File: darkmode_classifier.cc

package info (click to toggle)
chromium 139.0.7258.138-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,120,676 kB
  • sloc: cpp: 35,100,869; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (1188 lines) | stat: -rw-r--r-- 51,561 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif

// This file is automatically generated using tfNative from a neural network,
// trained by TensorFlow. Please do not edit.

#include "darkmode_classifier.h"

#include <algorithm>
#include <array>
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstring>
#include <limits>
#include <tuple>
#if USE_EIGEN
#include "third_party/eigen3/Eigen/Core"
#endif
namespace darkmode_tfnative_model {
namespace {

// -----------------------------------------------------------------------------
// OP LIBRARY
// Copied here to make sure that the inferece code always stays in sync with the
// lib that it was generated for.
// -----------------------------------------------------------------------------

// Default to using std::copy and std::fill over memcpy and memset as they
// are usually faster, thanks to the compiler getting stricter alignment
// guarantees.
#ifndef USE_TYPED_MEMSETMEMCPY
#define USE_TYPED_MEMSETMEMCPY 1
#endif
#define USE_EIGEN 0
#ifndef USE_EIGEN
#error Please define USE_EIGEN to either 0 or 1
#endif

// Helper to reinterpret memory as Eigen matrices.
#if USE_EIGEN
template <typename Scalar>
using ConstMatrixMap = typename Eigen::Map<
    const Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename Scalar>
using ConstRowVectorMap =
    typename Eigen::Map<const Eigen::Matrix<Scalar, Eigen::Dynamic, 1>>;
template <typename Scalar>
using RowVectorMap =
    typename Eigen::Map<Eigen::Matrix<Scalar, Eigen::Dynamic, 1>>;
template <typename Scalar>
using MatrixMap =
    typename Eigen::Map<Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>>;
#endif

#define BENCHMARK_TIMER(...)

// The size of a shape in terms of number of coefficients.
inline int ShapeSize(const int32_t rank, const int32_t* shape) {
  int size = 1;
  for (int i = 0; i < rank; ++i)
    size *= shape[i];
  return size;
}

// Helper to compute the size of the inner loop for an op that uses indices to
// specify which axes are reduced.
template <typename Tidx>
int32_t GetReduceInnerSize(int32_t input_tensor_rank,
                           const int32_t* __restrict input_shape,
                           int32_t index_tensor_rank,
                           const int32_t* __restrict index_shape,
                           const Tidx* __restrict index_values) {
  assert(index_tensor_rank <= 1);
  const int32_t num_indices = index_tensor_rank > 0 ? index_shape[0] : 1;
  int32_t inner_size = 1;
  for (int32_t i = 0; i < num_indices; ++i) {
    inner_size *= input_shape[index_values[i]];
  }
  return inner_size;
}

template <typename T>
void ConcatV2Args2(int32_t arg0_rank,
                   const int32_t* __restrict arg0_shape,
                   const T* __restrict arg0_values,
                   int32_t arg1_rank,
                   const int32_t* __restrict arg1_shape,
                   const T* __restrict arg1_values,
                   const int32_t* __restrict axis_value,
                   T* __restrict output_values) {
  BENCHMARK_TIMER("ConcatV2Args2");
  const int axis = axis_value[0];
  const int num_lines = ShapeSize(axis, arg0_shape);
  const int arg0_line_size = ShapeSize(arg0_rank - axis, arg0_shape + axis);
  const int arg1_line_size = ShapeSize(arg1_rank - axis, arg1_shape + axis);
  for (int line = 0; line < num_lines; ++line) {
    std::copy(arg0_values, arg0_values + arg0_line_size, output_values);
    arg0_values += arg0_line_size;
    output_values += arg0_line_size;
    std::copy(arg1_values, arg1_values + arg1_line_size, output_values);
    arg1_values += arg1_line_size;
    output_values += arg1_line_size;
  }
}

template <typename T>
void Conv2DAsGemm(const int32_t* __restrict in_shape,
                  const T* __restrict in_values,
                  const int32_t* __restrict filter_shape,
                  const T* __restrict filter_values,
                  T* __restrict output_values) {
  BENCHMARK_TIMER("Conv2DAsGemm");
#if USE_EIGEN
  const auto in = ConstMatrixMap<T>(in_values, in_shape[0], in_shape[1]);
  const auto filter =
      ConstMatrixMap<T>(filter_values, filter_shape[3],
                        filter_shape[0] * filter_shape[1] * filter_shape[2]);
  auto result = MatrixMap<T>(output_values, filter_shape[3], in_shape[1]);
  result.noalias() = filter * in;
#else
  const int32_t out_rows = in_shape[1];
  const int32_t out_cols = filter_shape[3];
  const int32_t dot_len = in_shape[0];
  for (int row = 0; row < out_rows; ++row) {
    for (int col = 0; col < out_cols; ++col) {
      T value = 0;
      for (int i = 0; i < dot_len; ++i) {
        value +=
            in_values[row * dot_len + i] * filter_values[i * out_cols + col];
      }
      *output_values++ = value;
    }
  }
#endif
}

template <typename T>
void DepthwiseConv2dNative(const int32_t* __restrict input_shape,
                           const T* __restrict input_values,
                           const int32_t* __restrict kernel_shape,
                           const T* __restrict kernel_values,
                           int32_t stride_y,
                           int32_t stride_x,
                           int32_t out_height,
                           int32_t out_width,
                           T* __restrict output_values) {
  BENCHMARK_TIMER("DepthwiseConv2dNative");
  // Give the shape values nicer names.
  assert(input_shape[3] == kernel_shape[2]);
  const int batch_size = input_shape[0];
  const int kernel_height = kernel_shape[0];
  const int kernel_width = kernel_shape[1];
  const int in_depth = kernel_shape[2];
  const int depth_mul = kernel_shape[3];
  const int in_height = input_shape[1];
  const int in_width = input_shape[2];

  // Compute the amount of padding needed to get the desired output size.
  const int pad_height =
      ((out_height - 1) * stride_y + kernel_height - in_height) / 2;
  const int pad_width =
      ((out_width - 1) * stride_x + kernel_width - in_width) / 2;

  // Cache the strides for address computations.
  const std::array<int, 4> in_strides = {
      input_shape[1] * input_shape[2] * input_shape[3],  // batch
      input_shape[2] * input_shape[3],                   // y
      input_shape[3],                                    // x
      1,                                                 // channel
  };
  const std::array<int, 4> kernel_strides = {
      kernel_shape[1] * kernel_shape[2] * kernel_shape[3],  // y
      kernel_shape[2] * kernel_shape[3],                    // x
      kernel_shape[3],                                      // in channels
      1,                                                    // channel mult
  };

  T* out_write_ptr = output_values;
  for (int batch = 0; batch < batch_size; ++batch) {
    for (int out_y = 0; out_y < out_height; ++out_y) {
      for (int out_x = 0; out_x < out_width; ++out_x) {
        // Compute the input read offsets.
        const int in_y_origin = (out_y * stride_y) - pad_height;
        const int in_x_origin = (out_x * stride_x) - pad_width;

        // Compute the range of the kernel to be applied (we may need to clip
        // when we'd read outside of the valid input region - for SAME).
        const int kernel_y_start = std::max(0, -in_y_origin);
        const int kernel_y_end =
            std::min(kernel_height, in_height - in_y_origin);
        const int kernel_x_start = std::max(0, -in_x_origin);
        const int kernel_x_end = std::min(kernel_width, in_width - in_x_origin);

        for (int in_c = 0; in_c < in_depth; ++in_c) {
          for (int mul_c = 0; mul_c < depth_mul; ++mul_c, ++out_write_ptr) {
            // Convolve.
            T sum = 0;
            for (int k_y = kernel_y_start; k_y < kernel_y_end; ++k_y) {
              const int in_y = in_y_origin + k_y;
              assert(in_y >= 0 && in_y < in_height);
              for (int k_x = kernel_x_start; k_x < kernel_x_end; ++k_x) {
                const int in_x = in_x_origin + k_x;
                assert(in_x >= 0 && in_x < in_width);
                const T input_value =
                    input_values[batch * in_strides[0] +  // batch
                                 in_y * in_strides[1] +   // y
                                 in_x * in_strides[2] +   // x
                                 in_c];                   // in chan
                const T kernel_value =
                    kernel_values[k_y * kernel_strides[0] +   // y
                                  k_x * kernel_strides[1] +   // x
                                  in_c * kernel_strides[2] +  // in chan
                                  mul_c];                     // chan mult
                sum += input_value * kernel_value;
              }
            }
            *out_write_ptr = sum;
          }  // mul_c
        }    // in_c
      }      // out_x
    }        // out_y
  }          // batch
}

template <typename T>
void FullyConnected(const int32_t* __restrict input_shape,
                    const T* __restrict input_values,
                    const int32_t* __restrict weight_shape,
                    const T* __restrict weight_values,
                    const int32_t* __restrict bias_shape,
                    const T* __restrict bias_values,
                    T* __restrict output_values) {
  BENCHMARK_TIMER("FullyConnected");
#if USE_EIGEN
  const auto in =
      ConstMatrixMap<T>(input_values, input_shape[1], input_shape[0]);
  const auto weight =
      ConstMatrixMap<T>(weight_values, weight_shape[1], weight_shape[0]);
  const auto bias = ConstRowVectorMap<T>(bias_values, bias_shape[0]);
  auto result = MatrixMap<T>(output_values, weight_shape[1], input_shape[0]);
  result.noalias() = (weight * in).colwise() + bias;
#else
  const int batch_size = input_shape[0];
  const int num_inputs = weight_shape[0];
  const int num_outputs = weight_shape[1];
  assert(input_shape[1] == num_inputs);
  assert(bias_shape[0] == num_outputs);
  for (int batch = 0; batch < batch_size; ++batch) {
    for (int out_i = 0; out_i < num_outputs; ++out_i) {
      T value = 0;
      for (int in_i = 0; in_i < num_inputs; ++in_i) {
        value += input_values[batch * num_inputs + in_i] *
                 weight_values[in_i * num_outputs + out_i];
      }
      value += bias_values[out_i];
      output_values[batch * num_outputs + out_i] = value;
    }
  }
#endif
}

template <typename T, typename TIndex>
void Gather(int params_rank,
            const int32_t* __restrict params_shape,
            const T* __restrict params_values,
            int indices_rank,
            const int32_t* __restrict indices_shape,
            const TIndex* __restrict indices_values,
            T* __restrict output_values) {
  BENCHMARK_TIMER("Gather");
  const int num_indices = ShapeSize(indices_rank, indices_shape);
  const int num_params = params_shape[0];
  const int slice_size = ShapeSize(params_rank - 1, params_shape + 1);
  for (int i = 0; i < num_indices; ++i) {
    const int index = indices_values[i];
    if (index < 0 || index >= num_params) {
      std::fill(output_values, output_values + slice_size, 0);
    } else {
      std::copy(params_values + index * slice_size,
                params_values + index * slice_size + slice_size, output_values);
    }
    output_values += slice_size;
  }
}

template <typename T, typename TIndex>
void Im2Col(const int32_t* __restrict input_shape,
            const T* __restrict input_values,
            const int32_t* __restrict kernel_shape,
            int32_t stride_y,
            int32_t stride_x,
            int32_t out_height,
            int32_t out_width,
            TIndex* output_shape,
            T* __restrict output_values) {
  BENCHMARK_TIMER("Im2Col");
  // Give the shape values nicer names.
  assert(input_shape[3] == kernel_shape[2]);
  const int batch_size = input_shape[0];
  const int kernel_height = kernel_shape[0];
  const int kernel_width = kernel_shape[1];
  const int in_depth = kernel_shape[2];
  const int in_height = input_shape[1];
  const int in_width = input_shape[2];

  // Compute the amount of padding needed to get the desired output size.
  const int pad_height =
      ((out_height - 1) * stride_y + kernel_height - in_height) / 2;
  const int pad_width =
      ((out_width - 1) * stride_x + kernel_width - in_width) / 2;

  // Cache the strides for address computations.
  const int x_stride = input_shape[3];
  const int y_stride = input_shape[2] * x_stride;
  const int batch_stride = input_shape[1] * y_stride;

  // Write the output shape.
  output_shape[0] = kernel_height * kernel_width * in_depth;
  output_shape[1] = input_shape[0] * out_width * out_height;

  for (int batch = 0; batch < batch_size; ++batch) {
    for (int out_y = 0; out_y < out_height; ++out_y) {
      for (int out_x = 0; out_x < out_width; ++out_x) {
        // Compute the input read offsets.
        const int in_y_origin = (out_y * stride_y) - pad_height;
        const int in_x_origin = (out_x * stride_x) - pad_width;

        // Compute the range of the kernel to be applied (we may need to clip
        // when we'd read outside of the valid input region - for SAME).
        const int kernel_y_start = std::max(0, -in_y_origin);
        const int kernel_y_end =
            std::min(kernel_height, in_height - in_y_origin);
        const int kernel_x_start = std::max(0, -in_x_origin);
        const int kernel_x_end = std::min(kernel_width, in_width - in_x_origin);

        // Padding top.
        if (kernel_y_start != 0) {
          const int num_lines = kernel_y_start;
          const int num_coeffs = num_lines * kernel_width * in_depth;
#if USE_TYPED_MEMSETMEMCPY
          std::fill(output_values, output_values + num_coeffs, 0);
#else
          std::memset(output_values, 0, num_coeffs * sizeof(T));
#endif
          output_values += num_coeffs;
        }
        for (int k_y = kernel_y_start; k_y < kernel_y_end; ++k_y) {
          // Padding left.
          if (kernel_x_start != 0) {
            const int num_coeffs = kernel_x_start * in_depth;
#if USE_TYPED_MEMSETMEMCPY
            std::fill(output_values, output_values + num_coeffs, 0);
#else
            std::memset(output_values, 0, num_coeffs * sizeof(T));
#endif
            output_values += num_coeffs;
          }
          // Valid values.
          {
            const int in_y = in_y_origin + k_y;
            const int in_x = in_x_origin + kernel_x_start;
            const int num_coeffs = (kernel_x_end - kernel_x_start) * in_depth;
#if USE_TYPED_MEMSETMEMCPY
            const int offset =
                batch * batch_stride + in_y * y_stride + in_x * x_stride;
            std::copy(input_values + offset, input_values + offset + num_coeffs,
                      output_values);
#else
            std::memcpy(output_values,
                        input_values  // Reusing the restricted pointer.
                            + batch * batch_stride  // batch
                            + in_y * y_stride       // y
                            + in_x * x_stride,      // x
                        num_coeffs * sizeof(T));
#endif
            output_values += num_coeffs;
          }
          // Padding right.
          if (kernel_x_end != kernel_width) {
            const int num_coeffs = (kernel_width - kernel_x_end) * in_depth;
#if USE_TYPED_MEMSETMEMCPY
            std::fill(output_values, output_values + num_coeffs, 0);
#else
            std::memset(output_values, 0, num_coeffs * sizeof(T));
#endif
            output_values += num_coeffs;
          }
        }
        // Padding bottom.
        if (kernel_y_end != kernel_height) {
          const int num_lines = kernel_height - kernel_y_end;
          const int num_coeffs = num_lines * kernel_width * in_depth;
#if USE_TYPED_MEMSETMEMCPY
          std::fill(output_values, output_values + num_coeffs, 0);
#else
          std::memset(output_values, 0, num_coeffs * sizeof(T));
#endif
          output_values += num_coeffs;
        }
      }
    }
  }
}

template <typename T>
void MaxPool(const int32_t* __restrict input_shape,
             const T* __restrict input_values,
             int32_t stride_y,
             int32_t stride_x,
             int32_t kernel_height,
             int32_t kernel_width,
             int32_t out_height,
             int32_t out_width,
             T* __restrict output_values) {
  BENCHMARK_TIMER("MaxPool");
  // Give the shape values nicer names.
  const int batch_size = input_shape[0];
  const int in_height = input_shape[1];
  const int in_width = input_shape[2];
  const int depth = input_shape[3];

  // Compute the amount of padding needed to get the desired output size.
  const int pad_height =
      ((out_height - 1) * stride_y + kernel_height - in_height) / 2;
  const int pad_width =
      ((out_width - 1) * stride_x + kernel_width - in_width) / 2;

  // Cache the strides for address computations.
  const std::array<int, 4> in_strides = {
      input_shape[1] * input_shape[2] * input_shape[3],  // batch
      input_shape[2] * input_shape[3],                   // y
      input_shape[3],                                    // x
      1,                                                 // channel
  };

  T* out_write_ptr = output_values;
  for (int batch = 0; batch < batch_size; ++batch) {
    for (int out_y = 0; out_y < out_height; ++out_y) {
      for (int out_x = 0; out_x < out_width; ++out_x) {
        // Compute the input read offsets.
        const int in_y_origin = (out_y * stride_y) - pad_height;
        const int in_x_origin = (out_x * stride_x) - pad_width;

        // Compute the range of the kernel to be applied (we may need to clip
        // when we'd read outside of the valid input region - for SAME).
        const int kernel_y_start = std::max(0, -in_y_origin);
        const int kernel_y_end =
            std::min(kernel_height, in_height - in_y_origin);
        const int kernel_x_start = std::max(0, -in_x_origin);
        const int kernel_x_end = std::min(kernel_width, in_width - in_x_origin);

        for (int chan = 0; chan < depth; ++chan, ++out_write_ptr) {
          // Convolve.
          T max_value = std::numeric_limits<T>::lowest();
          for (int k_y = kernel_y_start; k_y < kernel_y_end; ++k_y) {
            const int in_y = in_y_origin + k_y;
            assert(in_y >= 0 && in_y < in_height);
            for (int k_x = kernel_x_start; k_x < kernel_x_end; ++k_x) {
              const int in_x = in_x_origin + k_x;
              assert(in_x >= 0 && in_x < in_width);
              const T input_value =
                  input_values[batch * in_strides[0] +  // batch
                               in_y * in_strides[1] +   // y
                               in_x * in_strides[2] +   // x
                               chan];                   // channel
              max_value = std::max(max_value, input_value);
            }  // kernel_x
          }    // kernel_y
          *out_write_ptr = max_value;
        }  // chan
      }    // out_x
    }      // out_y
  }        // batch
}

template <typename T>
void Memcpy(const int32_t rank,
            const int32_t* __restrict input_shape,
            const T* __restrict input_values,
            T* __restrict output_values) {
  BENCHMARK_TIMER("Memcpy");
  const int size = ShapeSize(rank, input_shape);
  for (int i = 0; i < size; ++i) {
    output_values[i] = input_values[i];
  }
}

template <typename T>
void Softmax(const int32_t rank,
             const int32_t* __restrict input_shape,
             const T* __restrict input_values,
             const int32_t reduce_dim,
             T* __restrict output_values,
             T* __restrict scratch_values) {
  BENCHMARK_TIMER("Softmax");
  const int size = ShapeSize(rank, input_shape);
  if (rank == 2 && reduce_dim == 1) {
    T logits_max = std::numeric_limits<T>::lowest();

    // Max.
    for (int i = 0; i < size; ++i) {
      logits_max = std::max(logits_max, input_values[i]);
    }

    // Pre-compute exp.
    for (int i = 0; i < size; ++i) {
      scratch_values[i] = std::exp(input_values[i] - logits_max);
    }

    // Sum over the last dimension, then divide the exps and write out.
    for (int offset = 0; offset < size; offset += input_shape[1]) {
      T sum = 0;
      const int end_offset = offset + input_shape[1];
      for (int i = offset; i < end_offset; ++i)
        sum += scratch_values[i];
      const T rcp_denom = static_cast<T>(1) / sum;
      for (int i = 0; i < input_shape[1]; ++i) {
        output_values[offset + i] = scratch_values[offset + i] * rcp_denom;
      }
    }
  } else {
    assert(false && "Generic Softmax not yet supported.");
  }
}

// Returns the start position for a slice in a single dimension.
template <typename T>
int StridedSliceBegin(int range_mask,
                      const T* __restrict range_values,
                      const T* __restrict strides,
                      const int32_t* __restrict input_shape,
                      int dim) {
  const bool is_explicit = 0 == (range_mask & (1 << dim));
  if (is_explicit) {
    return range_values[dim];
  } else {
    const bool is_reverse = strides[dim] < 0;
    return is_reverse ? input_shape[dim] - 1 : 0;
  }
}

// Returns the end position for a slice in a single dimension.
template <typename T>
int StridedSliceEnd(int range_mask,
                    const T* __restrict range_values,
                    const T* __restrict strides,
                    const int32_t* __restrict input_shape,
                    int dim) {
  const bool is_explicit = 0 == (range_mask & (1 << dim));
  if (is_explicit) {
    return range_values[dim];
  } else {
    const bool is_reverse = strides[dim] < 0;
    return is_reverse ? -1 : input_shape[dim];
  }
}

template <typename T, typename TIdx>
void StridedSlice(const int32_t input_rank,
                  const int32_t* __restrict input_shape,
                  const T* __restrict input_values,
                  const TIdx* __restrict begin,
                  const TIdx* __restrict end,
                  const TIdx* __restrict strides,
                  int32_t begin_mask,
                  int32_t end_mask,
                  T* __restrict output_values) {
  BENCHMARK_TIMER("StridedSlice");
  const int MAX_RANK = 8;
  assert(input_rank < MAX_RANK);

  // Compute the address strides for each dimension.
  std::array<int, MAX_RANK> dim_addr_strides = {};
  dim_addr_strides[input_rank - 1] = 1;
  for (int dim = input_rank - 2; dim >= 0; --dim) {
    dim_addr_strides[dim] = dim_addr_strides[dim + 1] * input_shape[dim + 1];
  }

  // Resolve the masks and get explicit ranges for each dimension.
  std::array<int, MAX_RANK> dim_begin;
  std::array<int, MAX_RANK> dim_end;
  std::array<bool, MAX_RANK> dim_is_full_range;
  for (int dim = 0; dim < input_rank; ++dim) {
    const int stride = strides[dim];
    dim_begin[dim] =
        StridedSliceBegin(begin_mask, begin, strides, input_shape, dim);
    dim_end[dim] = StridedSliceEnd(end_mask, end, strides, input_shape, dim);
    dim_is_full_range[dim] =
        dim_begin[dim] == 0 && dim_end[dim] == input_shape[dim] && stride == 1;

    // Our termination criteria for loops is that we hit the end exactly, so
    // we need to ensure that we don't step over the end with stride != 1.
    const int length_mod = (dim_end[dim] - dim_begin[dim]) % stride;
    if (length_mod != 0) {
      dim_end[dim] += stride - length_mod;
    }
  }

  // Find out how large the blocks are that we can copy contiguously. (All
  // dimensions on the right for which we fetch the full range)
  int last_sliced_dim = input_rank - 1;
  int block_size = 1;
  for (int dim = input_rank - 1; dim >= 0 && dim_is_full_range[dim]; --dim) {
    block_size *= input_shape[dim];
    last_sliced_dim--;
  }

  // Initialize the read pos for each dimension according to the begin offsets.
  std::array<int, MAX_RANK> read_pos = {};
  for (int dim = 0; dim < input_rank; ++dim) {
    read_pos[dim] = dim_begin[dim];
  }

  while (read_pos[0] != dim_end[0]) {
    // Compute the read offset for the current position.
    int32_t read_offset = 0;
    for (int dim = 0; dim <= last_sliced_dim; ++dim) {
      const int addr_stride = dim_addr_strides[dim];
      if (read_pos[dim] < 0) {
        read_offset += (input_shape[dim] + read_pos[dim]) * addr_stride;
      } else {
        read_offset += read_pos[dim] * addr_stride;
      }
    }

#if USE_TYPED_MEMSETMEMCPY
    std::copy(input_values + read_offset,
              input_values + read_offset + block_size, output_values);
#else
    std::memcpy(output_values, input_values + read_offset,
                block_size * sizeof(T));
#endif
    output_values += block_size;

    // Advance the read position.
    for (int dim = last_sliced_dim; dim >= 0; --dim) {
      read_pos[dim] += strides[dim];
      if (dim == 0 || read_pos[dim] != dim_end[dim])
        break;
      read_pos[dim] = dim_begin[dim];
    }
  }
}

template <typename T>
void TransposeRank3(const int32_t* __restrict input_shape,
                    const T* __restrict input_values,
                    const int32_t* __restrict perm,
                    T* __restrict output_values) {
  BENCHMARK_TIMER("TransposeRank3");
  const std::array<int32_t, 3> in_strides = {
      input_shape[1] * input_shape[2],
      input_shape[2],
      1,
  };
  const std::array<int32_t, 3> out_strides = {
      in_strides[perm[0]],
      in_strides[perm[1]],
      in_strides[perm[2]],
  };
  const std::array<int32_t, 3> out_shape = {
      input_shape[perm[0]],
      input_shape[perm[1]],
      input_shape[perm[2]],
  };

  int32_t write_offset = 0;
  for (int32_t it0 = 0; it0 < out_shape[0]; ++it0) {
    const int32_t read_offset0 = it0 * out_strides[0];
    for (int32_t it1 = 0; it1 < out_shape[1]; ++it1) {
      const int32_t read_offset01 = read_offset0 + it1 * out_strides[1];
      for (int32_t it2 = 0; it2 < out_shape[2]; ++it2, ++write_offset) {
        const int32_t read_offset = read_offset01 + it2 * out_strides[2];
        output_values[write_offset] = input_values[read_offset];
      }
    }
  }
}

template <typename T>
void TransposeRank4(const int32_t* __restrict input_shape,
                    const T* __restrict input_values,
                    const int32_t* __restrict perm,
                    T* __restrict output_values) {
  BENCHMARK_TIMER("TransposeRank4");
  const std::array<int32_t, 4> in_strides = {
      input_shape[1] * input_shape[2] * input_shape[3],
      input_shape[2] * input_shape[3],
      input_shape[3],
      1,
  };
  const std::array<int32_t, 4> out_strides = {
      in_strides[perm[0]],
      in_strides[perm[1]],
      in_strides[perm[2]],
      in_strides[perm[3]],
  };
  const std::array<int32_t, 4> out_shape = {
      input_shape[perm[0]],
      input_shape[perm[1]],
      input_shape[perm[2]],
      input_shape[perm[3]],
  };

  int32_t write_offset = 0;
  for (int32_t it0 = 0; it0 < out_shape[0]; ++it0) {
    const int32_t read_offset0 = it0 * out_strides[0];
    for (int32_t it1 = 0; it1 < out_shape[1]; ++it1) {
      const int32_t read_offset01 = read_offset0 + it1 * out_strides[1];
      for (int32_t it2 = 0; it2 < out_shape[2]; ++it2) {
        const int32_t read_offset012 = read_offset01 + it2 * out_strides[2];
        for (int32_t it3 = 0; it3 < out_shape[3]; ++it3, ++write_offset) {
          const int32_t read_offset = read_offset012 + it3 * out_strides[3];
          output_values[write_offset] = input_values[read_offset];
        }
      }
    }
  }
}

template <typename T, typename TIdx, typename TDepth>
void OneHot(const int32_t input_rank,
            const int32_t* __restrict input_shape,
            const TIdx* __restrict input_values,
            const TDepth* __restrict depth,
            const T* __restrict on_value,
            const T* __restrict off_value,
            const int32_t axis,
            T* __restrict output_values) {
  BENCHMARK_TIMER("OneHot");
  const int32_t num_elements = ShapeSize(input_rank, input_shape);
  // We can assume axis >= 0 in this implementation.
  const int32_t prefix_dim_size = ShapeSize(axis, input_shape);
  const int32_t suffix_dim_size = num_elements / prefix_dim_size;
  int32_t write_offset = 0;
  for (int32_t i = 0; i < prefix_dim_size; i++) {
    int32_t read_offset_pre = i * suffix_dim_size;
    for (TDepth d = 0; d < *depth; d++) {
      for (int32_t j = 0; j < suffix_dim_size; j++, write_offset++) {
        const int32_t read_offset = read_offset_pre + j;
        output_values[write_offset] =
            (input_values[read_offset] == d) ? *on_value : *off_value;
      }
    }
  }
}

template <typename T, typename TIdx, typename TDepth>
void OneHotLastDim(const int32_t input_rank,
                   const int32_t* __restrict input_shape,
                   const TIdx* __restrict input_values,
                   const TDepth* __restrict depth,
                   const T* __restrict on_value,
                   const T* __restrict off_value,
                   T* __restrict output_values) {
  BENCHMARK_TIMER("OneHotLastDim");
  const int32_t num_elements = ShapeSize(input_rank, input_shape);
  int32_t write_offset = 0;
  for (int32_t i = 0; i < num_elements; i++) {
    for (TDepth d = 0; d < *depth; d++, write_offset++) {
      output_values[write_offset] =
          (input_values[i] == d) ? *on_value : *off_value;
    }
  }
}

// -----------------------------------------------------------------------------
// Simple unary ops
// -----------------------------------------------------------------------------

// We use macros instead of template functions with templated functors here
// because it's a lot less verbose and easier for the compiler to optimize.

#if USE_EIGEN

#define SIMPLE_UNARY_OP(OP_NAME, _, EXPR_EIGEN)                           \
  template <typename T>                                                   \
  void OP_NAME(const int32_t rank, const int32_t* __restrict input_shape, \
               const T* __restrict input_values,                          \
               T* __restrict output_values) {                             \
    BENCHMARK_TIMER(#OP_NAME);                                            \
    const int size = ShapeSize(rank, input_shape);                        \
    auto values = ConstRowVectorMap<T>(input_values, size).array();       \
    auto output = RowVectorMap<T>(output_values, size).array();           \
    output = EXPR_EIGEN;                                                  \
  }

#else

#define SIMPLE_UNARY_OP(OP_NAME, EXPR, _)                                 \
  template <typename T>                                                   \
  void OP_NAME(const int32_t rank, const int32_t* __restrict input_shape, \
               const T* __restrict input_values,                          \
               T* __restrict output_values) {                             \
    BENCHMARK_TIMER(#OP_NAME);                                            \
    const int size = ShapeSize(rank, input_shape);                        \
    for (int i = 0; i < size; ++i) {                                      \
      const T value = input_values[i];                                    \
      output_values[i] = EXPR;                                            \
    }                                                                     \
  }

#endif

// Second macro param is value expression, third entry is Eigen vector
// expression.
SIMPLE_UNARY_OP(Abs, std::abs(value), values.abs())
SIMPLE_UNARY_OP(Acos, std::acos(value), values.acos())
SIMPLE_UNARY_OP(Asin, std::asin(value), values.asin())
SIMPLE_UNARY_OP(Atan, std::atan(value), values.atan())
SIMPLE_UNARY_OP(Cos, std::cos(value), values.cos())
SIMPLE_UNARY_OP(Cosh, std::cosh(value), values.cosh())
SIMPLE_UNARY_OP(Exp, std::exp(value), values.exp())
SIMPLE_UNARY_OP(Elu,
                value < 0 ? std::expm1(value) : value,
                // Use branchless version of Elu: min(ReLU, e^x - 1)
                values.max(0).min(values.exp() - 1))
SIMPLE_UNARY_OP(Log, std::log(value), values.log())
SIMPLE_UNARY_OP(Log1p, std::log1p(value), values.log1p())
SIMPLE_UNARY_OP(Neg, -value, -values)
SIMPLE_UNARY_OP(Reciprocal, static_cast<T>(1) / value, values.cwiseInverse())
SIMPLE_UNARY_OP(Relu, std::max(value, static_cast<T>(0)), values.max(0))
SIMPLE_UNARY_OP(Relu6,
                std::min(std::max(value, static_cast<T>(0)), static_cast<T>(6)),
                values.max(0).min(6))
SIMPLE_UNARY_OP(Rsqrt, static_cast<T>(1) / std::sqrt(value), values.rsqrt())
SIMPLE_UNARY_OP(Sigmoid,
                static_cast<T>(1) / (1 + std::exp(-value)),
                ((-values).exp() + 1).cwiseInverse())
SIMPLE_UNARY_OP(Sin, std::sin(value), values.sin())
SIMPLE_UNARY_OP(Sinh, std::sinh(value), values.sinh())
SIMPLE_UNARY_OP(Sqrt, std::sqrt(value), values.sqrt())
SIMPLE_UNARY_OP(Square, value* value, values.square())
SIMPLE_UNARY_OP(Tan, std::tan(value), values.tan())
SIMPLE_UNARY_OP(Tanh, std::tanh(value), values.tanh())

// -----------------------------------------------------------------------------
// Broadcasting binary ops
// -----------------------------------------------------------------------------

template <typename T, typename OP>
void OpNoBroadcast(const int32_t left_rank,
                   const int32_t* __restrict left_shape,
                   const T* __restrict left_values,
                   const int32_t right_rank,
                   const int32_t* __restrict right_shape,
                   const T* __restrict right_values,
                   T* __restrict output_values,
                   OP op) {
  BENCHMARK_TIMER(op.name, "NoBroadcast");
  const int32_t size = ShapeSize(left_rank, left_shape);
#if USE_EIGEN
  auto lhs = ConstRowVectorMap<T>(left_values, size).array();
  auto rhs = ConstRowVectorMap<T>(right_values, size).array();
  auto output = RowVectorMap<T>(output_values, size).array();
  op.apply(lhs, rhs, output);
#else
  for (int32_t i = 0; i < size; ++i) {
    output_values[i] = op(left_values[i], right_values[i]);
  }
#endif
}

template <typename T, typename OP>
void OpInnerBroadcast(int32_t left_rank,
                      const int32_t* __restrict left_shape,
                      const T* __restrict left_values,
                      int32_t right_rank,
                      const int32_t* __restrict right_shape,
                      const T* __restrict right_values,
                      T* __restrict output_values,
                      OP op) {
  BENCHMARK_TIMER(op.name, "InnerBroadcast");
  const int32_t output_size = ShapeSize(left_rank, left_shape);
  const int32_t inner_size = ShapeSize(right_rank, right_shape);
  const int32_t outer_size = output_size / inner_size;
#if USE_EIGEN
  if (inner_size == 1) {
    // Apply the same value to all elements.
    auto left = ConstMatrixMap<T>(left_values, inner_size, outer_size);
    auto output = MatrixMap<T>(output_values, inner_size, outer_size);
    op.apply(left.array(), right_values[0], output.array());
  } else {
    auto left = ConstMatrixMap<T>(left_values, inner_size, outer_size);
    auto right = ConstRowVectorMap<T>(right_values, inner_size);
    auto output = MatrixMap<T>(output_values, inner_size, outer_size);
    for (int32_t col = 0; col < outer_size; col++) {
      op.apply(left.col(col).array(), right.array(), output.col(col).array());
    }
  }
#else
  for (int32_t idx_out = 0; idx_out < outer_size; ++idx_out) {
    for (int32_t idx_in = 0; idx_in < inner_size; ++idx_in) {
      const int32_t offset = idx_out * inner_size + idx_in;
      output_values[offset] = op(left_values[offset], right_values[idx_in]);
    }
  }
#endif
}

#define BROADCAST_BINARY_OP(OP_NAME, EXPR, EXPR_EIGEN)                         \
  template <typename T>                                                        \
  struct Op##OP_NAME {                                                         \
    const char* name = #OP_NAME;                                               \
    T operator()(const T lhs, const T rhs) { return EXPR; }                    \
    template <typename X, typename Y, typename Z>                              \
    void apply(const X& lhs, const Y& rhs, Z out) {                            \
      out = EXPR_EIGEN;                                                        \
    }                                                                          \
  };                                                                           \
  template <typename T>                                                        \
  void OP_NAME##NoBroadcast(                                                   \
      const int32_t left_rank, const int32_t* __restrict left_shape,           \
      const T* __restrict left_values, const int32_t right_rank,               \
      const int32_t* __restrict right_shape, const T* __restrict right_values, \
      T* __restrict output_values) {                                           \
    OpNoBroadcast(left_rank, left_shape, left_values, right_rank, right_shape, \
                  right_values, output_values, Op##OP_NAME<T>());              \
  }                                                                            \
  template <typename T>                                                        \
  void OP_NAME##InnerBroadcast(                                                \
      const int32_t left_rank, const int32_t* __restrict left_shape,           \
      const T* __restrict left_values, const int32_t right_rank,               \
      const int32_t* __restrict right_shape, const T* __restrict right_values, \
      T* __restrict output_values) {                                           \
    OpInnerBroadcast(left_rank, left_shape, left_values, right_rank,           \
                     right_shape, right_values, output_values,                 \
                     Op##OP_NAME<T>());                                        \
  }

// Second macro param is value expression, third entry is Eigen vector
// expression.
BROADCAST_BINARY_OP(Add, lhs + rhs, lhs + rhs)
BROADCAST_BINARY_OP(Maximum, std::max(lhs, rhs), lhs.max(rhs))
BROADCAST_BINARY_OP(Minimum, std::min(lhs, rhs), lhs.min(rhs))
BROADCAST_BINARY_OP(Mul, lhs* rhs, lhs* rhs)
BROADCAST_BINARY_OP(Sub, lhs - rhs, lhs - rhs)
BROADCAST_BINARY_OP(SquaredDifference,
                    (lhs - rhs) * (lhs - rhs),
                    (lhs - rhs).square())

// -----------------------------------------------------------------------------
// Reduce ops
// -----------------------------------------------------------------------------

// We use macros instead of template functions with templated functors here
// because it's a lot less verbose and easier for the compiler to optimize.
#define REDUCE_OP(OP_NAME, DEFAULT_VALUE, UPDATE_EXPR, RESULT_EXPR)           \
  template <typename T, typename Tidx>                                        \
  void OP_NAME##InnerReduce(                                                  \
      int32_t input_rank, const int32_t* __restrict input_shape,              \
      const T* __restrict input_values, int32_t index_tensor_rank,            \
      const int32_t* __restrict index_shape,                                  \
      const Tidx* __restrict index_values, T* __restrict output_values) {     \
    BENCHMARK_TIMER(#OP_NAME, "InnerReduce");                                 \
    const int32_t inner_size =                                                \
        GetReduceInnerSize(input_rank, input_shape, index_tensor_rank,        \
                           index_shape, index_values);                        \
    const int32_t input_size = ShapeSize(input_rank, input_shape);            \
    const int32_t outer_size = input_size / inner_size;                       \
    for (int32_t idx_out = 0; idx_out < outer_size; ++idx_out) {              \
      T value = DEFAULT_VALUE;                                                \
      for (int32_t idx_in = 0; idx_in < inner_size; ++idx_in) {               \
        const T prev = value;                                                 \
        const T next = input_values[idx_out * inner_size + idx_in];           \
        value = UPDATE_EXPR;                                                  \
      }                                                                       \
      const T count = inner_size;                                             \
      (void)sizeof(count);                                                    \
      output_values[idx_out] = RESULT_EXPR;                                   \
    }                                                                         \
  }                                                                           \
  template <typename T, typename Tidx>                                        \
  void OP_NAME##GenericReduceRank4(                                           \
      int32_t input_rank, const int32_t* __restrict input_shape,              \
      const T* __restrict input_values, int32_t index_tensor_rank,            \
      const int32_t* __restrict index_shape,                                  \
      const Tidx* __restrict index_values, T* __restrict output_values) {     \
    assert(input_rank == 4);                                                  \
    assert(index_tensor_rank <= 1);                                           \
    BENCHMARK_TIMER(#OP_NAME, "GenericReduceRank4");                          \
    int out_shape[4] = {input_shape[0], input_shape[1], input_shape[2],       \
                        input_shape[3]};                                      \
    bool reduce_mask[4] = {false, false, false, false};                       \
    const int num_indices = index_tensor_rank > 0 ? index_shape[0] : 1;       \
    for (int i = 0; i < num_indices; ++i) {                                   \
      reduce_mask[index_values[i]] = true;                                    \
      out_shape[index_values[i]] = 1;                                         \
    }                                                                         \
    const int out_strides[4] = {                                              \
        reduce_mask[0] ? 0 : out_shape[1] * out_shape[2] * out_shape[3],      \
        reduce_mask[1] ? 0 : out_shape[2] * out_shape[3],                     \
        reduce_mask[2] ? 0 : out_shape[3],                                    \
        reduce_mask[3] ? 0 : 1,                                               \
    };                                                                        \
    const int output_size = ShapeSize(input_rank, out_shape);                 \
    std::fill_n(output_values, output_size, DEFAULT_VALUE);                   \
    for (int dim0 = 0; dim0 < input_shape[0]; ++dim0) {                       \
      for (int dim1 = 0; dim1 < input_shape[1]; ++dim1) {                     \
        for (int dim2 = 0; dim2 < input_shape[2]; ++dim2) {                   \
          for (int dim3 = 0; dim3 < input_shape[3]; ++dim3, ++input_values) { \
            T* out_ptr = output_values + out_strides[0] * dim0 +              \
                         out_strides[1] * dim1 + out_strides[2] * dim2 +      \
                         out_strides[3] * dim3;                               \
            const T prev = *out_ptr;                                          \
            const T next = *input_values;                                     \
            *out_ptr = UPDATE_EXPR;                                           \
          }                                                                   \
        }                                                                     \
      }                                                                       \
    }                                                                         \
    const T count = (reduce_mask[0] ? input_shape[0] : 1) *                   \
                    (reduce_mask[1] ? input_shape[1] : 1) *                   \
                    (reduce_mask[2] ? input_shape[2] : 1) *                   \
                    (reduce_mask[3] ? input_shape[3] : 1);                    \
    (void)sizeof(count);                                                      \
    for (int i = 0; i < output_size; ++i) {                                   \
      const T value = output_values[i];                                       \
      output_values[i] = RESULT_EXPR;                                         \
    }                                                                         \
  }

REDUCE_OP(Max, std::numeric_limits<T>::lowest(), std::max(prev, next), value)
REDUCE_OP(Sum, 0, prev + next, value)
REDUCE_OP(Mean, 0, prev + next, value / count)

#undef REDUCE_OP

// -----------------------------------------------------------------------------
// Dequantize ops
// -----------------------------------------------------------------------------

template <typename T>
void DequantizeMinCombined(const int32_t rank,
                           const int32_t* __restrict input_shape,
                           const T* __restrict input_values,
                           const float* __restrict min_range,
                           const float* __restrict max_range,
                           float* __restrict output_values) {
  BENCHMARK_TIMER("DequantizeMinCombined");
  const int size = ShapeSize(rank, input_shape);
  const float offset =
      std::is_signed<T>::value
          ? (static_cast<float>(std::numeric_limits<T>::max()) -
             std::numeric_limits<T>::min() + 1) /
                2.0f
          : 0.0f;
  const float range_scale = (max_range[0] - min_range[0]) /
                            (static_cast<float>(std::numeric_limits<T>::max()) -
                             std::numeric_limits<T>::min());
  for (int i = 0; i < size; i++) {
    output_values[i] =
        ((static_cast<int32_t>(input_values[i]) + offset) * range_scale) +
        min_range[0];
  }
}

template <typename T>
void DequantizeMinFirst(const int32_t rank,
                        const int32_t* __restrict input_shape,
                        const T* __restrict input_values,
                        const float* __restrict min_range,
                        const float* __restrict max_range,
                        float* __restrict output_values) {
  BENCHMARK_TIMER("DequantizeMinFirst");
  const int size = ShapeSize(rank, input_shape);
  const float range_scale = (max_range[0] - min_range[0]) /
                            (static_cast<float>(std::numeric_limits<T>::max()) -
                             std::numeric_limits<T>::min());
  const float range_min_rounded =
      (max_range[0] == min_range[0]
           ? min_range[0]
           : round(min_range[0] / range_scale) * range_scale);
  for (int i = 0; i < size; i++) {
    output_values[i] = ((static_cast<int32_t>(input_values[i]) -
                         std::numeric_limits<T>::min()) *
                        range_scale) +
                       range_min_rounded;
  }
}

// -----------------------------------------------------------------------------
// CONSTANTS
// Note that for now, endianness of the target machine needs to match that of
// the one training was performed on.
// -----------------------------------------------------------------------------
const int32_t dnn_hiddenlayer_0_weights_part_0_shape[2] = {4, 10};
const union {
  uint8_t bytes[160];
  float values[40];
} dnn_hiddenlayer_0_weights_part_0 = {{
    0xbc, 0x22, 0x0a, 0xbf, 0xb4, 0x46, 0x8c, 0x3f, 0xba, 0x31, 0x34, 0xbe,
    0x4c, 0x65, 0xdb, 0xbe, 0xf0, 0x54, 0x5e, 0xbe, 0xc1, 0x5d, 0xb3, 0x3f,
    0xf4, 0xe6, 0x15, 0xbf, 0x05, 0xc6, 0x34, 0xbf, 0xc0, 0x37, 0x7e, 0xbd,
    0x6c, 0x35, 0x0b, 0xbf, 0xca, 0x53, 0x26, 0xbf, 0x58, 0xb4, 0x87, 0x3f,
    0x37, 0xee, 0x39, 0xbf, 0xda, 0xfa, 0xf9, 0xbe, 0x97, 0xc1, 0x06, 0xbf,
    0xf9, 0x4e, 0x81, 0x3f, 0xb2, 0x44, 0x85, 0xbf, 0x7f, 0x98, 0x7c, 0x3d,
    0x15, 0x26, 0xbc, 0xbe, 0x5c, 0x48, 0x05, 0x3f, 0xc8, 0xaa, 0xa1, 0xbd,
    0x35, 0xb3, 0x43, 0xbe, 0xeb, 0x46, 0x91, 0x3f, 0x80, 0x71, 0xe3, 0x3c,
    0xd1, 0x98, 0x79, 0x3f, 0x3c, 0xd0, 0x0d, 0xbf, 0x1e, 0x02, 0xd3, 0x3e,
    0x5d, 0x4b, 0xa2, 0xbf, 0x68, 0xac, 0xaa, 0xbd, 0xf8, 0xe1, 0x75, 0x3e,
    0x4a, 0x9c, 0x27, 0xbe, 0xf8, 0xae, 0xb2, 0xbe, 0x7f, 0x9d, 0x91, 0x3f,
    0x1e, 0x8b, 0xa8, 0xbe, 0x35, 0x7e, 0xb2, 0x3f, 0xbe, 0x8c, 0xd3, 0xbe,
    0xf9, 0xcd, 0xb5, 0x3f, 0xa1, 0x50, 0xaa, 0x3f, 0xe4, 0x6d, 0xdd, 0xbe,
    0x0d, 0xce, 0xd3, 0xbe,
}};
const int32_t dnn_hiddenlayer_0_biases_part_0_shape[1] = {10};
const union {
  uint8_t bytes[40];
  float values[10];
} dnn_hiddenlayer_0_biases_part_0 = {{
    0x00, 0x00, 0x00, 0x00, 0xbf, 0x6a, 0x53, 0x3e, 0xd3, 0xc1,
    0xd0, 0x3e, 0x00, 0x00, 0x00, 0x00, 0xb6, 0xd8, 0xc0, 0x3e,
    0xca, 0xe7, 0x35, 0x3e, 0x23, 0xa5, 0x44, 0x3f, 0x61, 0xfd,
    0xd2, 0x3e, 0x00, 0x00, 0x00, 0x00, 0xb6, 0xe0, 0x43, 0x3c,
}};
const int32_t dnn_logits_biases_part_0_shape[1] = {1};
const union {
  uint8_t bytes[4];
  float values[1];
} dnn_logits_biases_part_0 = {{
    0x75,
    0xca,
    0xd7,
    0xbe,
}};
const int32_t dnn_logits_weights_part_0_shape[2] = {10, 1};
const union {
  uint8_t bytes[40];
  float values[10];
} dnn_logits_weights_part_0 = {{
    0x13, 0x12, 0x39, 0x3f, 0xf3, 0xa5, 0xc2, 0xbf, 0x81, 0x7f,
    0xbe, 0x3f, 0xf8, 0x17, 0x26, 0x3e, 0xa4, 0x19, 0xa6, 0x3f,
    0xf0, 0xc9, 0xb7, 0xbf, 0x6a, 0x99, 0xd2, 0x3f, 0x8a, 0x7d,
    0xe9, 0x3f, 0x83, 0x9a, 0x3a, 0xbf, 0xf1, 0x6c, 0x08, 0x3e,
}};

}  // anonymous namespace

// -----------------------------------------------------------------------------
// INFERENCE
// -----------------------------------------------------------------------------

int32_t input0Shape[2] = {1, 4};
int32_t logits_MatMul_merged_with_dnn_logits_BiasAdd0Shape[2] = {1, 1};

void Inference(
    const float* __restrict input0 /* shape: 1,4 */,
    float* __restrict logits_MatMul_merged_with_dnn_logits_BiasAdd0 /* shape:
                                                                       1,1 */
    ,
    FixedAllocations* __restrict fixed) {
  const int32_t input0_shape[] = {1, 4};
  std::array<int32_t, 2> logits_MatMul_merged_with_dnn_logits_BiasAdd0_shape;

  // dnn/hiddenlayer_0/MatMul_merged_with_dnn/hiddenlayer_0/BiasAdd
  FullyConnected<float>(input0_shape, input0,
                        dnn_hiddenlayer_0_weights_part_0_shape,
                        dnn_hiddenlayer_0_weights_part_0.values,
                        dnn_hiddenlayer_0_biases_part_0_shape,
                        dnn_hiddenlayer_0_biases_part_0.values, fixed->alloc0);
  fixed->alloc0_shape[0] = 1;
  fixed->alloc0_shape[1] = 10;

  // dnn/hiddenlayer_0/hiddenlayer_0/Relu
  Relu<float>(2,  // rank
              fixed->alloc0_shape, fixed->alloc0, fixed->alloc1);
  fixed->alloc1_shape[0] = 1;
  fixed->alloc1_shape[1] = 10;

  // dnn/logits/MatMul_merged_with_dnn/logits/BiasAdd
  FullyConnected<float>(
      fixed->alloc1_shape, fixed->alloc1, dnn_logits_weights_part_0_shape,
      dnn_logits_weights_part_0.values, dnn_logits_biases_part_0_shape,
      dnn_logits_biases_part_0.values,
      logits_MatMul_merged_with_dnn_logits_BiasAdd0);
  logits_MatMul_merged_with_dnn_logits_BiasAdd0_shape[0] = 1;
  logits_MatMul_merged_with_dnn_logits_BiasAdd0_shape[1] = 1;
}

}  // namespace darkmode_tfnative_model