1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "FindBadConstructsConsumer.h"
#include "Util.h"
#include "clang/AST/Attr.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Lex/Lexer.h"
#include "clang/Sema/Sema.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/TimeProfiler.h"
#include "llvm/Support/raw_ostream.h"
using namespace clang;
namespace chrome_checker {
namespace {
// A more efficient alternative to NamedDecl::getQualifiedNameAsString():
// `hasName(decl, "foo", "Bar") iff
// `decl->getQualifiedNameAsString() == "foo::Bar".
bool hasName(const TagDecl* decl,
StringRef namespace_name,
StringRef decl_name) {
if (decl->getName() == decl_name) {
auto* nd = clang::dyn_cast<clang::NamespaceDecl>(decl->getParent());
while (nd && nd->isInline()) {
nd = clang::dyn_cast<clang::NamespaceDecl>(nd->getParent());
}
return nd && nd->getParent()->getRedeclContext()->isTranslationUnit() &&
nd->getName() == namespace_name;
}
return false;
}
// Returns the underlying Type for |type| by expanding typedefs and removing
// any namespace qualifiers. This is similar to desugaring, except that for
// ElaboratedTypes, desugar will unwrap too much.
const Type* UnwrapType(const Type* type) {
if (const ElaboratedType* elaborated = dyn_cast<ElaboratedType>(type)) {
return UnwrapType(elaborated->getNamedType().getTypePtr());
}
if (const TypedefType* typedefed = dyn_cast<TypedefType>(type)) {
return UnwrapType(typedefed->desugar().getTypePtr());
}
return type;
}
bool InTestingNamespace(const Decl* record) {
return GetNamespace(record).find("testing") != std::string::npos;
}
bool IsGtestTestFixture(const CXXRecordDecl* decl) {
return hasName(decl, "testing", "Test");
}
bool IsMethodInTestingNamespace(const CXXMethodDecl* method) {
for (auto* overridden : method->overridden_methods()) {
if (IsMethodInTestingNamespace(overridden) ||
// Provide an exception for ::testing::Test. gtest itself uses some
// magic to try to make sure SetUp()/TearDown() aren't capitalized
// incorrectly, but having the plugin enforce override is also nice.
(InTestingNamespace(overridden) &&
!IsGtestTestFixture(overridden->getParent()))) {
return true;
}
}
return false;
}
bool IsGmockObject(const CXXRecordDecl* decl) {
// If |record| has member variables whose types are in the "testing" namespace
// (which is how gmock works behind the scenes), there's a really high chance
// that |record| is a gmock object.
for (auto* field : decl->fields()) {
CXXRecordDecl* record_type = field->getTypeSourceInfo()
->getTypeLoc()
.getTypePtr()
->getAsCXXRecordDecl();
if (record_type) {
if (InTestingNamespace(record_type)) {
return true;
}
}
}
return false;
}
bool IsPodOrTemplateType(const CXXRecordDecl& record) {
return record.isPOD() || record.getDescribedClassTemplate() ||
record.getTemplateSpecializationKind() || record.isDependentType();
}
// Use a local RAV implementation to simply collect all FunctionDecls marked for
// late template parsing. This happens with the flag -fdelayed-template-parsing,
// which is on by default in MSVC-compatible mode.
std::set<FunctionDecl*> GetLateParsedFunctionDecls(TranslationUnitDecl* decl) {
struct Visitor : public RecursiveASTVisitor<Visitor> {
bool VisitFunctionDecl(FunctionDecl* function_decl) {
if (function_decl->isLateTemplateParsed()) {
late_parsed_decls.insert(function_decl);
}
return true;
}
std::set<FunctionDecl*> late_parsed_decls;
} v;
v.TraverseDecl(decl);
return v.late_parsed_decls;
}
std::string GetAutoReplacementTypeAsString(QualType original_type,
StorageClass storage_class,
bool allow_typedefs) {
QualType non_reference_type = original_type.getNonReferenceType();
if (!non_reference_type->isPointerType() ||
(allow_typedefs && non_reference_type->getAs<clang::TypedefType>())) {
return storage_class == SC_Static ? "static auto" : "auto";
}
std::string result = GetAutoReplacementTypeAsString(
non_reference_type->getPointeeType(), storage_class, allow_typedefs);
result += "*";
if (non_reference_type.isConstQualified()) {
result += " const";
}
if (non_reference_type.isVolatileQualified()) {
result += " volatile";
}
if (original_type->isReferenceType() &&
!non_reference_type.isConstQualified()) {
if (original_type->isLValueReferenceType()) {
result += "&";
} else if (original_type->isRValueReferenceType()) {
result += "&&";
}
}
return result;
}
} // namespace
FindBadConstructsConsumer::FindBadConstructsConsumer(CompilerInstance& instance,
const Options& options)
: ChromeClassTester(instance, options) {
if (options.check_blink_data_member_type) {
blink_data_member_type_checker_.reset(
new BlinkDataMemberTypeChecker(instance));
}
if (options.check_ipc) {
ipc_visitor_.reset(new CheckIPCVisitor(instance));
}
if (options.check_layout_object_methods) {
layout_visitor_.reset(new CheckLayoutObjectMethodsVisitor(instance));
}
if (options.check_stack_allocated) {
stack_allocated_checker_.reset(new StackAllocatedChecker(instance));
}
// Messages for virtual methods.
diag_method_requires_override_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] Overriding method must be marked with 'override' or "
"'final'.");
diag_redundant_virtual_specifier_ = diagnostic().getCustomDiagID(
getErrorLevel(), "[chromium-style] %0 is redundant; %1 implies %0.");
diag_will_be_redundant_virtual_specifier_ = diagnostic().getCustomDiagID(
getErrorLevel(), "[chromium-style] %0 will be redundant; %1 implies %0.");
// http://llvm.org/bugs/show_bug.cgi?id=21051 has been filed to make this a
// Clang warning.
diag_base_method_virtual_and_final_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] The virtual method does not override anything and is "
"final; consider making it non-virtual.");
diag_virtual_with_inline_body_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] virtual methods with non-empty bodies shouldn't be "
"declared inline.");
// Messages for constructors.
diag_no_explicit_ctor_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] Complex class/struct needs an explicit out-of-line "
"constructor.");
diag_no_explicit_copy_ctor_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] Complex class/struct needs an explicit out-of-line "
"copy constructor. If this type is meant to be moveable, it also needs "
"a move constructor and assignment operator.");
diag_inline_complex_ctor_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] Complex constructor has an inlined body.");
// Messages for destructors.
diag_no_explicit_dtor_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] Complex class/struct needs an explicit out-of-line "
"destructor.");
diag_inline_complex_dtor_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] Complex destructor has an inline body.");
// Messages for refcounted objects.
diag_refcounted_needs_explicit_dtor_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] Classes that are ref-counted should have explicit "
"destructors that are declared protected or private.");
diag_refcounted_with_public_dtor_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] Classes that are ref-counted should have "
"destructors that are declared protected or private.");
diag_refcounted_with_protected_non_virtual_dtor_ =
diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] Classes that are ref-counted and have non-private "
"destructors should declare their destructor virtual.");
// Miscellaneous messages.
diag_weak_ptr_factory_order_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] WeakPtrFactory members which refer to their outer "
"class must be the last member in the outer class definition.");
diag_bad_enum_max_value_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] kMaxValue enumerator does not match max value %0 of "
"other enumerators");
diag_enum_max_value_unique_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] kMaxValue enumerator should not have a unique value: "
"it should share the value of the highest enumerator");
diag_auto_deduced_to_a_pointer_type_ =
diagnostic().getCustomDiagID(getErrorLevel(),
"[chromium-style] auto variable type "
"must not deduce to a raw pointer "
"type.");
// Registers notes to make it easier to interpret warnings.
diag_note_inheritance_ = diagnostic().getCustomDiagID(
DiagnosticsEngine::Note, "[chromium-style] %0 inherits from %1 here");
diag_note_implicit_dtor_ = diagnostic().getCustomDiagID(
DiagnosticsEngine::Note,
"[chromium-style] No explicit destructor for %0 defined");
diag_note_public_dtor_ = diagnostic().getCustomDiagID(
DiagnosticsEngine::Note,
"[chromium-style] Public destructor declared here");
diag_note_protected_non_virtual_dtor_ = diagnostic().getCustomDiagID(
DiagnosticsEngine::Note,
"[chromium-style] Protected non-virtual destructor declared here");
diag_span_from_string_literal_ = diagnostic().getCustomDiagID(
getErrorLevel(),
"[chromium-style] span construction from string literal is problematic.");
diag_note_span_from_string_literal1_ = diagnostic().getCustomDiagID(
DiagnosticsEngine::Note,
"To make a span from a string literal, use:\n"
" * base::span_from_cstring() to make a span without the NUL "
"terminator\n"
" * base::span_with_nul_from_cstring() to make a span with the NUL "
"terminator\n"
" * a string view type instead of a string literal");
}
void FindBadConstructsConsumer::Traverse(ASTContext& context) {
if (ipc_visitor_) {
ipc_visitor_->set_context(&context);
ParseFunctionTemplates(context.getTranslationUnitDecl());
}
if (layout_visitor_) {
llvm::TimeTraceScope TimeScope(
"VisitLayoutObjectMethods in "
"FindBadConstructsConsumer::Traverse");
layout_visitor_->VisitLayoutObjectMethods(context);
}
{
llvm::TimeTraceScope TimeScope(
"TraverseDecl in FindBadConstructsConsumer::Traverse");
RecursiveASTVisitor::TraverseDecl(context.getTranslationUnitDecl());
}
if (ipc_visitor_) {
ipc_visitor_->set_context(nullptr);
}
}
bool FindBadConstructsConsumer::TraverseDecl(Decl* decl) {
if (ipc_visitor_) {
ipc_visitor_->BeginDecl(decl);
}
bool result = RecursiveASTVisitor::TraverseDecl(decl);
if (ipc_visitor_) {
ipc_visitor_->EndDecl();
}
return result;
}
bool FindBadConstructsConsumer::VisitCXXConstructExpr(
clang::CXXConstructExpr* expr) {
CheckConstructingSpanFromStringLiteral(
expr->getConstructor(),
llvm::ArrayRef(expr->getArgs(), expr->getNumArgs()), expr->getExprLoc());
return true;
}
bool FindBadConstructsConsumer::VisitCXXRecordDecl(
clang::CXXRecordDecl* cxx_record_decl) {
if (stack_allocated_checker_) {
stack_allocated_checker_->Check(cxx_record_decl);
}
return true;
}
bool FindBadConstructsConsumer::VisitEnumDecl(clang::EnumDecl* decl) {
CheckEnumMaxValue(decl);
return true;
}
bool FindBadConstructsConsumer::VisitTagDecl(clang::TagDecl* tag_decl) {
if (tag_decl->isCompleteDefinition()) {
CheckTag(tag_decl);
}
return true;
}
bool FindBadConstructsConsumer::VisitTemplateSpecializationType(
TemplateSpecializationType* spec) {
if (ipc_visitor_) {
ipc_visitor_->VisitTemplateSpecializationType(spec);
}
return true;
}
bool FindBadConstructsConsumer::VisitCallExpr(CallExpr* call_expr) {
if (ipc_visitor_) {
ipc_visitor_->VisitCallExpr(call_expr);
}
return true;
}
bool FindBadConstructsConsumer::VisitVarDecl(clang::VarDecl* var_decl) {
CheckDeducedAutoPointer(var_decl);
return true;
}
void FindBadConstructsConsumer::CheckChromeClass(LocationType location_type,
SourceLocation record_location,
CXXRecordDecl* record) {
bool implementation_file = InImplementationFile(record_location);
if (!implementation_file) {
// Only check for "heavy" constructors/destructors in header files;
// within implementation files, there is no performance cost.
// If this is a POD or a class template or a type dependent on a
// templated class, assume there's no ctor/dtor/virtual method
// optimization that we should do.
if (!IsPodOrTemplateType(*record)) {
CheckCtorDtorWeight(record_location, record);
}
}
bool warn_on_inline_bodies = !implementation_file;
// Check that all virtual methods are annotated with override or final.
// Note this could also apply to templates, but for some reason Clang
// does not always see the "override", so we get false positives.
// See http://llvm.org/bugs/show_bug.cgi?id=18440 and
// http://llvm.org/bugs/show_bug.cgi?id=21942
if (!IsPodOrTemplateType(*record)) {
CheckVirtualMethods(record_location, record, warn_on_inline_bodies);
}
// TODO(dcheng): This is needed because some of the diagnostics for refcounted
// classes use DiagnosticsEngine::Report() directly, and there are existing
// violations in Blink. This should be removed once the checks are
// modularized.
if (location_type != LocationType::kBlink) {
CheckRefCountedDtors(record_location, record);
}
if (blink_data_member_type_checker_ &&
location_type == LocationType::kBlink) {
blink_data_member_type_checker_->CheckClass(record_location, record);
}
CheckWeakPtrFactoryMembers(record_location, record);
}
void FindBadConstructsConsumer::CheckEnumMaxValue(EnumDecl* decl) {
if (!decl->isScoped()) {
return;
}
clang::EnumConstantDecl* max_value = nullptr;
std::set<clang::EnumConstantDecl*> max_enumerators;
llvm::APSInt max_seen;
for (clang::EnumConstantDecl* enumerator : decl->enumerators()) {
if (enumerator->getName() == "kMaxValue") {
max_value = enumerator;
}
llvm::APSInt current_value = enumerator->getInitVal();
if (max_enumerators.empty()) {
max_enumerators.emplace(enumerator);
max_seen = current_value;
continue;
}
assert(max_seen.isSigned() == current_value.isSigned());
if (current_value < max_seen) {
continue;
}
if (current_value == max_seen) {
max_enumerators.emplace(enumerator);
continue;
}
assert(current_value > max_seen);
max_enumerators.clear();
max_enumerators.emplace(enumerator);
max_seen = current_value;
}
if (!max_value) {
return;
}
if (max_enumerators.find(max_value) == max_enumerators.end()) {
ReportIfSpellingLocNotIgnored(max_value->getLocation(),
diag_bad_enum_max_value_)
<< toString(max_seen, 10);
} else if (max_enumerators.size() < 2) {
ReportIfSpellingLocNotIgnored(decl->getLocation(),
diag_enum_max_value_unique_);
}
}
void FindBadConstructsConsumer::CheckCtorDtorWeight(
SourceLocation record_location,
CXXRecordDecl* record) {
// We don't handle anonymous structs. If this record doesn't have a
// name, it's of the form:
//
// struct {
// ...
// } name_;
if (record->getIdentifier() == NULL) {
return;
}
// We don't handle unions.
if (record->isUnion()) {
return;
}
// Skip records that derive from ignored base classes.
if (HasIgnoredBases(record)) {
return;
}
// Count the number of templated base classes as a feature of whether the
// destructor can be inlined.
int templated_base_classes = 0;
for (CXXRecordDecl::base_class_const_iterator it = record->bases_begin();
it != record->bases_end(); ++it) {
if (it->getTypeSourceInfo()->getTypeLoc().getTypeLocClass() ==
TypeLoc::TemplateSpecialization) {
++templated_base_classes;
}
}
// Count the number of trivial and non-trivial member variables.
int trivial_member = 0;
int non_trivial_member = 0;
int templated_non_trivial_member = 0;
for (RecordDecl::field_iterator it = record->field_begin();
it != record->field_end(); ++it) {
switch (ClassifyType(it->getType().getTypePtr())) {
case TypeClassification::kTrivial:
trivial_member += 1;
break;
case TypeClassification::kNonTrivial:
non_trivial_member += 1;
break;
case TypeClassification::kTrivialTemplate:
trivial_member += 1;
break;
case TypeClassification::kNonTrivialTemplate:
templated_non_trivial_member += 1;
break;
case TypeClassification::kNonTrivialExternTemplate:
non_trivial_member += 1;
break;
}
}
// Check to see if we need to ban inlined/synthesized constructors. Note
// that the cutoffs here are kind of arbitrary. Scores over 10 break.
int dtor_score = 0;
// Deriving from a templated base class shouldn't be enough to trigger
// the ctor warning, but if you do *anything* else, it should.
//
// TODO(erg): This is motivated by templated base classes that don't have
// any data members. Somehow detect when templated base classes have data
// members and treat them differently.
dtor_score += templated_base_classes * 9;
// Instantiating a template is an insta-hit.
dtor_score += templated_non_trivial_member * 10;
// The fourth normal class member should trigger the warning.
dtor_score += non_trivial_member * 3;
int ctor_score = dtor_score;
// You should be able to have 9 ints before we warn you.
ctor_score += trivial_member;
if (ctor_score >= 10) {
if (!record->hasUserDeclaredConstructor()) {
ReportIfSpellingLocNotIgnored(record_location, diag_no_explicit_ctor_);
} else {
// Iterate across all the constructors in this file and yell if we
// find one that tries to be inline.
for (CXXRecordDecl::ctor_iterator it = record->ctor_begin();
it != record->ctor_end(); ++it) {
// The current check is buggy in C++20 (but was more correct in C++14).
// An implicit copy constructor does not have an inline body, so this
// check never fires for classes with a user-declared out-of-line
// constructor.
if (it->hasInlineBody()) {
if (it->isCopyConstructor() &&
!record->hasUserDeclaredCopyConstructor()) {
// In general, implicit constructors are generated on demand. But
// in the Windows component build, dllexport causes instantiation of
// the copy constructor which means that this fires on many more
// classes. For now, suppress this on dllexported classes.
// (This does mean that windows component builds will not emit this
// warning in some cases where it is emitted in other configs, but
// that's the better tradeoff at this point).
// TODO(dcheng): With the RecursiveASTVisitor, these warnings might
// be emitted on other platforms too, reevaluate if we want to keep
// suppressing this then http://crbug.com/467288
if (!record->hasAttr<DLLExportAttr>()) {
ReportIfSpellingLocNotIgnored(record_location,
diag_no_explicit_copy_ctor_);
}
} else {
// See the comment in the previous branch about copy constructors.
// This does the same for implicit move constructors.
bool is_likely_compiler_generated_dllexport_move_ctor =
it->isMoveConstructor() &&
!record->hasUserDeclaredMoveConstructor() &&
record->hasAttr<DLLExportAttr>();
if (!is_likely_compiler_generated_dllexport_move_ctor) {
ReportIfSpellingLocNotIgnored(it->getInnerLocStart(),
diag_inline_complex_ctor_);
}
}
} else if (it->isInlined() && !it->isInlineSpecified() &&
!it->isDeleted() &&
(!it->isCopyOrMoveConstructor() ||
it->isExplicitlyDefaulted())) {
// isInlined() is a more reliable check than hasInlineBody(), but
// unfortunately, it results in warnings for implicit copy/move
// constructors in the previously mentioned situation. To preserve
// compatibility with existing Chromium code, only warn if it's an
// explicitly defaulted copy or move constructor.
ReportIfSpellingLocNotIgnored(it->getInnerLocStart(),
diag_inline_complex_ctor_);
}
}
}
}
// The destructor side is equivalent except that we don't check for
// trivial members; 20 ints don't need a destructor.
if (dtor_score >= 10 && !record->hasTrivialDestructor()) {
if (!record->hasUserDeclaredDestructor()) {
ReportIfSpellingLocNotIgnored(record_location, diag_no_explicit_dtor_);
} else if (CXXDestructorDecl* dtor = record->getDestructor()) {
if (dtor->isInlined() && !dtor->isInlineSpecified() &&
!dtor->isDeleted()) {
ReportIfSpellingLocNotIgnored(dtor->getInnerLocStart(),
diag_inline_complex_dtor_);
}
}
}
}
SuppressibleDiagnosticBuilder
FindBadConstructsConsumer::ReportIfSpellingLocNotIgnored(
SourceLocation loc,
unsigned diagnostic_id) {
LocationType type =
ClassifyLocation(instance().getSourceManager().getSpellingLoc(loc));
bool ignored = type == LocationType::kThirdParty;
if (type == LocationType::kBlink) {
if (diagnostic_id == diag_no_explicit_ctor_ ||
diagnostic_id == diag_no_explicit_copy_ctor_ ||
diagnostic_id == diag_inline_complex_ctor_ ||
diagnostic_id == diag_no_explicit_dtor_ ||
diagnostic_id == diag_inline_complex_dtor_ ||
diagnostic_id == diag_refcounted_with_protected_non_virtual_dtor_ ||
diagnostic_id == diag_virtual_with_inline_body_) {
// Certain checks are ignored in Blink for historical reasons.
// TODO(dcheng): Make this list smaller.
ignored = true;
}
}
return SuppressibleDiagnosticBuilder(&diagnostic(), loc, diagnostic_id,
ignored);
}
// Checks that virtual methods are correctly annotated, and have no body in a
// header file.
void FindBadConstructsConsumer::CheckVirtualMethods(
SourceLocation record_location,
CXXRecordDecl* record,
bool warn_on_inline_bodies) {
if (IsGmockObject(record)) {
warn_on_inline_bodies = false;
}
for (CXXRecordDecl::method_iterator it = record->method_begin();
it != record->method_end(); ++it) {
if (it->isCopyAssignmentOperator() || isa<CXXConstructorDecl>(*it)) {
// Ignore constructors and assignment operators.
} else if (isa<CXXDestructorDecl>(*it) &&
!record->hasUserDeclaredDestructor()) {
// Ignore non-user-declared destructors.
} else if (!it->isVirtual()) {
continue;
} else {
CheckVirtualSpecifiers(*it);
if (warn_on_inline_bodies) {
CheckVirtualBodies(*it);
}
}
}
}
// Makes sure that virtual methods use the most appropriate specifier. If a
// virtual method overrides a method from a base class, only the override
// specifier should be used. If the method should not be overridden by derived
// classes, only the final specifier should be used.
void FindBadConstructsConsumer::CheckVirtualSpecifiers(
const CXXMethodDecl* method) {
bool is_override = method->size_overridden_methods() > 0;
bool has_virtual = method->isVirtualAsWritten();
OverrideAttr* override_attr = method->getAttr<OverrideAttr>();
FinalAttr* final_attr = method->getAttr<FinalAttr>();
if (IsMethodInTestingNamespace(method)) {
return;
}
SourceManager& manager = instance().getSourceManager();
const LangOptions& lang_opts = instance().getLangOpts();
// Grab the stream of tokens from the beginning of the method
bool remove_virtual = false;
bool add_override = false;
// Complain if a method is annotated virtual && (override || final).
if (has_virtual && (override_attr || final_attr)) {
remove_virtual = true;
}
// Complain if a method is an override and is not annotated with override or
// final.
if (is_override && !override_attr && !final_attr) {
add_override = true;
// Also remove the virtual in the same fixit if currently present.
if (has_virtual) {
remove_virtual = true;
}
}
if (final_attr && override_attr) {
ReportIfSpellingLocNotIgnored(override_attr->getLocation(),
diag_redundant_virtual_specifier_)
<< override_attr << final_attr
<< FixItHint::CreateRemoval(override_attr->getRange());
}
if (!remove_virtual && !add_override) {
return;
}
// Deletion of virtual and insertion of override are tricky. The AST does not
// expose the location of `virtual` or `=`: the former is useful when trying
// to remove `virtual, while the latter is useful when trying to insert
// `override`. Iterate over the tokens from |method->getBeginLoc()| until:
// 1. A `{` not nested inside parentheses is found or
// 2. A `=` not nested inside parentheses is found or
// 3. A `;` not nested inside parentheses is found or
// 4. The end of the file is found.
SourceLocation virtual_loc;
SourceLocation override_insertion_loc;
// Attempt to set up the lexer in raw mode.
std::pair<FileID, unsigned> decomposed_start =
manager.getDecomposedLoc(method->getBeginLoc());
bool invalid = false;
StringRef buffer = manager.getBufferData(decomposed_start.first, &invalid);
if (!invalid) {
int nested_parentheses = 0;
Lexer lexer(manager.getLocForStartOfFile(decomposed_start.first), lang_opts,
buffer.begin(), buffer.begin() + decomposed_start.second,
buffer.end());
Token token;
while (!lexer.LexFromRawLexer(token)) {
// Found '=', ';', or '{'. No need to scan any further, since an override
// fixit hint won't be inserted after any of these tokens.
if ((token.is(tok::equal) || token.is(tok::semi) ||
token.is(tok::l_brace)) &&
nested_parentheses == 0) {
override_insertion_loc = token.getLocation();
break;
}
if (token.is(tok::l_paren)) {
++nested_parentheses;
} else if (token.is(tok::r_paren)) {
--nested_parentheses;
} else if (token.is(tok::raw_identifier)) {
// TODO(dcheng): Unclear if this needs to check for nested parentheses
// as well?
if (token.getRawIdentifier() == "virtual") {
virtual_loc = token.getLocation();
}
}
}
}
if (add_override && override_insertion_loc.isValid()) {
ReportIfSpellingLocNotIgnored(override_insertion_loc,
diag_method_requires_override_)
<< FixItHint::CreateInsertion(override_insertion_loc, " override");
}
if (remove_virtual && virtual_loc.isValid()) {
ReportIfSpellingLocNotIgnored(
virtual_loc, add_override ? diag_will_be_redundant_virtual_specifier_
: diag_redundant_virtual_specifier_)
<< "'virtual'"
// Slightly subtle: the else case handles both the currently and the
// will be redundant case for override. Doing the check this way also
// lets the plugin prioritize keeping 'final' over 'override' when both
// are present.
<< (final_attr ? "'final'" : "'override'")
<< FixItHint::CreateRemoval(
CharSourceRange::getTokenRange(SourceRange(virtual_loc)));
}
}
void FindBadConstructsConsumer::CheckVirtualBodies(
const CXXMethodDecl* method) {
// Virtual methods should not have inline definitions beyond "{}". This
// only matters for header files.
if (method->hasBody() && method->hasInlineBody()) {
if (CompoundStmt* cs = dyn_cast<CompoundStmt>(method->getBody())) {
if (cs->size()) {
SourceLocation loc = cs->getLBracLoc();
// CR_BEGIN_MSG_MAP_EX and BEGIN_SAFE_MSG_MAP_EX try to be compatible
// to BEGIN_MSG_MAP(_EX). So even though they are in chrome code,
// we can't easily fix them, so explicitly allowlist them here.
bool emit = true;
if (loc.isMacroID()) {
SourceManager& manager = instance().getSourceManager();
LocationType type = ClassifyLocation(manager.getSpellingLoc(loc));
if (type == LocationType::kThirdParty ||
type == LocationType::kBlink) {
emit = false;
} else {
StringRef name = Lexer::getImmediateMacroName(
loc, manager, instance().getLangOpts());
if (name == "CR_BEGIN_MSG_MAP_EX" ||
name == "BEGIN_SAFE_MSG_MAP_EX") {
emit = false;
}
}
}
if (emit) {
ReportIfSpellingLocNotIgnored(loc, diag_virtual_with_inline_body_);
}
}
}
}
}
FindBadConstructsConsumer::TypeClassification
FindBadConstructsConsumer::ClassifyType(const Type* type) {
switch (type->getTypeClass()) {
case Type::Record: {
auto* record_decl = type->getAsCXXRecordDecl();
// Simplifying; the whole class isn't trivial if the dtor is, but
// we use this as a signal about complexity.
// Note that if a record doesn't have a definition, it doesn't matter how
// it's counted, since the translation unit will fail to build. In that
// case, just count it as a trivial member to avoid emitting warnings that
// might be spurious.
if (!record_decl->hasDefinition() ||
record_decl->hasTrivialDestructor()) {
return TypeClassification::kTrivial;
}
// `std::basic_string` is externed by libc++, so even though it's a
// non-trivial type wrapped by a template, we shouldn't classify it as a
// `kNonTrivialTemplate`. The `kNonTrivialExternTemplate` classification
// exists for this purpose.
// https://github.com/llvm-mirror/libcxx/blob/78d6a7767ed57b50122a161b91f59f19c9bd0d19/include/string#L4317
if (hasName(record_decl, "std", "basic_string")) {
return TypeClassification::kNonTrivialExternTemplate;
}
// raw_ptr and raw_ref is non-trivial as in some build configurations it
// does work to catch dangling pointers. Nonetheless we want them to be
// usable in the same ways as a native pointer and reference. At times
// span has to be used instead of raw_span for performance reasons, then
// we want the compiler to allow the same class structure and not force an
// out of line ctor.
if (hasName(record_decl, "base", "raw_ptr")) {
return TypeClassification::kTrivialTemplate;
}
if (hasName(record_decl, "base", "raw_ref")) {
return TypeClassification::kTrivialTemplate;
}
if (hasName(record_decl, "base", "span")) {
return TypeClassification::kTrivialTemplate;
}
return TypeClassification::kNonTrivial;
}
case Type::TemplateSpecialization: {
// A "Template Specialization" is a type produced by providing arguments
// to any type template, not necessarily just a template which has
// explicitly declared specializations. This may be a regular type
// template, or a templated type alias.
//
// A great way to reason about templates is as a compile-time function
// taking compile-time arguments, and producing a regular type. In the
// context of a `TemplateSpecializationType`, we're referring to this
// particular invocation of that function. We can "desugar" that into the
// produced type, which is no longer seen as a template.
//
// Types produced by templates are of particular concern here, since they
// almost certainly have inline ctors/dtors and may result in lots of code
// being generated for types containing them. For that reason, non-trivial
// templates are weighted higher than regular non-trivial types.
auto* template_type = dyn_cast<TemplateSpecializationType>(type);
// If this is a template type alias, just consider the underlying type
// without the context of it being a template.
// For an example:
//
// template <typename T>
// using Foo = Bar<T>;
//
// Given `Foo<Baz>`, we want to classify it simply as `Bar<Baz>` would be.
if (template_type->isTypeAlias()) {
return ClassifyType(template_type->getAliasedType().getTypePtr());
}
// Otherwise, classify the type produced by the template and apply the
// corresponding template classification. For an example:
//
// template <typename T>
// struct Foo { ... };
//
// Given `Foo<Baz>`, classify `struct Foo { ... };` with `Baz` substituted
// for `T`;
const auto classification =
ClassifyType(template_type->desugar().getTypePtr());
if (classification == TypeClassification::kTrivial) {
return TypeClassification::kTrivialTemplate;
}
if (classification == TypeClassification::kNonTrivial) {
return TypeClassification::kNonTrivialTemplate;
}
return classification;
}
case Type::SubstTemplateTypeParm: {
// `SubstTemplateTypeParmType` appears wherever a template type parameter
// is encountered, and may be desugared into the type argument given to
// the template. For example:
//
// template <typename T>
// struct Foo {
// T bar; // <-- `bar` here is a `SubstTemplateTypeParmType`
// };
//
// or
//
// template <typename T>
// using Foo = T; // <-- `T` here is a `SubstTemplateTypeParmType`
const auto* const subst_type = dyn_cast<SubstTemplateTypeParmType>(type)
->getReplacementType()
.getTypePtr();
return ClassifyType(subst_type);
}
case Type::Elaborated: {
// Quote from the LLVM documentation:
// "Represents a type that was referred to using an elaborated type
// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type, or
// both. This type is used to keep track of a type name as written in the
// source code, including tag keywords and any nested-name-specifiers. The
// type itself is always "sugar", used to express what was written in the
// source code but containing no additional semantic information."
return ClassifyType(
dyn_cast<ElaboratedType>(type)->getNamedType().getTypePtr());
}
case Type::Typedef: {
// A "typedef type" is the representation of a type named through a
// typedef (or a C++11 type alias). In this case, we don't care about the
// typedef itself, so we desugar it into the underlying type and classify
// that.
const auto* const decl = dyn_cast<TypedefType>(type)->getDecl();
return ClassifyType(decl->getUnderlyingType().getTypePtr());
}
default: {
// Assume that anything that isn't the above is a POD or reference type.
return TypeClassification::kTrivial;
}
}
}
// Check |record| for issues that are problematic for ref-counted types.
// Note that |record| may not be a ref-counted type, but a base class for
// a type that is.
// If there are issues, update |loc| with the SourceLocation of the issue
// and returns appropriately, or returns None if there are no issues.
// static
FindBadConstructsConsumer::RefcountIssue
FindBadConstructsConsumer::CheckRecordForRefcountIssue(
const CXXRecordDecl* record,
SourceLocation& loc) {
if (!record->hasUserDeclaredDestructor()) {
loc = record->getLocation();
return ImplicitDestructor;
}
if (CXXDestructorDecl* dtor = record->getDestructor()) {
if (dtor->getAccess() == AS_public) {
loc = dtor->getInnerLocStart();
return PublicDestructor;
}
}
return None;
}
// Returns true if |base| specifies one of the Chromium reference counted
// classes (base::RefCounted / base::RefCountedThreadSafe).
bool FindBadConstructsConsumer::IsRefCounted(const CXXBaseSpecifier* base,
CXXBasePath& path) {
const TemplateSpecializationType* base_type =
dyn_cast<TemplateSpecializationType>(
UnwrapType(base->getType().getTypePtr()));
if (!base_type) {
// Base-most definition is not a template, so this cannot derive from
// base::RefCounted. However, it may still be possible to use with a
// scoped_refptr<> and support ref-counting, so this is not a perfect
// guarantee of safety.
return false;
}
TemplateName name = base_type->getTemplateName();
if (TemplateDecl* decl = name.getAsTemplateDecl()) {
std::string base_name = decl->getNameAsString();
// Check for both base::RefCounted and base::RefCountedThreadSafe.
if (base_name.compare(0, 10, "RefCounted") == 0 &&
GetNamespace(decl) == "base") {
return true;
}
}
return false;
}
// Returns true if |base| specifies a class that has a public destructor,
// either explicitly or implicitly.
// static
bool FindBadConstructsConsumer::HasPublicDtorCallback(
const CXXBaseSpecifier* base,
CXXBasePath& path,
void* user_data) {
// Only examine paths that have public inheritance, as they are the
// only ones which will result in the destructor potentially being
// exposed. This check is largely redundant, as Chromium code should be
// exclusively using public inheritance.
if (path.Access != AS_public) {
return false;
}
CXXRecordDecl* record =
dyn_cast<CXXRecordDecl>(base->getType()->getAs<RecordType>()->getDecl());
SourceLocation unused;
return None != CheckRecordForRefcountIssue(record, unused);
}
// Outputs a C++ inheritance chain as a diagnostic aid.
void FindBadConstructsConsumer::PrintInheritanceChain(const CXXBasePath& path) {
for (CXXBasePath::const_iterator it = path.begin(); it != path.end(); ++it) {
diagnostic().Report(it->Base->getBeginLoc(), diag_note_inheritance_)
<< it->Class << it->Base->getType();
}
}
unsigned FindBadConstructsConsumer::DiagnosticForIssue(RefcountIssue issue) {
switch (issue) {
case ImplicitDestructor:
return diag_refcounted_needs_explicit_dtor_;
case PublicDestructor:
return diag_refcounted_with_public_dtor_;
case None:
assert(false && "Do not call DiagnosticForIssue with issue None");
return 0;
}
assert(false);
return 0;
}
// Check |record| to determine if it has any problematic refcounting
// issues and, if so, print them as warnings/errors based on the current
// value of getErrorLevel().
//
// If |record| is a C++ class, and if it inherits from one of the Chromium
// ref-counting classes (base::RefCounted / base::RefCountedThreadSafe),
// ensure that there are no public destructors in the class hierarchy. This
// is to guard against accidentally stack-allocating a RefCounted class or
// sticking it in a non-ref-counted container (like std::unique_ptr<>).
void FindBadConstructsConsumer::CheckRefCountedDtors(
SourceLocation record_location,
CXXRecordDecl* record) {
// Skip anonymous structs.
if (record->getIdentifier() == NULL) {
return;
}
// Determine if the current type is even ref-counted.
CXXBasePaths refcounted_path;
if (!record->lookupInBases(
[this](const CXXBaseSpecifier* base, CXXBasePath& path) {
return IsRefCounted(base, path);
},
refcounted_path)) {
return; // Class does not derive from a ref-counted base class.
}
// Easy check: Check to see if the current type is problematic.
SourceLocation loc;
RefcountIssue issue = CheckRecordForRefcountIssue(record, loc);
if (issue != None) {
diagnostic().Report(loc, DiagnosticForIssue(issue));
PrintInheritanceChain(refcounted_path.front());
return;
}
if (CXXDestructorDecl* dtor =
refcounted_path.begin()->back().Class->getDestructor()) {
if (dtor->getAccess() == AS_protected && !dtor->isVirtual()) {
loc = dtor->getInnerLocStart();
ReportIfSpellingLocNotIgnored(
loc, diag_refcounted_with_protected_non_virtual_dtor_);
return;
}
}
// Long check: Check all possible base classes for problematic
// destructors. This checks for situations involving multiple
// inheritance, where the ref-counted class may be implementing an
// interface that has a public or implicit destructor.
//
// struct SomeInterface {
// virtual void DoFoo();
// };
//
// struct RefCountedInterface
// : public base::RefCounted<RefCountedInterface>,
// public SomeInterface {
// private:
// friend class base::Refcounted<RefCountedInterface>;
// virtual ~RefCountedInterface() {}
// };
//
// While RefCountedInterface is "safe", in that its destructor is
// private, it's possible to do the following "unsafe" code:
// scoped_refptr<RefCountedInterface> some_class(
// new RefCountedInterface);
// // Calls SomeInterface::~SomeInterface(), which is unsafe.
// delete static_cast<SomeInterface*>(some_class.get());
if (!options_.check_base_classes) {
return;
}
// Find all public destructors. This will record the class hierarchy
// that leads to the public destructor in |dtor_paths|.
CXXBasePaths dtor_paths;
if (!record->lookupInBases(
[](const CXXBaseSpecifier* base, CXXBasePath& path) {
// TODO(thakis): Inline HasPublicDtorCallback() after clang roll.
return HasPublicDtorCallback(base, path, nullptr);
},
dtor_paths)) {
return;
}
for (CXXBasePaths::const_paths_iterator it = dtor_paths.begin();
it != dtor_paths.end(); ++it) {
// The record with the problem will always be the last record
// in the path, since it is the record that stopped the search.
const CXXRecordDecl* problem_record = dyn_cast<CXXRecordDecl>(
it->back().Base->getType()->getAs<RecordType>()->getDecl());
issue = CheckRecordForRefcountIssue(problem_record, loc);
if (issue == ImplicitDestructor) {
diagnostic().Report(record_location,
diag_refcounted_needs_explicit_dtor_);
PrintInheritanceChain(refcounted_path.front());
diagnostic().Report(loc, diag_note_implicit_dtor_) << problem_record;
PrintInheritanceChain(*it);
} else if (issue == PublicDestructor) {
diagnostic().Report(record_location, diag_refcounted_with_public_dtor_);
PrintInheritanceChain(refcounted_path.front());
diagnostic().Report(loc, diag_note_public_dtor_);
PrintInheritanceChain(*it);
}
}
}
// Check for any problems with WeakPtrFactory class members. This currently
// only checks that any WeakPtrFactory<T> member of T appears as the last
// data member in T. We could consider checking for bad uses of
// WeakPtrFactory to refer to other data members, but that would require
// looking at the initializer list in constructors to see what the factory
// points to.
// Note, if we later add other unrelated checks of data members, we should
// consider collapsing them in to one loop to avoid iterating over the data
// members more than once.
void FindBadConstructsConsumer::CheckWeakPtrFactoryMembers(
SourceLocation record_location,
CXXRecordDecl* record) {
// Skip anonymous structs.
if (record->getIdentifier() == NULL) {
return;
}
// Iterate through members of the class.
RecordDecl::field_iterator iter(record->field_begin()),
the_end(record->field_end());
SourceLocation weak_ptr_factory_location; // Invalid initially.
for (; iter != the_end; ++iter) {
const TemplateSpecializationType* template_spec_type =
iter->getType().getTypePtr()->getAs<TemplateSpecializationType>();
bool param_is_weak_ptr_factory_to_self = false;
if (template_spec_type) {
const TemplateDecl* template_decl =
template_spec_type->getTemplateName().getAsTemplateDecl();
if (template_decl &&
template_spec_type->template_arguments().size() == 1) {
if (template_decl->getNameAsString().compare("WeakPtrFactory") == 0 &&
GetNamespace(template_decl) == "base") {
// Only consider WeakPtrFactory members which are specialized for the
// owning class.
const TemplateArgument& arg =
template_spec_type->template_arguments()[0];
if (arg.getAsType().getTypePtr()->getAsCXXRecordDecl() ==
record->getTypeForDecl()->getAsCXXRecordDecl()) {
if (!weak_ptr_factory_location.isValid()) {
// Save the first matching WeakPtrFactory member for the
// diagnostic.
weak_ptr_factory_location = iter->getLocation();
}
param_is_weak_ptr_factory_to_self = true;
}
}
}
}
// If we've already seen a WeakPtrFactory<OwningType> and this param is not
// one of those, it means there is at least one member after a factory.
if (weak_ptr_factory_location.isValid() &&
!param_is_weak_ptr_factory_to_self) {
ReportIfSpellingLocNotIgnored(weak_ptr_factory_location,
diag_weak_ptr_factory_order_);
}
}
}
// Copied from BlinkGCPlugin, see crrev.com/1135333007
void FindBadConstructsConsumer::ParseFunctionTemplates(
TranslationUnitDecl* decl) {
if (!instance().getLangOpts().DelayedTemplateParsing) {
return; // Nothing to do.
}
std::set<FunctionDecl*> late_parsed_decls = GetLateParsedFunctionDecls(decl);
clang::Sema& sema = instance().getSema();
for (const FunctionDecl* fd : late_parsed_decls) {
assert(fd->isLateTemplateParsed());
if (instance().getSourceManager().isInSystemHeader(
instance().getSourceManager().getSpellingLoc(fd->getLocation()))) {
continue;
}
// Parse and build AST for yet-uninstantiated template functions.
clang::LateParsedTemplate* lpt = sema.LateParsedTemplateMap[fd].get();
sema.LateTemplateParser(sema.OpaqueParser, *lpt);
}
}
// Check whether auto deduces to a raw pointer.
void FindBadConstructsConsumer::CheckDeducedAutoPointer(
clang::VarDecl* var_decl) {
// Lambda init-captures should be ignored.
if (var_decl->isInitCapture()) {
return;
}
QualType qualtype = var_decl->getType().getNonReferenceType();
// Dependent types in templates can not be fully deduced as they depend on
// what the template parameter will be. They result in a 'null' deduced_type
// later. To catch this would require looking at each instantiation but then
// we could get inconsistent errors for some instantiations and not others.
if (qualtype->isDependentType()) {
return;
}
// Find the `clang::AutoType` which may be inside a `PointerType`. Since
// `AutoType` is 'sugar', care must be taken to not skip over it.
const clang::AutoType* auto_type = nullptr;
while (!auto_type) {
// We need to look for AutoType before looking for PointerType, or we will
// skip right past it, since AutoType is 'sugar'.
auto_type = qualtype->getAs<clang::AutoType>();
// If we have a type `auto*` then the pointer needs to be pulled off before
// we can find the AutoType. If we're not at a pointer, then stop searching
// for AutoType.
if (auto* ptr_type = qualtype->getAs<clang::PointerType>()) {
qualtype = ptr_type->getPointeeType();
} else {
break;
}
}
if (!auto_type) {
return;
}
// If not deduced yet, we can't tell if we require `auto*`.
if (!auto_type->isDeduced()) {
return;
}
// `Concept auto x` should be allowed even if the Concept matches to a pointer
// type.
if (auto_type->isConstrained()) {
return;
}
QualType deduced_type = auto_type->getDeducedType();
// `AutoType` can contain further nested `AutoType`s, so we need to walk
// through them all.
while (auto* inner_auto = deduced_type->getAs<clang::AutoType>()) {
deduced_type = inner_auto->getDeducedType();
}
// If `auto` resolves to a function pointer, it's always allowed.
if (deduced_type.getCanonicalType()->isFunctionPointerType()) {
return;
}
// Elaborated types wrap the type that we're interested in, so we need to
// step through them. Inside, there may be a template param type, a pointer
// type, etc. For example, this function returns an ElaboratedType, which
// has a pointer inside. But has additional sugar around the pointer that
// we want to examine first.
// ```
// template <class T>
// AliasOfT<T> auto_function_return_elaborated_alias_with_ptr() { ... }
// ```
if (auto* elaborated = deduced_type->getAs<clang::ElaboratedType>()) {
deduced_type = elaborated->getNamedType();
}
// If the `auto` resolves to a type that comes from a template parameter, the
// input type may have been a type alias and we can't tell how the type was
// actually spelt, so just allow it. This handles the return type of
// std::find() for example.
if (deduced_type->getAs<clang::SubstTemplateTypeParmType>()) {
return;
}
// If `auto` resolves to a type alias, it's allowed, even if there's a pointer
// inside the alias, which would be an implementation detail of the alias
// type. This includes stdlib iterator aliases.
if (deduced_type->getAs<clang::TypedefType>()) {
return;
}
// It's also possible to resolve to a template specialization of a type alias,
// in which the same applies as for TypedefType.
if (auto* spec = deduced_type->getAs<clang::TemplateSpecializationType>()) {
if (spec->isTypeAlias()) {
return;
}
}
// Last, if it's not a pointer at all then `auto` is allowed. This comes last
// because `getAs()` will jump past 'sugar' in the type, so we need to look
// for other things before jumping past them to the PointerType.
if (!deduced_type->getAs<clang::PointerType>()) {
return;
}
// Check if we should even be considering this type. This is the most
// expensive check, so we check this last.
LocationType location_type = ClassifyLocation(var_decl->getBeginLoc());
// We don't generate errors in third-party code.
if (location_type == LocationType::kThirdParty) {
return;
}
// Report an error, the code should say `auto*` instead of `auto`.
//
// The range starts from |var_decl|'s loc start, which is the
// beginning of the full expression defining this |var_decl|. It
// ends, however, where this |var_decl|'s type loc ends, since
// that's the end of the type of |var_decl|.
// Note that the beginning source location of type loc omits cv
// qualifiers, which is why it's not a good candidate to use for the
// start of the range.
clang::SourceRange range(
var_decl->getBeginLoc(),
var_decl->getTypeSourceInfo()->getTypeLoc().getEndLoc());
ReportIfSpellingLocNotIgnored(range.getBegin(),
diag_auto_deduced_to_a_pointer_type_)
<< FixItHint::CreateReplacement(
range,
GetAutoReplacementTypeAsString(var_decl->getType(),
var_decl->getStorageClass(), true));
}
void FindBadConstructsConsumer::CheckConstructingSpanFromStringLiteral(
clang::CXXConstructorDecl* ctor_decl,
llvm::ArrayRef<const clang::Expr*> args,
clang::SourceLocation loc) {
auto* record_decl = clang::cast<clang::RecordDecl>(ctor_decl->getParent());
if (!hasName(record_decl, "base", "span")) {
return;
}
// Want the base::span(const char (&arr)[N]) constructor.
bool is_const_char_array_ctor = false;
if (ctor_decl->getNumParams() == 1u) {
clang::ParmVarDecl* param = ctor_decl->getParamDecl(0u);
const clang::Type* type = &*param->getType();
if (type->isReferenceType()) {
type = type->getPointeeType()->getUnqualifiedDesugaredType();
if (auto* array_type = clang::dyn_cast<clang::ConstantArrayType>(type)) {
const clang::Type* element_type =
array_type->getElementType()->getUnqualifiedDesugaredType();
if (element_type->isSpecificBuiltinType(
clang::BuiltinType::Kind::Char_S)) {
is_const_char_array_ctor = true;
}
}
}
}
if (!is_const_char_array_ctor) {
return;
}
if (args.size() != 1u) {
return;
}
// Find the expression that defines the argument value.
const clang::Expr* value_expr = args[0u];
if (auto* ref_expr = clang::dyn_cast<clang::DeclRefExpr>(args[0u])) {
const clang::VarDecl* var_decl =
clang::dyn_cast<clang::VarDecl>(ref_expr->getDecl());
if (var_decl) {
var_decl = var_decl->getInitializingDeclaration();
if (var_decl && var_decl->hasInit()) {
value_expr = var_decl->getInit();
}
}
}
value_expr = value_expr->IgnoreParens();
if (auto* lit_expr = clang::dyn_cast<clang::StringLiteral>(value_expr)) {
ReportIfSpellingLocNotIgnored(loc, diag_span_from_string_literal_);
ReportIfSpellingLocNotIgnored(loc, diag_note_span_from_string_literal1_);
}
}
} // namespace chrome_checker
|