1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
|
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef INCLUDE_V8_INTERNAL_H_
#define INCLUDE_V8_INTERNAL_H_
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <atomic>
#include <iterator>
#include <limits>
#include <memory>
#include <optional>
#include <type_traits>
#include "v8config.h" // NOLINT(build/include_directory)
// TODO(pkasting): Use <compare>/spaceship unconditionally after dropping
// support for old libstdc++ versions.
#if __has_include(<version>)
#include <version>
#endif
#if defined(__cpp_lib_three_way_comparison) && \
__cpp_lib_three_way_comparison >= 201711L && \
defined(__cpp_lib_concepts) && __cpp_lib_concepts >= 202002L
#include <compare>
#include <concepts>
#define V8_HAVE_SPACESHIP_OPERATOR 1
#else
#define V8_HAVE_SPACESHIP_OPERATOR 0
#endif
namespace v8 {
class Array;
class Context;
class Data;
class Isolate;
namespace internal {
class Heap;
class LocalHeap;
class Isolate;
class IsolateGroup;
class LocalIsolate;
typedef uintptr_t Address;
static constexpr Address kNullAddress = 0;
constexpr int KB = 1024;
constexpr int MB = KB * 1024;
constexpr int GB = MB * 1024;
#ifdef V8_TARGET_ARCH_X64
constexpr size_t TB = size_t{GB} * 1024;
#endif
/**
* Configuration of tagging scheme.
*/
const int kApiSystemPointerSize = sizeof(void*);
const int kApiDoubleSize = sizeof(double);
const int kApiInt32Size = sizeof(int32_t);
const int kApiInt64Size = sizeof(int64_t);
const int kApiSizetSize = sizeof(size_t);
// Tag information for HeapObject.
const int kHeapObjectTag = 1;
const int kWeakHeapObjectTag = 3;
const int kHeapObjectTagSize = 2;
const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
const intptr_t kHeapObjectReferenceTagMask = 1 << (kHeapObjectTagSize - 1);
// Tag information for fowarding pointers stored in object headers.
// 0b00 at the lowest 2 bits in the header indicates that the map word is a
// forwarding pointer.
const int kForwardingTag = 0;
const int kForwardingTagSize = 2;
const intptr_t kForwardingTagMask = (1 << kForwardingTagSize) - 1;
// Tag information for Smi.
const int kSmiTag = 0;
const int kSmiTagSize = 1;
const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
template <size_t tagged_ptr_size>
struct SmiTagging;
constexpr intptr_t kIntptrAllBitsSet = intptr_t{-1};
constexpr uintptr_t kUintptrAllBitsSet =
static_cast<uintptr_t>(kIntptrAllBitsSet);
// Smi constants for systems where tagged pointer is a 32-bit value.
template <>
struct SmiTagging<4> {
enum { kSmiShiftSize = 0, kSmiValueSize = 31 };
static constexpr intptr_t kSmiMinValue =
static_cast<intptr_t>(kUintptrAllBitsSet << (kSmiValueSize - 1));
static constexpr intptr_t kSmiMaxValue = -(kSmiMinValue + 1);
V8_INLINE static constexpr int SmiToInt(Address value) {
int shift_bits = kSmiTagSize + kSmiShiftSize;
// Truncate and shift down (requires >> to be sign extending).
return static_cast<int32_t>(static_cast<uint32_t>(value)) >> shift_bits;
}
template <class T, typename std::enable_if_t<std::is_integral_v<T> &&
std::is_signed_v<T>>* = nullptr>
V8_INLINE static constexpr bool IsValidSmi(T value) {
// Is value in range [kSmiMinValue, kSmiMaxValue].
// Use unsigned operations in order to avoid undefined behaviour in case of
// signed integer overflow.
return (static_cast<uintptr_t>(value) -
static_cast<uintptr_t>(kSmiMinValue)) <=
(static_cast<uintptr_t>(kSmiMaxValue) -
static_cast<uintptr_t>(kSmiMinValue));
}
template <class T,
typename std::enable_if_t<std::is_integral_v<T> &&
std::is_unsigned_v<T>>* = nullptr>
V8_INLINE static constexpr bool IsValidSmi(T value) {
static_assert(kSmiMaxValue <= std::numeric_limits<uintptr_t>::max());
return value <= static_cast<uintptr_t>(kSmiMaxValue);
}
// Same as the `intptr_t` version but works with int64_t on 32-bit builds
// without slowing down anything else.
V8_INLINE static constexpr bool IsValidSmi(int64_t value) {
return (static_cast<uint64_t>(value) -
static_cast<uint64_t>(kSmiMinValue)) <=
(static_cast<uint64_t>(kSmiMaxValue) -
static_cast<uint64_t>(kSmiMinValue));
}
V8_INLINE static constexpr bool IsValidSmi(uint64_t value) {
static_assert(kSmiMaxValue <= std::numeric_limits<uint64_t>::max());
return value <= static_cast<uint64_t>(kSmiMaxValue);
}
};
// Smi constants for systems where tagged pointer is a 64-bit value.
template <>
struct SmiTagging<8> {
enum { kSmiShiftSize = 31, kSmiValueSize = 32 };
static constexpr intptr_t kSmiMinValue =
static_cast<intptr_t>(kUintptrAllBitsSet << (kSmiValueSize - 1));
static constexpr intptr_t kSmiMaxValue = -(kSmiMinValue + 1);
V8_INLINE static constexpr int SmiToInt(Address value) {
int shift_bits = kSmiTagSize + kSmiShiftSize;
// Shift down and throw away top 32 bits.
return static_cast<int>(static_cast<intptr_t>(value) >> shift_bits);
}
template <class T, typename std::enable_if_t<std::is_integral_v<T> &&
std::is_signed_v<T>>* = nullptr>
V8_INLINE static constexpr bool IsValidSmi(T value) {
// To be representable as a long smi, the value must be a 32-bit integer.
return std::numeric_limits<int32_t>::min() <= value &&
value <= std::numeric_limits<int32_t>::max();
}
template <class T,
typename std::enable_if_t<std::is_integral_v<T> &&
std::is_unsigned_v<T>>* = nullptr>
V8_INLINE static constexpr bool IsValidSmi(T value) {
return value <= std::numeric_limits<int32_t>::max();
}
};
#ifdef V8_COMPRESS_POINTERS
// See v8:7703 or src/common/ptr-compr-inl.h for details about pointer
// compression.
constexpr size_t kPtrComprCageReservationSize = size_t{1} << 32;
constexpr size_t kPtrComprCageBaseAlignment = size_t{1} << 32;
static_assert(
kApiSystemPointerSize == kApiInt64Size,
"Pointer compression can be enabled only for 64-bit architectures");
const int kApiTaggedSize = kApiInt32Size;
#else
const int kApiTaggedSize = kApiSystemPointerSize;
#endif
constexpr bool PointerCompressionIsEnabled() {
return kApiTaggedSize != kApiSystemPointerSize;
}
#ifdef V8_31BIT_SMIS_ON_64BIT_ARCH
using PlatformSmiTagging = SmiTagging<kApiInt32Size>;
#else
using PlatformSmiTagging = SmiTagging<kApiTaggedSize>;
#endif
// TODO(ishell): Consinder adding kSmiShiftBits = kSmiShiftSize + kSmiTagSize
// since it's used much more often than the inividual constants.
const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize;
const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize;
const int kSmiMinValue = static_cast<int>(PlatformSmiTagging::kSmiMinValue);
const int kSmiMaxValue = static_cast<int>(PlatformSmiTagging::kSmiMaxValue);
constexpr bool SmiValuesAre31Bits() { return kSmiValueSize == 31; }
constexpr bool SmiValuesAre32Bits() { return kSmiValueSize == 32; }
constexpr bool Is64() { return kApiSystemPointerSize == sizeof(int64_t); }
V8_INLINE static constexpr Address IntToSmi(int value) {
return (static_cast<Address>(value) << (kSmiTagSize + kSmiShiftSize)) |
kSmiTag;
}
/*
* Sandbox related types, constants, and functions.
*/
constexpr bool SandboxIsEnabled() {
#ifdef V8_ENABLE_SANDBOX
return true;
#else
return false;
#endif
}
// SandboxedPointers are guaranteed to point into the sandbox. This is achieved
// for example by storing them as offset rather than as raw pointers.
using SandboxedPointer_t = Address;
#ifdef V8_ENABLE_SANDBOX
// Size of the sandbox, excluding the guard regions surrounding it.
#if defined(V8_TARGET_OS_ANDROID)
// On Android, most 64-bit devices seem to be configured with only 39 bits of
// virtual address space for userspace. As such, limit the sandbox to 128GB (a
// quarter of the total available address space).
constexpr size_t kSandboxSizeLog2 = 37; // 128 GB
#elif defined(V8_TARGET_OS_IOS)
// On iOS, we only get 64 GB of usable virtual address space even with the
// "jumbo" extended virtual addressing entitlement. Limit the sandbox size to
// 16 GB so that the base address + size for the emulated virtual address space
// lies within the 64 GB total virtual address space.
constexpr size_t kSandboxSizeLog2 = 34; // 16 GB
#else
// Everywhere else use a 1TB sandbox.
constexpr size_t kSandboxSizeLog2 = 40; // 1 TB
#endif // V8_TARGET_OS_ANDROID
constexpr size_t kSandboxSize = 1ULL << kSandboxSizeLog2;
// Required alignment of the sandbox. For simplicity, we require the
// size of the guard regions to be a multiple of this, so that this specifies
// the alignment of the sandbox including and excluding surrounding guard
// regions. The alignment requirement is due to the pointer compression cage
// being located at the start of the sandbox.
constexpr size_t kSandboxAlignment = kPtrComprCageBaseAlignment;
// Sandboxed pointers are stored inside the heap as offset from the sandbox
// base shifted to the left. This way, it is guaranteed that the offset is
// smaller than the sandbox size after shifting it to the right again. This
// constant specifies the shift amount.
constexpr uint64_t kSandboxedPointerShift = 64 - kSandboxSizeLog2;
// Size of the guard regions surrounding the sandbox. This assumes a worst-case
// scenario of a 32-bit unsigned index used to access an array of 64-bit values
// with an additional 4GB (compressed pointer) offset. In particular, accesses
// to TypedArrays are effectively computed as
// `entry_pointer = array->base + array->offset + index * array->element_size`.
// See also https://crbug.com/40070746 for more details.
constexpr size_t kSandboxGuardRegionSize = 32ULL * GB + 4ULL * GB;
static_assert((kSandboxGuardRegionSize % kSandboxAlignment) == 0,
"The size of the guard regions around the sandbox must be a "
"multiple of its required alignment.");
// On OSes where reserving virtual memory is too expensive to reserve the
// entire address space backing the sandbox, notably Windows pre 8.1, we create
// a partially reserved sandbox that doesn't actually reserve most of the
// memory, and so doesn't have the desired security properties as unrelated
// memory allocations could end up inside of it, but which still ensures that
// objects that should be located inside the sandbox are allocated within
// kSandboxSize bytes from the start of the sandbox. The minimum size of the
// region that is actually reserved for such a sandbox is specified by this
// constant and should be big enough to contain the pointer compression cage as
// well as the ArrayBuffer partition.
constexpr size_t kSandboxMinimumReservationSize = 8ULL * GB;
static_assert(kSandboxMinimumReservationSize > kPtrComprCageReservationSize,
"The minimum reservation size for a sandbox must be larger than "
"the pointer compression cage contained within it.");
// The maximum buffer size allowed inside the sandbox. This is mostly dependent
// on the size of the guard regions around the sandbox: an attacker must not be
// able to construct a buffer that appears larger than the guard regions and
// thereby "reach out of" the sandbox.
constexpr size_t kMaxSafeBufferSizeForSandbox = 32ULL * GB - 1;
static_assert(kMaxSafeBufferSizeForSandbox <= kSandboxGuardRegionSize,
"The maximum allowed buffer size must not be larger than the "
"sandbox's guard regions");
constexpr size_t kBoundedSizeShift = 29;
static_assert(1ULL << (64 - kBoundedSizeShift) ==
kMaxSafeBufferSizeForSandbox + 1,
"The maximum size of a BoundedSize must be synchronized with the "
"kMaxSafeBufferSizeForSandbox");
#endif // V8_ENABLE_SANDBOX
#ifdef V8_COMPRESS_POINTERS
#ifdef V8_TARGET_OS_ANDROID
// The size of the virtual memory reservation for an external pointer table.
// This determines the maximum number of entries in a table. Using a maximum
// size allows omitting bounds checks on table accesses if the indices are
// guaranteed (e.g. through shifting) to be below the maximum index. This
// value must be a power of two.
constexpr size_t kExternalPointerTableReservationSize = 256 * MB;
// The external pointer table indices stored in HeapObjects as external
// pointers are shifted to the left by this amount to guarantee that they are
// smaller than the maximum table size even after the C++ compiler multiplies
// them by 8 to be used as indexes into a table of 64 bit pointers.
constexpr uint32_t kExternalPointerIndexShift = 7;
#else
constexpr size_t kExternalPointerTableReservationSize = 512 * MB;
constexpr uint32_t kExternalPointerIndexShift = 6;
#endif // V8_TARGET_OS_ANDROID
// The maximum number of entries in an external pointer table.
constexpr int kExternalPointerTableEntrySize = 8;
constexpr int kExternalPointerTableEntrySizeLog2 = 3;
constexpr size_t kMaxExternalPointers =
kExternalPointerTableReservationSize / kExternalPointerTableEntrySize;
static_assert((1 << (32 - kExternalPointerIndexShift)) == kMaxExternalPointers,
"kExternalPointerTableReservationSize and "
"kExternalPointerIndexShift don't match");
#else // !V8_COMPRESS_POINTERS
// Needed for the V8.SandboxedExternalPointersCount histogram.
constexpr size_t kMaxExternalPointers = 0;
#endif // V8_COMPRESS_POINTERS
constexpr uint64_t kExternalPointerMarkBit = 1ULL << 48;
constexpr uint64_t kExternalPointerTagShift = 49;
constexpr uint64_t kExternalPointerTagMask = 0x00fe000000000000ULL;
constexpr uint64_t kExternalPointerShiftedTagMask =
kExternalPointerTagMask >> kExternalPointerTagShift;
static_assert(kExternalPointerShiftedTagMask << kExternalPointerTagShift ==
kExternalPointerTagMask);
constexpr uint64_t kExternalPointerTagAndMarkbitMask = 0x00ff000000000000ULL;
constexpr uint64_t kExternalPointerPayloadMask = 0xff00ffffffffffffULL;
// A ExternalPointerHandle represents a (opaque) reference to an external
// pointer that can be stored inside the sandbox. A ExternalPointerHandle has
// meaning only in combination with an (active) Isolate as it references an
// external pointer stored in the currently active Isolate's
// ExternalPointerTable. Internally, an ExternalPointerHandles is simply an
// index into an ExternalPointerTable that is shifted to the left to guarantee
// that it is smaller than the size of the table.
using ExternalPointerHandle = uint32_t;
// ExternalPointers point to objects located outside the sandbox. When the V8
// sandbox is enabled, these are stored on heap as ExternalPointerHandles,
// otherwise they are simply raw pointers.
#ifdef V8_ENABLE_SANDBOX
using ExternalPointer_t = ExternalPointerHandle;
#else
using ExternalPointer_t = Address;
#endif
constexpr ExternalPointer_t kNullExternalPointer = 0;
constexpr ExternalPointerHandle kNullExternalPointerHandle = 0;
// See `ExternalPointerHandle` for the main documentation. The difference to
// `ExternalPointerHandle` is that the handle does not represent an arbitrary
// external pointer but always refers to an object managed by `CppHeap`. The
// handles are using in combination with a dedicated table for `CppHeap`
// references.
using CppHeapPointerHandle = uint32_t;
// The actual pointer to objects located on the `CppHeap`. When pointer
// compression is enabled these pointers are stored as `CppHeapPointerHandle`.
// In non-compressed configurations the pointers are simply stored as raw
// pointers.
#ifdef V8_COMPRESS_POINTERS
using CppHeapPointer_t = CppHeapPointerHandle;
#else
using CppHeapPointer_t = Address;
#endif
constexpr CppHeapPointer_t kNullCppHeapPointer = 0;
constexpr CppHeapPointerHandle kNullCppHeapPointerHandle = 0;
constexpr uint64_t kCppHeapPointerMarkBit = 1ULL;
constexpr uint64_t kCppHeapPointerTagShift = 1;
constexpr uint64_t kCppHeapPointerPayloadShift = 16;
#ifdef V8_COMPRESS_POINTERS
// CppHeapPointers use a dedicated pointer table. These constants control the
// size and layout of the table. See the corresponding constants for the
// external pointer table for further details.
constexpr size_t kCppHeapPointerTableReservationSize =
kExternalPointerTableReservationSize;
constexpr uint32_t kCppHeapPointerIndexShift = kExternalPointerIndexShift;
constexpr int kCppHeapPointerTableEntrySize = 8;
constexpr int kCppHeapPointerTableEntrySizeLog2 = 3;
constexpr size_t kMaxCppHeapPointers =
kCppHeapPointerTableReservationSize / kCppHeapPointerTableEntrySize;
static_assert((1 << (32 - kCppHeapPointerIndexShift)) == kMaxCppHeapPointers,
"kCppHeapPointerTableReservationSize and "
"kCppHeapPointerIndexShift don't match");
#else // !V8_COMPRESS_POINTERS
// Needed for the V8.SandboxedCppHeapPointersCount histogram.
constexpr size_t kMaxCppHeapPointers = 0;
#endif // V8_COMPRESS_POINTERS
// Generic tag range struct to represent ranges of type tags.
//
// When referencing external objects via pointer tables, type tags are
// frequently necessary to guarantee type safety for the external objects. When
// support for subtyping is necessary, range-based type checks are used in
// which all subtypes of a given supertype use contiguous tags. This struct can
// then be used to represent such a type range.
//
// As an example, consider the following type hierarchy:
//
// A F
// / \
// B E
// / \
// C D
//
// A potential type id assignment for range-based type checks is
// {A: 0, B: 1, C: 2, D: 3, E: 4, F: 5}. With that, the type check for type A
// would check for the range [A, E], while the check for B would check range
// [B, D], and for F it would simply check [F, F].
//
// In addition, there is an option for performance tweaks: if the size of the
// type range corresponding to a supertype is a power of two and starts at a
// power of two (e.g. [0x100, 0x13f]), then the compiler can often optimize
// the type check to use even fewer instructions (essentially replace a AND +
// SUB with a single AND).
//
template <typename Tag>
struct TagRange {
static_assert(std::is_enum_v<Tag> &&
std::is_same_v<std::underlying_type_t<Tag>, uint16_t>,
"Tag parameter must be an enum with base type uint16_t");
// Construct the inclusive tag range [first, last].
constexpr TagRange(Tag first, Tag last) : first(first), last(last) {}
// Construct a tag range consisting of a single tag.
//
// A single tag is always implicitly convertible to a tag range. This greatly
// increases readability as most of the time, the exact tag of a field is
// known and so no tag range needs to explicitly be created for it.
constexpr TagRange(Tag tag) // NOLINT(runtime/explicit)
: first(tag), last(tag) {}
// Construct an empty tag range.
constexpr TagRange() : TagRange(static_cast<Tag>(0)) {}
// A tag range is considered empty if it only contains the null tag.
constexpr bool IsEmpty() const { return first == 0 && last == 0; }
constexpr size_t Size() const {
if (IsEmpty()) {
return 0;
} else {
return last - first + 1;
}
}
constexpr bool Contains(Tag tag) const {
// Need to perform the math with uint32_t. Otherwise, the uint16_ts would
// be promoted to (signed) int, allowing the compiler to (wrongly) assume
// that an underflow cannot happen as that would be undefined behavior.
return static_cast<uint32_t>(tag) - first <=
static_cast<uint32_t>(last) - first;
}
constexpr bool Contains(TagRange tag_range) const {
return tag_range.first >= first && tag_range.last <= last;
}
constexpr bool operator==(const TagRange other) const {
return first == other.first && last == other.last;
}
constexpr size_t hash_value() const {
static_assert(std::is_same_v<std::underlying_type_t<Tag>, uint16_t>);
return (static_cast<size_t>(first) << 16) | last;
}
// Internally we represent tag ranges as half-open ranges [first, last).
const Tag first;
const Tag last;
};
//
// External Pointers.
//
// When the sandbox is enabled, external pointers are stored in an external
// pointer table and are referenced from HeapObjects through an index (a
// "handle"). When stored in the table, the pointers are tagged with per-type
// tags to prevent type confusion attacks between different external objects.
//
// When loading an external pointer, a range of allowed tags can be specified.
// This way, type hierarchies can be supported. The main requirement for that
// is that all (transitive) child classes of a given parent class have type ids
// in the same range, and that there are no unrelated types in that range. For
// more details about how to assign type tags to types, see the TagRange class.
//
// The external pointer sandboxing mechanism ensures that every access to an
// external pointer field will result in a valid pointer of the expected type
// even in the presence of an attacker able to corrupt memory inside the
// sandbox. However, if any data related to the external object is stored
// inside the sandbox it may still be corrupted and so must be validated before
// use or moved into the external object. Further, an attacker will always be
// able to substitute different external pointers of the same type for each
// other. Therefore, code using external pointers must be written in a
// "substitution-safe" way, i.e. it must always be possible to substitute
// external pointers of the same type without causing memory corruption outside
// of the sandbox. Generally this is achieved by referencing any group of
// related external objects through a single external pointer.
//
// Currently we use bit 62 for the marking bit which should always be unused as
// it's part of the non-canonical address range. When Arm's top-byte ignore
// (TBI) is enabled, this bit will be part of the ignored byte, and we assume
// that the Embedder is not using this byte (really only this one bit) for any
// other purpose. This bit also does not collide with the memory tagging
// extension (MTE) which would use bits [56, 60).
//
// External pointer tables are also available even when the sandbox is off but
// pointer compression is on. In that case, the mechanism can be used to ease
// alignment requirements as it turns unaligned 64-bit raw pointers into
// aligned 32-bit indices. To "opt-in" to the external pointer table mechanism
// for this purpose, instead of using the ExternalPointer accessors one needs to
// use ExternalPointerHandles directly and use them to access the pointers in an
// ExternalPointerTable.
//
// The tag is currently in practice limited to 15 bits since it needs to fit
// together with a marking bit into the unused parts of a pointer.
enum ExternalPointerTag : uint16_t {
kFirstExternalPointerTag = 0,
kExternalPointerNullTag = 0,
// When adding new tags, please ensure that the code using these tags is
// "substitution-safe", i.e. still operate safely if external pointers of the
// same type are swapped by an attacker. See comment above for more details.
// Shared external pointers are owned by the shared Isolate and stored in the
// shared external pointer table associated with that Isolate, where they can
// be accessed from multiple threads at the same time. The objects referenced
// in this way must therefore always be thread-safe.
kFirstSharedExternalPointerTag,
kWaiterQueueNodeTag = kFirstSharedExternalPointerTag,
kExternalStringResourceTag,
kExternalStringResourceDataTag,
kLastSharedExternalPointerTag = kExternalStringResourceDataTag,
// External pointers using these tags are kept in a per-Isolate external
// pointer table and can only be accessed when this Isolate is active.
kNativeContextMicrotaskQueueTag,
kEmbedderDataSlotPayloadTag,
// This tag essentially stands for a `void*` pointer in the V8 API, and it is
// the Embedder's responsibility to ensure type safety (against substitution)
// and lifetime validity of these objects.
kExternalObjectValueTag,
kFirstMaybeReadOnlyExternalPointerTag,
kFunctionTemplateInfoCallbackTag = kFirstMaybeReadOnlyExternalPointerTag,
kAccessorInfoGetterTag,
kAccessorInfoSetterTag,
// InterceptorInfo external pointers.
kFirstInterceptorInfoExternalPointerTag,
kApiNamedPropertyQueryCallbackTag = kFirstInterceptorInfoExternalPointerTag,
kApiNamedPropertyGetterCallbackTag,
kApiNamedPropertySetterCallbackTag,
kApiNamedPropertyDescriptorCallbackTag,
kApiNamedPropertyDefinerCallbackTag,
kApiNamedPropertyDeleterCallbackTag,
kApiNamedPropertyEnumeratorCallbackTag,
kApiIndexedPropertyQueryCallbackTag,
kApiIndexedPropertyGetterCallbackTag,
kApiIndexedPropertySetterCallbackTag,
kApiIndexedPropertyDescriptorCallbackTag,
kApiIndexedPropertyDefinerCallbackTag,
kApiIndexedPropertyDeleterCallbackTag,
kApiIndexedPropertyEnumeratorCallbackTag,
kLastInterceptorInfoExternalPointerTag =
kApiIndexedPropertyEnumeratorCallbackTag,
kLastMaybeReadOnlyExternalPointerTag = kLastInterceptorInfoExternalPointerTag,
kWasmStackMemoryTag,
// Foreigns
kFirstForeignExternalPointerTag,
kGenericForeignTag = kFirstForeignExternalPointerTag,
kApiAccessCheckCallbackTag,
kApiAbortScriptExecutionCallbackTag,
kSyntheticModuleTag,
kMicrotaskCallbackTag,
kMicrotaskCallbackDataTag,
kCFunctionTag,
kCFunctionInfoTag,
kMessageListenerTag,
kWaiterQueueForeignTag,
// Managed
kFirstManagedResourceTag,
kFirstManagedExternalPointerTag = kFirstManagedResourceTag,
kGenericManagedTag = kFirstManagedExternalPointerTag,
kWasmWasmStreamingTag,
kWasmFuncDataTag,
kWasmManagedDataTag,
kWasmNativeModuleTag,
kIcuBreakIteratorTag,
kIcuUnicodeStringTag,
kIcuListFormatterTag,
kIcuLocaleTag,
kIcuSimpleDateFormatTag,
kIcuDateIntervalFormatTag,
kIcuRelativeDateTimeFormatterTag,
kIcuLocalizedNumberFormatterTag,
kIcuPluralRulesTag,
kIcuCollatorTag,
kTemporalDurationTag,
kTemporalInstantTag,
kTemporalPlainDateTag,
kTemporalPlainTimeTag,
kTemporalPlainDateTimeTag,
kTemporalPlainYearMonthTag,
kTemporalPlainMonthDayTag,
kTemporalZonedDateTimeTag,
kDisplayNamesInternalTag,
kD8WorkerTag,
kD8ModuleEmbedderDataTag,
kLastForeignExternalPointerTag = kD8ModuleEmbedderDataTag,
kLastManagedExternalPointerTag = kLastForeignExternalPointerTag,
// External resources whose lifetime is tied to their entry in the external
// pointer table but which are not referenced via a Managed
kArrayBufferExtensionTag,
kLastManagedResourceTag = kArrayBufferExtensionTag,
kExternalPointerZappedEntryTag = 0x7d,
kExternalPointerEvacuationEntryTag = 0x7e,
kExternalPointerFreeEntryTag = 0x7f,
// The tags are limited to 7 bits, so the last tag is 0x7f.
kLastExternalPointerTag = 0x7f,
};
using ExternalPointerTagRange = TagRange<ExternalPointerTag>;
constexpr ExternalPointerTagRange kAnyExternalPointerTagRange(
kFirstExternalPointerTag, kLastExternalPointerTag);
constexpr ExternalPointerTagRange kAnySharedExternalPointerTagRange(
kFirstSharedExternalPointerTag, kLastSharedExternalPointerTag);
constexpr ExternalPointerTagRange kAnyForeignExternalPointerTagRange(
kFirstForeignExternalPointerTag, kLastForeignExternalPointerTag);
constexpr ExternalPointerTagRange kAnyInterceptorInfoExternalPointerTagRange(
kFirstInterceptorInfoExternalPointerTag,
kLastInterceptorInfoExternalPointerTag);
constexpr ExternalPointerTagRange kAnyManagedExternalPointerTagRange(
kFirstManagedExternalPointerTag, kLastManagedExternalPointerTag);
constexpr ExternalPointerTagRange kAnyMaybeReadOnlyExternalPointerTagRange(
kFirstMaybeReadOnlyExternalPointerTag,
kLastMaybeReadOnlyExternalPointerTag);
constexpr ExternalPointerTagRange kAnyManagedResourceExternalPointerTag(
kFirstManagedResourceTag, kLastManagedResourceTag);
// True if the external pointer must be accessed from the shared isolate's
// external pointer table.
V8_INLINE static constexpr bool IsSharedExternalPointerType(
ExternalPointerTagRange tag_range) {
return kAnySharedExternalPointerTagRange.Contains(tag_range);
}
// True if the external pointer may live in a read-only object, in which case
// the table entry will be in the shared read-only segment of the external
// pointer table.
V8_INLINE static constexpr bool IsMaybeReadOnlyExternalPointerType(
ExternalPointerTagRange tag_range) {
return kAnyMaybeReadOnlyExternalPointerTagRange.Contains(tag_range);
}
// True if the external pointer references an external object whose lifetime is
// tied to the entry in the external pointer table.
// In this case, the entry in the ExternalPointerTable always points to an
// object derived from ExternalPointerTable::ManagedResource.
V8_INLINE static constexpr bool IsManagedExternalPointerType(
ExternalPointerTagRange tag_range) {
return kAnyManagedResourceExternalPointerTag.Contains(tag_range);
}
// When an external poiner field can contain the null external pointer handle,
// the type checking mechanism needs to also check for null.
// TODO(saelo): this is mostly a temporary workaround to introduce range-based
// type checks. In the future, we should either (a) change the type tagging
// scheme so that null always passes or (b) (more likely) introduce dedicated
// null entries for those tags that need them (similar to other well-known
// empty value constants such as the empty fixed array).
V8_INLINE static constexpr bool ExternalPointerCanBeEmpty(
ExternalPointerTagRange tag_range) {
return tag_range.Contains(kArrayBufferExtensionTag) ||
tag_range.Contains(kEmbedderDataSlotPayloadTag) ||
kAnyInterceptorInfoExternalPointerTagRange.Contains(tag_range);
}
// Indirect Pointers.
//
// When the sandbox is enabled, indirect pointers are used to reference
// HeapObjects that live outside of the sandbox (but are still managed by V8's
// garbage collector). When object A references an object B through an indirect
// pointer, object A will contain a IndirectPointerHandle, i.e. a shifted
// 32-bit index, which identifies an entry in a pointer table (either the
// trusted pointer table for TrustedObjects, or the code pointer table if it is
// a Code object). This table entry then contains the actual pointer to object
// B. Further, object B owns this pointer table entry, and it is responsible
// for updating the "self-pointer" in the entry when it is relocated in memory.
// This way, in contrast to "normal" pointers, indirect pointers never need to
// be tracked by the GC (i.e. there is no remembered set for them).
// These pointers do not exist when the sandbox is disabled.
// An IndirectPointerHandle represents a 32-bit index into a pointer table.
using IndirectPointerHandle = uint32_t;
// A null handle always references an entry that contains nullptr.
constexpr IndirectPointerHandle kNullIndirectPointerHandle = 0;
// When the sandbox is enabled, indirect pointers are used to implement:
// - TrustedPointers: an indirect pointer using the trusted pointer table (TPT)
// and referencing a TrustedObject in one of the trusted heap spaces.
// - CodePointers, an indirect pointer using the code pointer table (CPT) and
// referencing a Code object together with its instruction stream.
//
// Trusted Pointers.
//
// A pointer to a TrustedObject.
// When the sandbox is enabled, these are indirect pointers using the trusted
// pointer table (TPT). They are used to reference trusted objects (located in
// one of V8's trusted heap spaces, outside of the sandbox) from inside the
// sandbox in a memory-safe way. When the sandbox is disabled, these are
// regular tagged pointers.
using TrustedPointerHandle = IndirectPointerHandle;
// The size of the virtual memory reservation for the trusted pointer table.
// As with the external pointer table, a maximum table size in combination with
// shifted indices allows omitting bounds checks.
constexpr size_t kTrustedPointerTableReservationSize = 64 * MB;
// The trusted pointer handles are stored shifted to the left by this amount
// to guarantee that they are smaller than the maximum table size.
constexpr uint32_t kTrustedPointerHandleShift = 9;
// A null handle always references an entry that contains nullptr.
constexpr TrustedPointerHandle kNullTrustedPointerHandle =
kNullIndirectPointerHandle;
// The maximum number of entries in an trusted pointer table.
constexpr int kTrustedPointerTableEntrySize = 8;
constexpr int kTrustedPointerTableEntrySizeLog2 = 3;
constexpr size_t kMaxTrustedPointers =
kTrustedPointerTableReservationSize / kTrustedPointerTableEntrySize;
static_assert((1 << (32 - kTrustedPointerHandleShift)) == kMaxTrustedPointers,
"kTrustedPointerTableReservationSize and "
"kTrustedPointerHandleShift don't match");
//
// Code Pointers.
//
// A pointer to a Code object.
// Essentially a specialized version of a trusted pointer that (when the
// sandbox is enabled) uses the code pointer table (CPT) instead of the TPT.
// Each entry in the CPT contains both a pointer to a Code object as well as a
// pointer to the Code's entrypoint. This allows calling/jumping into Code with
// one fewer memory access (compared to the case where the entrypoint pointer
// first needs to be loaded from the Code object). As such, a CodePointerHandle
// can be used both to obtain the referenced Code object and to directly load
// its entrypoint.
//
// When the sandbox is disabled, these are regular tagged pointers.
using CodePointerHandle = IndirectPointerHandle;
// The size of the virtual memory reservation for the code pointer table.
// As with the other tables, a maximum table size in combination with shifted
// indices allows omitting bounds checks.
constexpr size_t kCodePointerTableReservationSize = 128 * MB;
// Code pointer handles are shifted by a different amount than indirect pointer
// handles as the tables have a different maximum size.
constexpr uint32_t kCodePointerHandleShift = 9;
// A null handle always references an entry that contains nullptr.
constexpr CodePointerHandle kNullCodePointerHandle = kNullIndirectPointerHandle;
// It can sometimes be necessary to distinguish a code pointer handle from a
// trusted pointer handle. A typical example would be a union trusted pointer
// field that can refer to both Code objects and other trusted objects. To
// support these use-cases, we use a simple marking scheme where some of the
// low bits of a code pointer handle are set, while they will be unset on a
// trusted pointer handle. This way, the correct table to resolve the handle
// can be determined even in the absence of a type tag.
constexpr uint32_t kCodePointerHandleMarker = 0x1;
static_assert(kCodePointerHandleShift > 0);
static_assert(kTrustedPointerHandleShift > 0);
// The maximum number of entries in a code pointer table.
constexpr int kCodePointerTableEntrySize = 16;
constexpr int kCodePointerTableEntrySizeLog2 = 4;
constexpr size_t kMaxCodePointers =
kCodePointerTableReservationSize / kCodePointerTableEntrySize;
static_assert(
(1 << (32 - kCodePointerHandleShift)) == kMaxCodePointers,
"kCodePointerTableReservationSize and kCodePointerHandleShift don't match");
constexpr int kCodePointerTableEntryEntrypointOffset = 0;
constexpr int kCodePointerTableEntryCodeObjectOffset = 8;
// Constants that can be used to mark places that should be modified once
// certain types of objects are moved out of the sandbox and into trusted space.
constexpr bool kRuntimeGeneratedCodeObjectsLiveInTrustedSpace = true;
constexpr bool kBuiltinCodeObjectsLiveInTrustedSpace = false;
constexpr bool kAllCodeObjectsLiveInTrustedSpace =
kRuntimeGeneratedCodeObjectsLiveInTrustedSpace &&
kBuiltinCodeObjectsLiveInTrustedSpace;
// {obj} must be the raw tagged pointer representation of a HeapObject
// that's guaranteed to never be in ReadOnlySpace.
V8_DEPRECATE_SOON(
"Use GetCurrentIsolate() instead, which is guaranteed to return the same "
"isolate since https://crrev.com/c/6458560.")
V8_EXPORT internal::Isolate* IsolateFromNeverReadOnlySpaceObject(Address obj);
// Returns if we need to throw when an error occurs. This infers the language
// mode based on the current context and the closure. This returns true if the
// language mode is strict.
V8_EXPORT bool ShouldThrowOnError(internal::Isolate* isolate);
/**
* This class exports constants and functionality from within v8 that
* is necessary to implement inline functions in the v8 api. Don't
* depend on functions and constants defined here.
*/
class Internals {
#ifdef V8_MAP_PACKING
V8_INLINE static constexpr Address UnpackMapWord(Address mapword) {
// TODO(wenyuzhao): Clear header metadata.
return mapword ^ kMapWordXorMask;
}
#endif
public:
// These values match non-compiler-dependent values defined within
// the implementation of v8.
static const int kHeapObjectMapOffset = 0;
static const int kMapInstanceTypeOffset = 1 * kApiTaggedSize + kApiInt32Size;
static const int kStringResourceOffset =
1 * kApiTaggedSize + 2 * kApiInt32Size;
static const int kOddballKindOffset = 4 * kApiTaggedSize + kApiDoubleSize;
static const int kJSObjectHeaderSize = 3 * kApiTaggedSize;
#ifdef V8_COMPRESS_POINTERS
static const int kJSAPIObjectWithEmbedderSlotsHeaderSize =
kJSObjectHeaderSize + kApiInt32Size;
#else // !V8_COMPRESS_POINTERS
static const int kJSAPIObjectWithEmbedderSlotsHeaderSize =
kJSObjectHeaderSize + kApiTaggedSize;
#endif // !V8_COMPRESS_POINTERS
static const int kFixedArrayHeaderSize = 2 * kApiTaggedSize;
static const int kEmbedderDataArrayHeaderSize = 2 * kApiTaggedSize;
static const int kEmbedderDataSlotSize = kApiSystemPointerSize;
#ifdef V8_ENABLE_SANDBOX
static const int kEmbedderDataSlotExternalPointerOffset = kApiTaggedSize;
#else
static const int kEmbedderDataSlotExternalPointerOffset = 0;
#endif
static const int kNativeContextEmbedderDataOffset = 6 * kApiTaggedSize;
static const int kStringRepresentationAndEncodingMask = 0x0f;
static const int kStringEncodingMask = 0x8;
static const int kExternalTwoByteRepresentationTag = 0x02;
static const int kExternalOneByteRepresentationTag = 0x0a;
static const uint32_t kNumIsolateDataSlots = 4;
static const int kStackGuardSize = 8 * kApiSystemPointerSize;
static const int kNumberOfBooleanFlags = 6;
static const int kErrorMessageParamSize = 1;
static const int kTablesAlignmentPaddingSize = 1;
static const int kRegExpStaticResultOffsetsVectorSize = kApiSystemPointerSize;
static const int kBuiltinTier0EntryTableSize = 7 * kApiSystemPointerSize;
static const int kBuiltinTier0TableSize = 7 * kApiSystemPointerSize;
static const int kLinearAllocationAreaSize = 3 * kApiSystemPointerSize;
static const int kThreadLocalTopSize = 30 * kApiSystemPointerSize;
static const int kHandleScopeDataSize =
2 * kApiSystemPointerSize + 2 * kApiInt32Size;
// ExternalPointerTable and TrustedPointerTable layout guarantees.
static const int kExternalPointerTableBasePointerOffset = 0;
static const int kSegmentedTableSegmentPoolSize = 4;
static const int kExternalPointerTableSize =
4 * kApiSystemPointerSize +
kSegmentedTableSegmentPoolSize * sizeof(uint32_t);
static const int kTrustedPointerTableSize =
4 * kApiSystemPointerSize +
kSegmentedTableSegmentPoolSize * sizeof(uint32_t);
static const int kTrustedPointerTableBasePointerOffset = 0;
// IsolateData layout guarantees.
static const int kIsolateCageBaseOffset = 0;
static const int kIsolateStackGuardOffset =
kIsolateCageBaseOffset + kApiSystemPointerSize;
static const int kVariousBooleanFlagsOffset =
kIsolateStackGuardOffset + kStackGuardSize;
static const int kErrorMessageParamOffset =
kVariousBooleanFlagsOffset + kNumberOfBooleanFlags;
static const int kBuiltinTier0EntryTableOffset =
kErrorMessageParamOffset + kErrorMessageParamSize +
kTablesAlignmentPaddingSize + kRegExpStaticResultOffsetsVectorSize;
static const int kBuiltinTier0TableOffset =
kBuiltinTier0EntryTableOffset + kBuiltinTier0EntryTableSize;
static const int kNewAllocationInfoOffset =
kBuiltinTier0TableOffset + kBuiltinTier0TableSize;
static const int kOldAllocationInfoOffset =
kNewAllocationInfoOffset + kLinearAllocationAreaSize;
static const int kFastCCallAlignmentPaddingSize =
kApiSystemPointerSize == 8 ? 5 * kApiSystemPointerSize
: 1 * kApiSystemPointerSize;
static const int kIsolateFastCCallCallerPcOffset =
kOldAllocationInfoOffset + kLinearAllocationAreaSize +
kFastCCallAlignmentPaddingSize;
static const int kIsolateFastCCallCallerFpOffset =
kIsolateFastCCallCallerPcOffset + kApiSystemPointerSize;
static const int kIsolateFastApiCallTargetOffset =
kIsolateFastCCallCallerFpOffset + kApiSystemPointerSize;
static const int kIsolateLongTaskStatsCounterOffset =
kIsolateFastApiCallTargetOffset + kApiSystemPointerSize;
static const int kIsolateThreadLocalTopOffset =
kIsolateLongTaskStatsCounterOffset + kApiSizetSize;
static const int kIsolateHandleScopeDataOffset =
kIsolateThreadLocalTopOffset + kThreadLocalTopSize;
static const int kIsolateEmbedderDataOffset =
kIsolateHandleScopeDataOffset + kHandleScopeDataSize;
#ifdef V8_COMPRESS_POINTERS
static const int kIsolateExternalPointerTableOffset =
kIsolateEmbedderDataOffset + kNumIsolateDataSlots * kApiSystemPointerSize;
static const int kIsolateSharedExternalPointerTableAddressOffset =
kIsolateExternalPointerTableOffset + kExternalPointerTableSize;
static const int kIsolateCppHeapPointerTableOffset =
kIsolateSharedExternalPointerTableAddressOffset + kApiSystemPointerSize;
#ifdef V8_ENABLE_SANDBOX
static const int kIsolateTrustedCageBaseOffset =
kIsolateCppHeapPointerTableOffset + kExternalPointerTableSize;
static const int kIsolateTrustedPointerTableOffset =
kIsolateTrustedCageBaseOffset + kApiSystemPointerSize;
static const int kIsolateSharedTrustedPointerTableAddressOffset =
kIsolateTrustedPointerTableOffset + kTrustedPointerTableSize;
static const int kIsolateTrustedPointerPublishingScopeOffset =
kIsolateSharedTrustedPointerTableAddressOffset + kApiSystemPointerSize;
static const int kIsolateCodePointerTableBaseAddressOffset =
kIsolateTrustedPointerPublishingScopeOffset + kApiSystemPointerSize;
static const int kIsolateApiCallbackThunkArgumentOffset =
kIsolateCodePointerTableBaseAddressOffset + kApiSystemPointerSize;
#else
static const int kIsolateApiCallbackThunkArgumentOffset =
kIsolateCppHeapPointerTableOffset + kExternalPointerTableSize;
#endif // V8_ENABLE_SANDBOX
#else
static const int kIsolateApiCallbackThunkArgumentOffset =
kIsolateEmbedderDataOffset + kNumIsolateDataSlots * kApiSystemPointerSize;
#endif // V8_COMPRESS_POINTERS
static const int kJSDispatchTableOffset =
kIsolateApiCallbackThunkArgumentOffset + kApiSystemPointerSize;
static const int kIsolateRegexpExecVectorArgumentOffset =
kJSDispatchTableOffset + kApiSystemPointerSize;
static const int kContinuationPreservedEmbedderDataOffset =
kIsolateRegexpExecVectorArgumentOffset + kApiSystemPointerSize;
static const int kIsolateRootsOffset =
kContinuationPreservedEmbedderDataOffset + kApiSystemPointerSize;
// Assert scopes
static const int kDisallowGarbageCollectionAlign = alignof(uint32_t);
static const int kDisallowGarbageCollectionSize = sizeof(uint32_t);
#if V8_STATIC_ROOTS_BOOL
// These constants are copied from static-roots.h and guarded by static asserts.
#define EXPORTED_STATIC_ROOTS_PTR_LIST(V) \
V(UndefinedValue, 0x11) \
V(NullValue, 0x2d) \
V(TrueValue, 0x71) \
V(FalseValue, 0x55) \
V(EmptyString, 0x49) \
V(TheHoleValue, 0x7d9)
using Tagged_t = uint32_t;
struct StaticReadOnlyRoot {
#define DEF_ROOT(name, value) static constexpr Tagged_t k##name = value;
EXPORTED_STATIC_ROOTS_PTR_LIST(DEF_ROOT)
#undef DEF_ROOT
// Use 0 for kStringMapLowerBound since string maps are the first maps.
static constexpr Tagged_t kStringMapLowerBound = 0;
static constexpr Tagged_t kStringMapUpperBound = 0x425;
#define PLUSONE(...) +1
static constexpr size_t kNumberOfExportedStaticRoots =
2 + EXPORTED_STATIC_ROOTS_PTR_LIST(PLUSONE);
#undef PLUSONE
};
#endif // V8_STATIC_ROOTS_BOOL
static const int kUndefinedValueRootIndex = 0;
static const int kTheHoleValueRootIndex = 1;
static const int kNullValueRootIndex = 2;
static const int kTrueValueRootIndex = 3;
static const int kFalseValueRootIndex = 4;
static const int kEmptyStringRootIndex = 5;
static const int kNodeClassIdOffset = 1 * kApiSystemPointerSize;
static const int kNodeFlagsOffset = 1 * kApiSystemPointerSize + 3;
static const int kNodeStateMask = 0x3;
static const int kNodeStateIsWeakValue = 2;
static const int kFirstNonstringType = 0x80;
static const int kOddballType = 0x83;
static const int kForeignType = 0xcc;
static const int kJSSpecialApiObjectType = 0x410;
static const int kJSObjectType = 0x421;
static const int kFirstJSApiObjectType = 0x422;
static const int kLastJSApiObjectType = 0x80A;
// Defines a range [kFirstEmbedderJSApiObjectType, kJSApiObjectTypesCount]
// of JSApiObject instance type values that an embedder can use.
static const int kFirstEmbedderJSApiObjectType = 0;
static const int kLastEmbedderJSApiObjectType =
kLastJSApiObjectType - kFirstJSApiObjectType;
static const int kUndefinedOddballKind = 4;
static const int kNullOddballKind = 3;
// Constants used by PropertyCallbackInfo to check if we should throw when an
// error occurs.
static const int kDontThrow = 0;
static const int kThrowOnError = 1;
static const int kInferShouldThrowMode = 2;
// Soft limit for AdjustAmountofExternalAllocatedMemory. Trigger an
// incremental GC once the external memory reaches this limit.
static constexpr size_t kExternalAllocationSoftLimit = 64 * 1024 * 1024;
#ifdef V8_MAP_PACKING
static const uintptr_t kMapWordMetadataMask = 0xffffULL << 48;
// The lowest two bits of mapwords are always `0b10`
static const uintptr_t kMapWordSignature = 0b10;
// XORing a (non-compressed) map with this mask ensures that the two
// low-order bits are 0b10. The 0 at the end makes this look like a Smi,
// although real Smis have all lower 32 bits unset. We only rely on these
// values passing as Smis in very few places.
static const int kMapWordXorMask = 0b11;
#endif
V8_EXPORT static void CheckInitializedImpl(v8::Isolate* isolate);
V8_INLINE static void CheckInitialized(v8::Isolate* isolate) {
#ifdef V8_ENABLE_CHECKS
CheckInitializedImpl(isolate);
#endif
}
V8_INLINE static constexpr bool HasHeapObjectTag(Address value) {
return (value & kHeapObjectTagMask) == static_cast<Address>(kHeapObjectTag);
}
V8_INLINE static constexpr int SmiValue(Address value) {
return PlatformSmiTagging::SmiToInt(value);
}
V8_INLINE static constexpr Address AddressToSmi(Address value) {
return (value << (kSmiTagSize + PlatformSmiTagging::kSmiShiftSize)) |
kSmiTag;
}
V8_INLINE static constexpr Address IntToSmi(int value) {
return AddressToSmi(static_cast<Address>(value));
}
template <typename T,
typename std::enable_if_t<std::is_integral_v<T>>* = nullptr>
V8_INLINE static constexpr Address IntegralToSmi(T value) {
return AddressToSmi(static_cast<Address>(value));
}
template <typename T,
typename std::enable_if_t<std::is_integral_v<T>>* = nullptr>
V8_INLINE static constexpr bool IsValidSmi(T value) {
return PlatformSmiTagging::IsValidSmi(value);
}
template <typename T,
typename std::enable_if_t<std::is_integral_v<T>>* = nullptr>
static constexpr std::optional<Address> TryIntegralToSmi(T value) {
if (V8_LIKELY(PlatformSmiTagging::IsValidSmi(value))) {
return {AddressToSmi(static_cast<Address>(value))};
}
return {};
}
#if V8_STATIC_ROOTS_BOOL
V8_INLINE static bool is_identical(Address obj, Tagged_t constant) {
return static_cast<Tagged_t>(obj) == constant;
}
V8_INLINE static bool CheckInstanceMapRange(Address obj, Tagged_t first_map,
Tagged_t last_map) {
auto map = ReadRawField<Tagged_t>(obj, kHeapObjectMapOffset);
#ifdef V8_MAP_PACKING
map = UnpackMapWord(map);
#endif
return map >= first_map && map <= last_map;
}
#endif
V8_INLINE static int GetInstanceType(Address obj) {
Address map = ReadTaggedPointerField(obj, kHeapObjectMapOffset);
#ifdef V8_MAP_PACKING
map = UnpackMapWord(map);
#endif
return ReadRawField<uint16_t>(map, kMapInstanceTypeOffset);
}
V8_INLINE static Address LoadMap(Address obj) {
if (!HasHeapObjectTag(obj)) return kNullAddress;
Address map = ReadTaggedPointerField(obj, kHeapObjectMapOffset);
#ifdef V8_MAP_PACKING
map = UnpackMapWord(map);
#endif
return map;
}
V8_INLINE static int GetOddballKind(Address obj) {
return SmiValue(ReadTaggedSignedField(obj, kOddballKindOffset));
}
V8_INLINE static bool IsExternalTwoByteString(int instance_type) {
int representation = (instance_type & kStringRepresentationAndEncodingMask);
return representation == kExternalTwoByteRepresentationTag;
}
V8_INLINE static constexpr bool CanHaveInternalField(int instance_type) {
static_assert(kJSObjectType + 1 == kFirstJSApiObjectType);
static_assert(kJSObjectType < kLastJSApiObjectType);
static_assert(kFirstJSApiObjectType < kLastJSApiObjectType);
// Check for IsJSObject() || IsJSSpecialApiObject() || IsJSApiObject()
return instance_type == kJSSpecialApiObjectType ||
// inlined version of base::IsInRange
(static_cast<unsigned>(static_cast<unsigned>(instance_type) -
static_cast<unsigned>(kJSObjectType)) <=
static_cast<unsigned>(kLastJSApiObjectType - kJSObjectType));
}
V8_INLINE static uint8_t GetNodeFlag(Address* obj, int shift) {
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
return *addr & static_cast<uint8_t>(1U << shift);
}
V8_INLINE static void UpdateNodeFlag(Address* obj, bool value, int shift) {
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
uint8_t mask = static_cast<uint8_t>(1U << shift);
*addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift));
}
V8_INLINE static uint8_t GetNodeState(Address* obj) {
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
return *addr & kNodeStateMask;
}
V8_INLINE static void UpdateNodeState(Address* obj, uint8_t value) {
uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
*addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value);
}
V8_INLINE static void SetEmbedderData(v8::Isolate* isolate, uint32_t slot,
void* data) {
Address addr = reinterpret_cast<Address>(isolate) +
kIsolateEmbedderDataOffset + slot * kApiSystemPointerSize;
*reinterpret_cast<void**>(addr) = data;
}
V8_INLINE static void* GetEmbedderData(const v8::Isolate* isolate,
uint32_t slot) {
Address addr = reinterpret_cast<Address>(isolate) +
kIsolateEmbedderDataOffset + slot * kApiSystemPointerSize;
return *reinterpret_cast<void* const*>(addr);
}
V8_INLINE static void IncrementLongTasksStatsCounter(v8::Isolate* isolate) {
Address addr =
reinterpret_cast<Address>(isolate) + kIsolateLongTaskStatsCounterOffset;
++(*reinterpret_cast<size_t*>(addr));
}
V8_INLINE static Address* GetRootSlot(v8::Isolate* isolate, int index) {
Address addr = reinterpret_cast<Address>(isolate) + kIsolateRootsOffset +
index * kApiSystemPointerSize;
return reinterpret_cast<Address*>(addr);
}
V8_INLINE static Address GetRoot(v8::Isolate* isolate, int index) {
#if V8_STATIC_ROOTS_BOOL
Address base = *reinterpret_cast<Address*>(
reinterpret_cast<uintptr_t>(isolate) + kIsolateCageBaseOffset);
switch (index) {
#define DECOMPRESS_ROOT(name, ...) \
case k##name##RootIndex: \
return base + StaticReadOnlyRoot::k##name;
EXPORTED_STATIC_ROOTS_PTR_LIST(DECOMPRESS_ROOT)
#undef DECOMPRESS_ROOT
#undef EXPORTED_STATIC_ROOTS_PTR_LIST
default:
break;
}
#endif // V8_STATIC_ROOTS_BOOL
return *GetRootSlot(isolate, index);
}
#ifdef V8_ENABLE_SANDBOX
V8_INLINE static Address* GetExternalPointerTableBase(v8::Isolate* isolate) {
Address addr = reinterpret_cast<Address>(isolate) +
kIsolateExternalPointerTableOffset +
kExternalPointerTableBasePointerOffset;
return *reinterpret_cast<Address**>(addr);
}
V8_INLINE static Address* GetSharedExternalPointerTableBase(
v8::Isolate* isolate) {
Address addr = reinterpret_cast<Address>(isolate) +
kIsolateSharedExternalPointerTableAddressOffset;
addr = *reinterpret_cast<Address*>(addr);
addr += kExternalPointerTableBasePointerOffset;
return *reinterpret_cast<Address**>(addr);
}
#endif
template <typename T>
V8_INLINE static T ReadRawField(Address heap_object_ptr, int offset) {
Address addr = heap_object_ptr + offset - kHeapObjectTag;
#ifdef V8_COMPRESS_POINTERS
if constexpr (sizeof(T) > kApiTaggedSize) {
// TODO(ishell, v8:8875): When pointer compression is enabled 8-byte size
// fields (external pointers, doubles and BigInt data) are only
// kTaggedSize aligned so we have to use unaligned pointer friendly way of
// accessing them in order to avoid undefined behavior in C++ code.
T r;
memcpy(&r, reinterpret_cast<void*>(addr), sizeof(T));
return r;
}
#endif
return *reinterpret_cast<const T*>(addr);
}
V8_INLINE static Address ReadTaggedPointerField(Address heap_object_ptr,
int offset) {
#ifdef V8_COMPRESS_POINTERS
uint32_t value = ReadRawField<uint32_t>(heap_object_ptr, offset);
Address base = GetPtrComprCageBaseFromOnHeapAddress(heap_object_ptr);
return base + static_cast<Address>(static_cast<uintptr_t>(value));
#else
return ReadRawField<Address>(heap_object_ptr, offset);
#endif
}
V8_INLINE static Address ReadTaggedSignedField(Address heap_object_ptr,
int offset) {
#ifdef V8_COMPRESS_POINTERS
uint32_t value = ReadRawField<uint32_t>(heap_object_ptr, offset);
return static_cast<Address>(static_cast<uintptr_t>(value));
#else
return ReadRawField<Address>(heap_object_ptr, offset);
#endif
}
V8_DEPRECATE_SOON(
"Use GetCurrentIsolateForSandbox() instead, which is guaranteed to "
"return the same isolate since https://crrev.com/c/6458560.")
V8_INLINE static v8::Isolate* GetIsolateForSandbox(Address obj) {
#ifdef V8_ENABLE_SANDBOX
return GetCurrentIsolate();
#else
// Not used in non-sandbox mode.
return nullptr;
#endif
}
// Returns v8::Isolate::Current(), but without needing to include the
// v8-isolate.h header.
V8_EXPORT static v8::Isolate* GetCurrentIsolate();
V8_INLINE static v8::Isolate* GetCurrentIsolateForSandbox() {
#ifdef V8_ENABLE_SANDBOX
return GetCurrentIsolate();
#else
// Not used in non-sandbox mode.
return nullptr;
#endif
}
template <ExternalPointerTagRange tag_range>
V8_INLINE static Address ReadExternalPointerField(v8::Isolate* isolate,
Address heap_object_ptr,
int offset) {
#ifdef V8_ENABLE_SANDBOX
static_assert(!tag_range.IsEmpty());
// See src/sandbox/external-pointer-table.h. Logic duplicated here so
// it can be inlined and doesn't require an additional call.
Address* table = IsSharedExternalPointerType(tag_range)
? GetSharedExternalPointerTableBase(isolate)
: GetExternalPointerTableBase(isolate);
internal::ExternalPointerHandle handle =
ReadRawField<ExternalPointerHandle>(heap_object_ptr, offset);
uint32_t index = handle >> kExternalPointerIndexShift;
std::atomic<Address>* ptr =
reinterpret_cast<std::atomic<Address>*>(&table[index]);
Address entry = std::atomic_load_explicit(ptr, std::memory_order_relaxed);
ExternalPointerTag actual_tag = static_cast<ExternalPointerTag>(
(entry & kExternalPointerTagMask) >> kExternalPointerTagShift);
if (V8_LIKELY(tag_range.Contains(actual_tag))) {
return entry & kExternalPointerPayloadMask;
} else {
return 0;
}
return entry;
#else
return ReadRawField<Address>(heap_object_ptr, offset);
#endif // V8_ENABLE_SANDBOX
}
#ifdef V8_COMPRESS_POINTERS
V8_INLINE static Address GetPtrComprCageBaseFromOnHeapAddress(Address addr) {
return addr & -static_cast<intptr_t>(kPtrComprCageBaseAlignment);
}
V8_INLINE static uint32_t CompressTagged(Address value) {
return static_cast<uint32_t>(value);
}
V8_INLINE static Address DecompressTaggedField(Address heap_object_ptr,
uint32_t value) {
Address base = GetPtrComprCageBaseFromOnHeapAddress(heap_object_ptr);
return base + static_cast<Address>(static_cast<uintptr_t>(value));
}
#endif // V8_COMPRESS_POINTERS
};
// Only perform cast check for types derived from v8::Data since
// other types do not implement the Cast method.
template <bool PerformCheck>
struct CastCheck {
template <class T>
static void Perform(T* data);
};
template <>
template <class T>
void CastCheck<true>::Perform(T* data) {
T::Cast(data);
}
template <>
template <class T>
void CastCheck<false>::Perform(T* data) {}
template <class T>
V8_INLINE void PerformCastCheck(T* data) {
CastCheck<std::is_base_of_v<Data, T> &&
!std::is_same_v<Data, std::remove_cv_t<T>>>::Perform(data);
}
// A base class for backing stores, which is needed due to vagaries of
// how static casts work with std::shared_ptr.
class BackingStoreBase {};
// The maximum value in enum GarbageCollectionReason, defined in heap.h.
// This is needed for histograms sampling garbage collection reasons.
constexpr int kGarbageCollectionReasonMaxValue = 30;
// Base class for the address block allocator compatible with standard
// containers, which registers its allocated range as strong roots.
class V8_EXPORT StrongRootAllocatorBase {
public:
Heap* heap() const { return heap_; }
friend bool operator==(const StrongRootAllocatorBase& a,
const StrongRootAllocatorBase& b) {
// TODO(pkasting): Replace this body with `= default` after dropping support
// for old gcc versions.
return a.heap_ == b.heap_;
}
protected:
explicit StrongRootAllocatorBase(Heap* heap) : heap_(heap) {}
explicit StrongRootAllocatorBase(LocalHeap* heap);
explicit StrongRootAllocatorBase(Isolate* isolate);
explicit StrongRootAllocatorBase(v8::Isolate* isolate);
explicit StrongRootAllocatorBase(LocalIsolate* isolate);
// Allocate/deallocate a range of n elements of type internal::Address.
Address* allocate_impl(size_t n);
void deallocate_impl(Address* p, size_t n) noexcept;
private:
Heap* heap_;
};
// The general version of this template behaves just as std::allocator, with
// the exception that the constructor takes the isolate as parameter. Only
// specialized versions, e.g., internal::StrongRootAllocator<internal::Address>
// and internal::StrongRootAllocator<v8::Local<T>> register the allocated range
// as strong roots.
template <typename T>
class StrongRootAllocator : private std::allocator<T> {
public:
using value_type = T;
template <typename HeapOrIsolateT>
explicit StrongRootAllocator(HeapOrIsolateT*) {}
template <typename U>
StrongRootAllocator(const StrongRootAllocator<U>& other) noexcept {}
using std::allocator<T>::allocate;
using std::allocator<T>::deallocate;
};
// TODO(pkasting): Replace with `requires` clauses after dropping support for
// old gcc versions.
template <typename Iterator, typename = void>
inline constexpr bool kHaveIteratorConcept = false;
template <typename Iterator>
inline constexpr bool kHaveIteratorConcept<
Iterator, std::void_t<typename Iterator::iterator_concept>> = true;
template <typename Iterator, typename = void>
inline constexpr bool kHaveIteratorCategory = false;
template <typename Iterator>
inline constexpr bool kHaveIteratorCategory<
Iterator, std::void_t<typename Iterator::iterator_category>> = true;
// Helper struct that contains an `iterator_concept` type alias only when either
// `Iterator` or `std::iterator_traits<Iterator>` do.
// Default: no alias.
template <typename Iterator, typename = void>
struct MaybeDefineIteratorConcept {};
// Use `Iterator::iterator_concept` if available.
template <typename Iterator>
struct MaybeDefineIteratorConcept<
Iterator, std::enable_if_t<kHaveIteratorConcept<Iterator>>> {
using iterator_concept = typename Iterator::iterator_concept;
};
// Otherwise fall back to `std::iterator_traits<Iterator>` if possible.
template <typename Iterator>
struct MaybeDefineIteratorConcept<
Iterator, std::enable_if_t<kHaveIteratorCategory<Iterator> &&
!kHaveIteratorConcept<Iterator>>> {
// There seems to be no feature-test macro covering this, so use the
// presence of `<ranges>` as a crude proxy, since it was added to the
// standard as part of the Ranges papers.
// TODO(pkasting): Add this unconditionally after dropping support for old
// libstdc++ versions.
#if __has_include(<ranges>)
using iterator_concept =
typename std::iterator_traits<Iterator>::iterator_concept;
#endif
};
// A class of iterators that wrap some different iterator type.
// If specified, ElementType is the type of element accessed by the wrapper
// iterator; in this case, the actual reference and pointer types of Iterator
// must be convertible to ElementType& and ElementType*, respectively.
template <typename Iterator, typename ElementType = void>
class WrappedIterator : public MaybeDefineIteratorConcept<Iterator> {
public:
static_assert(
std::is_void_v<ElementType> ||
(std::is_convertible_v<typename std::iterator_traits<Iterator>::pointer,
std::add_pointer_t<ElementType>> &&
std::is_convertible_v<typename std::iterator_traits<Iterator>::reference,
std::add_lvalue_reference_t<ElementType>>));
using difference_type =
typename std::iterator_traits<Iterator>::difference_type;
using value_type =
std::conditional_t<std::is_void_v<ElementType>,
typename std::iterator_traits<Iterator>::value_type,
ElementType>;
using pointer =
std::conditional_t<std::is_void_v<ElementType>,
typename std::iterator_traits<Iterator>::pointer,
std::add_pointer_t<ElementType>>;
using reference =
std::conditional_t<std::is_void_v<ElementType>,
typename std::iterator_traits<Iterator>::reference,
std::add_lvalue_reference_t<ElementType>>;
using iterator_category =
typename std::iterator_traits<Iterator>::iterator_category;
constexpr WrappedIterator() noexcept = default;
constexpr explicit WrappedIterator(Iterator it) noexcept : it_(it) {}
// TODO(pkasting): Switch to `requires` and concepts after dropping support
// for old gcc and libstdc++ versions.
template <typename OtherIterator, typename OtherElementType,
typename = std::enable_if_t<
std::is_convertible_v<OtherIterator, Iterator>>>
constexpr WrappedIterator(
const WrappedIterator<OtherIterator, OtherElementType>& other) noexcept
: it_(other.base()) {}
[[nodiscard]] constexpr reference operator*() const noexcept { return *it_; }
[[nodiscard]] constexpr pointer operator->() const noexcept {
if constexpr (std::is_pointer_v<Iterator>) {
return it_;
} else {
return it_.operator->();
}
}
template <typename OtherIterator, typename OtherElementType>
[[nodiscard]] constexpr bool operator==(
const WrappedIterator<OtherIterator, OtherElementType>& other)
const noexcept {
return it_ == other.base();
}
#if V8_HAVE_SPACESHIP_OPERATOR
template <typename OtherIterator, typename OtherElementType>
[[nodiscard]] constexpr auto operator<=>(
const WrappedIterator<OtherIterator, OtherElementType>& other)
const noexcept {
if constexpr (std::three_way_comparable_with<Iterator, OtherIterator>) {
return it_ <=> other.base();
} else if constexpr (std::totally_ordered_with<Iterator, OtherIterator>) {
if (it_ < other.base()) {
return std::strong_ordering::less;
}
return (it_ > other.base()) ? std::strong_ordering::greater
: std::strong_ordering::equal;
} else {
if (it_ < other.base()) {
return std::partial_ordering::less;
}
if (other.base() < it_) {
return std::partial_ordering::greater;
}
return (it_ == other.base()) ? std::partial_ordering::equivalent
: std::partial_ordering::unordered;
}
}
#else
// Assume that if spaceship isn't present, operator rewriting might not be
// either.
template <typename OtherIterator, typename OtherElementType>
[[nodiscard]] constexpr bool operator!=(
const WrappedIterator<OtherIterator, OtherElementType>& other)
const noexcept {
return it_ != other.base();
}
template <typename OtherIterator, typename OtherElementType>
[[nodiscard]] constexpr bool operator<(
const WrappedIterator<OtherIterator, OtherElementType>& other)
const noexcept {
return it_ < other.base();
}
template <typename OtherIterator, typename OtherElementType>
[[nodiscard]] constexpr bool operator<=(
const WrappedIterator<OtherIterator, OtherElementType>& other)
const noexcept {
return it_ <= other.base();
}
template <typename OtherIterator, typename OtherElementType>
[[nodiscard]] constexpr bool operator>(
const WrappedIterator<OtherIterator, OtherElementType>& other)
const noexcept {
return it_ > other.base();
}
template <typename OtherIterator, typename OtherElementType>
[[nodiscard]] constexpr bool operator>=(
const WrappedIterator<OtherIterator, OtherElementType>& other)
const noexcept {
return it_ >= other.base();
}
#endif
constexpr WrappedIterator& operator++() noexcept {
++it_;
return *this;
}
constexpr WrappedIterator operator++(int) noexcept {
WrappedIterator result(*this);
++(*this);
return result;
}
constexpr WrappedIterator& operator--() noexcept {
--it_;
return *this;
}
constexpr WrappedIterator operator--(int) noexcept {
WrappedIterator result(*this);
--(*this);
return result;
}
[[nodiscard]] constexpr WrappedIterator operator+(
difference_type n) const noexcept {
WrappedIterator result(*this);
result += n;
return result;
}
[[nodiscard]] friend constexpr WrappedIterator operator+(
difference_type n, const WrappedIterator& x) noexcept {
return x + n;
}
constexpr WrappedIterator& operator+=(difference_type n) noexcept {
it_ += n;
return *this;
}
[[nodiscard]] constexpr WrappedIterator operator-(
difference_type n) const noexcept {
return *this + -n;
}
constexpr WrappedIterator& operator-=(difference_type n) noexcept {
return *this += -n;
}
template <typename OtherIterator, typename OtherElementType>
[[nodiscard]] constexpr auto operator-(
const WrappedIterator<OtherIterator, OtherElementType>& other)
const noexcept {
return it_ - other.base();
}
[[nodiscard]] constexpr reference operator[](
difference_type n) const noexcept {
return it_[n];
}
[[nodiscard]] constexpr const Iterator& base() const noexcept { return it_; }
private:
Iterator it_;
};
// Helper functions about values contained in handles.
// A value is either an indirect pointer or a direct pointer, depending on
// whether direct local support is enabled.
class ValueHelper final {
public:
// ValueHelper::InternalRepresentationType is an abstract type that
// corresponds to the internal representation of v8::Local and essentially
// to what T* really is (these two are always in sync). This type is used in
// methods like GetDataFromSnapshotOnce that need access to a handle's
// internal representation. In particular, if `x` is a `v8::Local<T>`, then
// `v8::Local<T>::FromRepr(x.repr())` gives exactly the same handle as `x`.
#ifdef V8_ENABLE_DIRECT_HANDLE
static constexpr Address kTaggedNullAddress = 1;
using InternalRepresentationType = internal::Address;
static constexpr InternalRepresentationType kEmpty = kTaggedNullAddress;
#else
using InternalRepresentationType = internal::Address*;
static constexpr InternalRepresentationType kEmpty = nullptr;
#endif // V8_ENABLE_DIRECT_HANDLE
template <typename T>
V8_INLINE static bool IsEmpty(T* value) {
return ValueAsRepr(value) == kEmpty;
}
// Returns a handle's "value" for all kinds of abstract handles. For Local,
// it is equivalent to `*handle`. The variadic parameters support handle
// types with extra type parameters, like `Persistent<T, M>`.
template <template <typename T, typename... Ms> typename H, typename T,
typename... Ms>
V8_INLINE static T* HandleAsValue(const H<T, Ms...>& handle) {
return handle.template value<T>();
}
#ifdef V8_ENABLE_DIRECT_HANDLE
template <typename T>
V8_INLINE static Address ValueAsAddress(const T* value) {
return reinterpret_cast<Address>(value);
}
template <typename T, bool check_null = true, typename S>
V8_INLINE static T* SlotAsValue(S* slot) {
if (check_null && slot == nullptr) {
return reinterpret_cast<T*>(kTaggedNullAddress);
}
return *reinterpret_cast<T**>(slot);
}
template <typename T>
V8_INLINE static InternalRepresentationType ValueAsRepr(const T* value) {
return reinterpret_cast<InternalRepresentationType>(value);
}
template <typename T>
V8_INLINE static T* ReprAsValue(InternalRepresentationType repr) {
return reinterpret_cast<T*>(repr);
}
#else // !V8_ENABLE_DIRECT_HANDLE
template <typename T>
V8_INLINE static Address ValueAsAddress(const T* value) {
return *reinterpret_cast<const Address*>(value);
}
template <typename T, bool check_null = true, typename S>
V8_INLINE static T* SlotAsValue(S* slot) {
return reinterpret_cast<T*>(slot);
}
template <typename T>
V8_INLINE static InternalRepresentationType ValueAsRepr(const T* value) {
return const_cast<InternalRepresentationType>(
reinterpret_cast<const Address*>(value));
}
template <typename T>
V8_INLINE static T* ReprAsValue(InternalRepresentationType repr) {
return reinterpret_cast<T*>(repr);
}
#endif // V8_ENABLE_DIRECT_HANDLE
};
/**
* Helper functions about handles.
*/
class HandleHelper final {
public:
/**
* Checks whether two handles are equal.
* They are equal iff they are both empty or they are both non-empty and the
* objects to which they refer are physically equal.
*
* If both handles refer to JS objects, this is the same as strict equality.
* For primitives, such as numbers or strings, a `false` return value does not
* indicate that the values aren't equal in the JavaScript sense.
* Use `Value::StrictEquals()` to check primitives for equality.
*/
template <typename T1, typename T2>
V8_INLINE static bool EqualHandles(const T1& lhs, const T2& rhs) {
if (lhs.IsEmpty()) return rhs.IsEmpty();
if (rhs.IsEmpty()) return false;
return lhs.ptr() == rhs.ptr();
}
};
V8_EXPORT void VerifyHandleIsNonEmpty(bool is_empty);
// These functions are here just to match friend declarations in
// XxxCallbackInfo classes allowing these functions to access the internals
// of the info objects. These functions are supposed to be called by debugger
// macros.
void PrintFunctionCallbackInfo(void* function_callback_info);
void PrintPropertyCallbackInfo(void* property_callback_info);
} // namespace internal
} // namespace v8
#endif // INCLUDE_V8_INTERNAL_H_
|