const auto & item : assoc) {
        label_stream << item.first << "," << item.second << "-";
      }
      auto label = label_stream.str();
      if (members.find(label) == members.end()) {
        members.insert(std::move(label));
        deduped.push_back(sub);
      }
    }
    return deduped;
  };

  for (const auto & item : table) {
    auto & first_key = item.first;
    SubsType next_subs;
    for (const auto & l33t_chr : item.second) {
      for (const auto & sub : subs) {
        auto sub_alternative = sub;
        auto it = std::find_if(
          sub_alternative.begin(), sub_alternative.end(),
          [&] (const std::pair<std::string, std::string> & sub_elt) {
            return sub_elt.first == l33t_chr;
          });
        if (it == sub_alternative.end()) {
          sub_alternative.push_back(std::make_pair(l33t_chr, first_key));
          next_subs.push_back(std::move(sub_alternative));
        }
        else {
          sub_alternative.erase(it);
          sub_alternative.push_back(std::make_pair(l33t_chr, first_key));
          next_subs.push_back(sub);
          next_subs.push_back(std::move(sub_alternative));
        }
      }
    }
    subs = dedup(next_subs);
  }

  // convert from assoc lists to dicts
  std::vector<std::unordered_map<std::string, std::string>> sub_dicts;
  for (const auto & sub : subs) {
    sub_dicts.push_back(std::unordered_map<std::string, std::string>
                        (sub.begin(), sub.end()));
  }

  return sub_dicts;
}

std::vector<Match> l33t_match(const std::string & password,
                              const RankedDicts & ranked_dictionaries,
                              const std::vector<std::pair<std::string, std::vector<std::string>>> & l33t_table) {
  std::vector<Match> matches;
  for (const auto & sub : enumerate_l33t_subs(relevant_l33t_subtable(password, l33t_table))) {
    if (!sub.size()) break;
    auto subbed_password = translate(password, sub);
    for (auto & match : dictionary_match(subbed_password, ranked_dictionaries)) {
      auto & dmatch = match.get_dictionary();
      auto token = password.substr(match.idx, match.jdx - match.idx);
      if (dict_normalize(token) == dmatch.matched_word) {
        // only return the matches that contain an actual substitution
        continue;
      }
      // subset of mappings in sub that are in use for this match
      std::unordered_map<std::string, std::string> match_sub;
      for (const auto & item : sub) {
        auto & subbed_chr = item.first;
        if (token.find(subbed_chr) == token.npos) continue;
        match_sub.insert(item);
      }
      dmatch.l33t = true;
      match.token = token;
      dmatch.sub = match_sub;
      std::ostringstream os;
      std::string sep = "";
      for (const auto & item : match_sub) {
        os << sep << item.first << " -> " << item.second;
        if (!sep.size()) {
          sep = ", ";
        }
      }
      dmatch.sub_display = os.str();
      matches.push_back(std::move(match));
    }
  }

  matches.erase(std::remove_if(matches.begin(), matches.end(), [] (const Match & a) {
        // filter single-character l33t matches to reduce noise.
        // otherwise '1' matches 'i', '4' matches 'a', both very common English words
        // with low dictionary rank.
        return util::character_len(a.token) <= 1;
      }),
    matches.end());

  return sorted(matches);
}

// ------------------------------------------------------------------------------
// spatial match (qwerty/dvorak/keypad) -----------------------------------------
// ------------------------------------------------------------------------------

static
std::vector<Match> spatial_match_helper(const std::string & password,
                                        const Graph & graph,
                                        GraphTag tag);

std::vector<Match> spatial_match(const std::string & password,
                                 const Graphs & graphs) {
  std::vector<Match> matches;
  for (const auto & item : graphs) {
    auto ret = spatial_match_helper(password, item.second, item.first);
    std::move(ret.begin(), ret.end(), std::back_inserter(matches));
  }
  return matches;
}

static
std::vector<Match> spatial_match_helper(const std::string & password,
                                        const Graph & graph,
                                        GraphTag graph_tag) {
  const auto SHIFTED_RX =
      std::regex("[~!@#$%^&*()_+QWERTYUIOP{}|ASDFGHJKL:\"ZXCVBNM<>?]");

  std::vector<Match> matches;
  if (!password.length()) return matches;
  idx_t idx = 0;
  idx_t i = 0;
  auto clen = util::character_len(password);
  while (i < clen - 1) {
    auto jdx = idx;
    util::utf8_decode(password, jdx);
    auto j = i + 1;
    auto last_direction = -1;
    unsigned turns = 0;
    unsigned shifted_count;
    if ((graph_tag == GraphTag::QWERTY ||
         graph_tag == GraphTag::DVORAK) &&
        std::regex_search(password.substr(idx, jdx - idx), SHIFTED_RX)) {
      shifted_count = 1;
    }
    else {
      shifted_count = 0;
    }
    auto prev_jdx = idx;
    while (true) {
      auto prev_char = password.substr(prev_jdx, jdx - prev_jdx);
      auto found = false;
      auto found_direction = -1;
      auto cur_direction = -1;
      const auto & adjacents = [&] {
        auto it = graph.find(prev_char);
        if (it != graph.end()) {
          return it->second;
        }
        return Graph::mapped_type();
      }();
      // consider growing pattern by one character if j hasn't gone over the edge.
      if (j < clen) {
        auto next_jdx = jdx;
        util::utf8_decode(password, next_jdx);
        auto cur_char = password.substr(jdx, next_jdx - jdx);
        for (auto & adj : adjacents) {
          cur_direction += 1;
          if (adj.find(cur_char) != adj.npos) {
            found = true;
            found_direction = cur_direction;
            if (adj.find(cur_char) == 1) {
              // index 1 in the adjacency means the key is shifted,
              // 0 means unshifted: A vs a, % vs 5, etc.
              // for example, 'q' is adjacent to the entry '2@'.
              // @ is shifted w/ index 1, 2 is unshifted.
              shifted_count += 1;
            }
            if (last_direction != found_direction) {
              // adding a turn is correct even in the initial case when last_direction is null:
              // every spatial pattern starts with a turn.
              turns += 1;
              last_direction = found_direction;
            }
            break;
          }
        }
      }
      // if the current pattern continued, extend j and try to grow again
      if (found) {
        j += 1;
        prev_jdx = jdx;
        util::utf8_decode(password, jdx);
      }
      // otherwise push the pattern discovered so far, if any...
      else {
        if (j - i > 2) { // don't consider length 1 or 2 chains.
          matches.push_back(Match(i, j - 1, password.substr(idx, jdx - idx),
                                  SpatialMatch{
                                    graph_tag, turns, shifted_count,
                                  }));
          matches.back().idx = idx;
          matches.back().jdx = jdx;
        }
        // ...and then start a new search for the rest of the password.
        i = j;
        idx = jdx;
        break;
      }
    }
  }
  return matches;
}

//-------------------------------------------------------------------------------
// repeats (aaa, abcabcabc) and sequences (abcdef) ------------------------------
//-------------------------------------------------------------------------------

std::vector<Match> repeat_match(const std::string& password) {
  std::vector<Match> matches;

  auto unicode_password = icu::UnicodeString::fromUTF8(password);

  UErrorCode status = U_ZERO_ERROR;
  std::unique_ptr<icu::RegexPattern> greedy_pattern(icu::RegexPattern::compile(
      icu::UnicodeString::fromUTF8(R"((.+)\1+)"), 0, status));
  std::unique_ptr<icu::RegexMatcher> greedy_matcher(
      greedy_pattern->matcher(unicode_password, status));

  std::unique_ptr<icu::RegexPattern> lazy_pattern(icu::RegexPattern::compile(
      icu::UnicodeString::fromUTF8(R"((.+?)\1+)"), 0, status));
  std::unique_ptr<icu::RegexMatcher> lazy_matcher(
      lazy_pattern->matcher(unicode_password, status));

  std::unique_ptr<icu::RegexPattern> lazy_anchored_pattern(
      icu::RegexPattern::compile(icu::UnicodeString::fromUTF8(R"(^(.+?)\1+$)"),
                                 0, status));

  int lastUnicodeIndex = 0;
  size_t lastIndex = 0;
  while (lastIndex < password.length()) {
    if (!greedy_matcher->find(lastUnicodeIndex, status) ||
        !lazy_matcher->find(lastUnicodeIndex, status)) {
      break;
    }

    icu::RegexMatcher* matcher = nullptr;
    icu::UnicodeString base_token;
    if (greedy_matcher->group(status).length() >
        lazy_matcher->group(status).length()) {
      // greedy beats lazy for 'aabaab'
      //   greedy: [aabaab, aab]
      //   lazy:   [aa,     a]
      matcher = greedy_matcher.get();
      // greedy's repeated string might itself be repeated, eg.
      // aabaab in aabaabaabaab.
      // run an anchored lazy match on greedy's repeated string
      // to find the shortest repeated string
      auto greedy_found = matcher->group(status);

      std::unique_ptr<icu::RegexMatcher> lazy_anchored_matcher(
          lazy_anchored_pattern->matcher(greedy_found, status));
      auto ret = lazy_anchored_matcher->find(status);
      assert(ret);
      (void) ret;
      base_token = lazy_anchored_matcher->group(1, status);
    } else {
      // lazy beats greedy for 'aaaaa'
      //   greedy: [aaaa,  aa]
      //   lazy:   [aaaaa, a]
      matcher = lazy_matcher.get();
      base_token = matcher->group(1, status);
    }

    std::string matched_string;
    matcher->group(status).toUTF8String(matched_string);

    auto idx = password.find(matched_string, lastIndex);
    auto jdx = idx + matched_string.size();

    auto i = util::character_len(password, 0, idx);
    auto j = i + util::character_len(password, idx, jdx) - 1;
    // recursively match and score the base string
    std::string base_string;
    base_token.toUTF8String(base_string);
    auto sub_matches = omnimatch(base_string);
    auto base_analysis =
        most_guessable_match_sequence(base_string, sub_matches, false);
    std::vector<Match> base_matches;
    std::move(base_analysis.sequence.begin(), base_analysis.sequence.end(),
              std::back_inserter(base_matches));
    auto& base_guesses = base_analysis.guesses;
    matches.push_back(Match(i, j, matched_string,
                            RepeatMatch{
                                base_string,
                                base_guesses,
                                std::move(base_matches),
                                matched_string.size() / base_string.size(),
                            }));
    matches.back().idx = idx;
    matches.back().jdx = jdx;
    lastUnicodeIndex = matcher->end(status);
    lastIndex = jdx;
  }
  return matches;
}

const auto MAX_DELTA = 5;
std::vector<Match> sequence_match(const std::string & password) {
  // Identifies sequences by looking for repeated differences in unicode codepoint.
  // this allows skipping, such as 9753, and also matches some extended unicode sequences
  // such as Greek and Cyrillic alphabets.
  //
  // for example, consider the input 'abcdb975zy'
  //
  // password: a   b   c   d   b    9   7   5   z   y
  // index:    0   1   2   3   4    5   6   7   8   9
  // delta:      1   1   1  -2  -41  -2  -2  69   1
  //
  // expected result:
  // [(i, j, delta), ...] = [(0, 3, 1), (5, 7, -2), (8, 9, 1)]

  if (util::character_len(password) == 1) return {};

  std::vector<Match> result;

  using delta_t = std::int32_t;

  auto update = [&] (idx_t i, idx_t j, idx_t idx, idx_t jdx, delta_t delta) {
    if (j - i > 1 || std::abs(delta) == 1) {
      if (0 < std::abs(delta) && std::abs(delta) <= MAX_DELTA) {
        auto token = password.substr(idx, jdx - idx);
        SequenceTag sequence_name;
        unsigned sequence_space;
        if (std::regex_search(token, std::regex(R"(^[a-z]+$)"))) {
          sequence_name = SequenceTag::kLower;
          sequence_space = 26;
        }
        else if (std::regex_search(token, std::regex(R"(^[A-Z]+$)"))) {
          sequence_name = SequenceTag::kUpper;
          sequence_space = 26;
        }
        else if (std::regex_search(token, std::regex(R"(^\d+$)"))) {
          sequence_name = SequenceTag::kDigits;
          sequence_space = 10;
        }
        else {
          sequence_name = SequenceTag::kUnicode;
          sequence_space = 26;
        }
        result.push_back(Match(i, j, token,
                               SequenceMatch{sequence_name, sequence_space,
                                   delta > 0}));
        result.back().idx = idx;
        result.back().jdx = jdx;
      }
    }
  };

  if (!password.size()) return result;

  decltype(password.length()) i = 0;
  decltype(password.length()) idx = 0;
  optional::optional<delta_t> maybe_last_delta;
  decltype(password.length()) kdx = 0;
  auto last_kdx = kdx;
  auto last_cp = util::utf8_decode(password, kdx);
  for (idx_t k = 1; kdx < password.length(); ++k) {
    auto next_kdx = kdx;
    auto cp = util::utf8_decode(password, next_kdx);
    assert(kdx != next_kdx);
    delta_t delta = cp - last_cp;
    if (!maybe_last_delta) {
      maybe_last_delta = delta;
    }
    if (delta != *maybe_last_delta) {
      auto jdx = kdx;
      auto j = k - 1;
      update(i, j, idx, jdx, *maybe_last_delta);
      i = j;
      idx = last_kdx;
      maybe_last_delta = delta;
    }
    last_kdx = kdx;
    kdx = next_kdx;
    last_cp = cp;
  }
  if (maybe_last_delta) {
    update(i, util::character_len(password) - 1,
           idx, password.size(), *maybe_last_delta);
  }
  return result;
}


//-------------------------------------------------------------------------------
// regex matching ---------------------------------------------------------------
//-------------------------------------------------------------------------------

std::vector<Match> regex_match(const std::string & password,
                               const std::vector<std::pair<RegexTag, std::regex>> & regexen) {
  std::vector<Match> matches;
  for (const auto & item : regexen) {
    auto tag = item.first;
    auto & regex = item.second;
    std::smatch rx_match;
    std::size_t lastIndex = 0;
    while (std::regex_match(lastIndex + password.begin(), password.end(),
                            rx_match, regex)) {
      auto token = rx_match.str(0);
      auto idx = lastIndex + rx_match.position();
      auto jdx = lastIndex + rx_match.position() + rx_match[0].length();
      assert(token == password.substr(idx, jdx - idx));
      auto i = util::character_len(password, 0, idx);
      auto j = i + util::character_len(password, idx, jdx) - 1;
      matches.push_back(Match(i, j,
                              std::move(token),
                              RegexMatch{tag, PortableRegexMatch(rx_match)}));
      matches.back().idx = idx;
      matches.back().jdx = jdx;
      lastIndex += rx_match[0].length();
    }
  }
  return sorted(matches);
}

//-------------------------------------------------------------------------------
// date matching ----------------------------------------------------------------
//-------------------------------------------------------------------------------

using date_t = unsigned;

struct DMY {
  date_t year, month, day;
};

static
optional::optional<DMY> map_ints_to_dmy(const std::array<date_t, 3> & vals);

static
date_t stou(const std::string & a) {
  return static_cast<date_t>(std::stoul(a));
}

std::vector<Match> date_match(const std::string & password) {
  // a "date" is recognized as:
  //   any 3-tuple that starts or ends with a 2- or 4-digit year,
  //   with 2 or 0 separator chars (1.1.91 or 1191),
  //   maybe zero-padded (01-01-91 vs 1-1-91),
  //   a month between 1 and 12,
  //   a day between 1 and 31.
  //
  // note: this isn't true date parsing in that "feb 31st" is allowed,
  // this doesn't check for leap years, etc.
  //
  // recipe:
  // start with regex to find maybe-dates, then attempt to map the integers
  // onto month-day-year to filter the maybe-dates into dates.
  // finally, remove matches that are substrings of other matches to reduce noise.
  //
  // note: instead of using a lazy or greedy regex to find many dates over the full string,
  // this uses a ^...$ regex against every substring of the password -- less performant but leads
  // to every possible date match.
  std::vector<Match> matches;
  std::regex maybe_date_no_separator(R"(^\d{4,8}$)");
  std::regex maybe_date_with_separator(R"(^(\d{1,4})([\s/\\_.-])(\d{1,2})\2(\d{1,4})$)");

  // dates without separators are between length 4 '1191' and 8 '11111991'
  std::vector<std::string::size_type> offsets;
  offsets.reserve(9);
  idx_t idx_dot = 0;
  for (auto i = 0; i < 9; ++i) {
    offsets.push_back(idx_dot);
    if (idx_dot >= password.length()) {
      break;
    }
    util::utf8_decode(password, idx_dot);
  }
  assert(offsets.size());
  for (decltype(password.length()) i = 0; offsets.size() - 1 >= 4; ++i) {
    auto idx = offsets[0];
    for (decltype(i) offset = 3; offset <= 7 && offset < offsets.size() - 1; ++offset) {
      auto j = i + offset;
      auto jdx = offsets[offset + 1];

      auto token = password.substr(idx, jdx - idx);
      auto token_chr_len = j - i + 1;
      assert(util::character_len(token) == token_chr_len);
      if (!std::regex_search(token, maybe_date_no_separator)) continue;
      std::vector<DMY> candidates;
      for (const auto & item : DATE_SPLITS[token_chr_len - 4]) {
        auto k = item.first;
        auto l = item.second;
        auto kdx = offsets[k] - idx;
        auto ldx = offsets[l] - idx;

        auto dmy = map_ints_to_dmy(std::array<date_t, 3>{{
              stou(token.substr(0, kdx)),
              stou(token.substr(kdx, ldx - kdx)),
              stou(token.substr(ldx))}});
        if (dmy) candidates.push_back(*dmy);
      }
      if (!candidates.size()) continue;
      // at this point: different possible dmy mappings for the same i,j substring.
      // match the candidate date that likely takes the fewest guesses: a year closest to 2000.
      // (scoring.REFERENCE_YEAR).
      //
      // ie, considering '111504', prefer 11-15-04 to 1-1-1504
      // (interpreting '04' as 2004)
      auto metric = [] (const DMY & candidate) {
        if (candidate.year >= REFERENCE_YEAR) {
          return candidate.year - REFERENCE_YEAR;
        }
        else {
          return REFERENCE_YEAR - candidate.year;
        }
      };
      auto best_candidate = *std::min_element(candidates.begin(), candidates.end(),
                                              [=] (const DMY & a, const DMY & b) {
                                                return metric(a) < metric(b);
                                              });
      matches.push_back(Match(i, j, token,
                              DateMatch{"",
                                  best_candidate.year,
                                  best_candidate.month,
                                  best_candidate.day,
                                  false,
                                  }));
      matches.back().idx = idx;
      matches.back().jdx = jdx;
    }

    offsets.erase(offsets.begin());
    if (offsets.back() < password.length()) {
      auto idx2 = offsets.back();
      util::utf8_decode(password, idx2);
      offsets.push_back(idx2);
    }
  }

  // dates with separators are between length 6 '1/1/91' and 10 '11/11/1991'
  offsets.clear();
  offsets.reserve(11);
  idx_dot = 0;
  for (auto i = 0; i < 11; ++i) {
    offsets.push_back(idx_dot);
    if (idx_dot >= password.length()) {
      break;
    }
    util::utf8_decode(password, idx_dot);
  }
  assert(offsets.size());
  for (decltype(password.length()) i = 0; offsets.size() - 1 >= 6; ++i) {
    auto idx = offsets[0];
    for (decltype(password.length()) offset = 5; offset <= 9 && offset < offsets.size() - 1; ++offset) {
      auto j = offset + i;
      auto jdx = offsets[offset + 1];
      auto token = password.substr(idx, jdx - idx);
      std::smatch rx_match;
      if (!std::regex_match(token, rx_match, maybe_date_with_separator)) {
        continue;
      }
      auto dmy = map_ints_to_dmy(std::array<date_t, 3>{{
          stou(rx_match[1]),
          stou(rx_match[3]),
          stou(rx_match[4])}});
      if (!dmy) continue;
      matches.push_back(Match(i, j, token,
                              DateMatch{rx_match[2],
                                  dmy->year,
                                  dmy->month,
                                  dmy->day,
                                  false,
                                  }));
      matches.back().idx = idx;
      matches.back().jdx = jdx;
    }

    offsets.erase(offsets.begin());
    if (offsets.back() < password.length()) {
      auto idx2 = offsets.back();
      util::utf8_decode(password, idx2);
      offsets.push_back(idx2);
    }
  }

  // matches now contains all valid date strings in a way that is tricky to capture
  // with regexes only. while thorough, it will contain some unintuitive noise:
  //
  // '2015_06_04', in addition to matching 2015_06_04, will also contain
  // 5(!) other date matches: 15_06_04, 5_06_04, ..., even 2015 (matched as 5/1/2020)
  //
  // to reduce noise, remove date matches that are strict substrings of others
  matches.erase(std::remove_if(matches.begin(), matches.end(), [&] (const Match & match) {
        for (auto & other_match : matches) {
          if (other_match.i == match.i && other_match.j == match.j) continue;
          if (other_match.i <= match.i && other_match.j >= match.j) {
            return true;
          }
        }
        return false;
      }),
    matches.end());

  return sorted(matches);
}

static
optional::optional<DMY> map_ints_to_dm(const std::array<date_t, 2> & vals);

static
date_t two_to_four_digit_year(date_t val);

static
optional::optional<DMY> map_ints_to_dmy(const std::array<date_t, 3> & vals) {
  // given a 3-tuple, discard if:
  //   middle int is over 31 (for all dmy formats, years are never allowed in the middle)
  //   middle int is zero
  //   any int is over the max allowable year
  //   any int is over two digits but under the min allowable year
  //   2 ints are over 31, the max allowable day
  //   2 ints are zero
  //   all ints are over 12, the max allowable month
  if (vals[1] > 31 || vals[1] == 0) return optional::nullopt;
  auto over_12 = 0;
  auto over_31 = 0;
  auto under_1 = 0;
  for (auto val : vals) {
    if ((99 < val && val < DATE_MIN_YEAR) || val > DATE_MAX_YEAR) return optional::nullopt;
    if (val > 31) over_31 += 1;
    if (val > 12) over_12 += 1;
    if (val <= 0) under_1 += 1;
  }
  if (over_31 >= 2 || over_12 == 3 || under_1 >= 2) return optional::nullopt;

  // first look for a four digit year: yyyy + daymonth or daymonth + yyyy
  std::pair<date_t, std::array<date_t, 2>> possible_year_splits[] = {
    {vals[2], {{vals[0], vals[1]}}}, // year last
    {vals[0], {{vals[1], vals[2]}}}, // year first
  };
  for (const auto & item : possible_year_splits) {
    auto & y = item.first;
    auto & rest = item.second;
    if (DATE_MIN_YEAR <= y && y <= DATE_MAX_YEAR) {
      auto dm = map_ints_to_dm(rest);
      if (dm) {
        return DMY{y, dm->month, dm->day};
      }
      else {
        // for a candidate that includes a four-digit year,
        // when the remaining ints don't match to a day and month,
        // it is not a date.
        return optional::nullopt;
      }
    }
  }

  // given no four-digit year, two digit years are the most flexible int to match, so
  // try to parse a day-month out of ints[0..1] or ints[1..0]
  for (const auto & item : possible_year_splits) {
    auto y = item.first;
    auto & rest = item.second;
    auto dm = map_ints_to_dm(rest);
    if (dm) {
      y = two_to_four_digit_year(y);
      return DMY{y, dm->month, dm->day};
    }
  }

  return optional::nullopt;
}

static
optional::optional<DMY> map_ints_to_dm(const std::array<date_t, 2> & vals) {
  for (const auto & item : {vals, {{vals[1], vals[0]}}}) {
    auto d = item[0], m = item[1];
    if (1 <= d && d <= 31 && 1 <= m && m <= 12) {
      return DMY{0, m, d};
    }
  }
  return optional::nullopt;
}

static
date_t two_to_four_digit_year(date_t year) {
  if (year > 99) {
    return year;
  }
  else if (year > 50) {
    // 87 -> 1987
    return year + 1900;
  }
  else {
    // 15 -> 2015
    return year + 2000;
  }
}

}