1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "third_party/blink/renderer/platform/media/smoothness_helper.h"
#include <optional>
#include "base/functional/callback.h"
#include "base/memory/raw_ptr.h"
#include "base/time/time.h"
#include "base/timer/timer.h"
#include "base/unguessable_token.h"
#include "media/learning/common/learning_task_controller.h"
#include "third_party/blink/renderer/platform/wtf/functional.h"
namespace blink {
namespace {
using ::media::learning::FeatureVector;
using ::media::learning::LearningTaskController;
using ::media::learning::TargetValue;
static constexpr base::TimeDelta kSegmentSize = base::Seconds(5);
// Maximum distance between NNRs for them to be consecutive.
static constexpr base::TimeDelta kMaxNNRDistance = base::Seconds(60);
// Max proportion of dropped frames in a window before we call it "not smooth".
static constexpr float kMaxDroppedFramesPerWindow = 0.2;
} // namespace
// Monitor smoothness during a playback, and call back on each window.
class SmoothnessWindowMonitor {
public:
using WindowCB = base::RepeatingCallback<void(int64_t dropped_frames,
int64_t decoded_frames)>;
SmoothnessWindowMonitor(SmoothnessHelper::Client* player, WindowCB cb)
: player_(player), cb_(std::move(cb)) {
segment_dropped_frames_ = player_->DroppedFrameCount();
segment_decoded_frames_ = player_->DecodedFrameCount();
update_timer_.Start(FROM_HERE, kSegmentSize,
WTF::BindRepeating(&SmoothnessWindowMonitor::OnTimer,
WTF::Unretained(this)));
}
~SmoothnessWindowMonitor() = default;
// Split playback into segments of length |kSegmentSize|, and update the
// default value of the current playback.
void OnTimer() {
auto new_dropped_frames = player_->DroppedFrameCount();
auto dropped_frames = new_dropped_frames - segment_dropped_frames_;
segment_dropped_frames_ = new_dropped_frames;
auto new_decoded_frames = player_->DecodedFrameCount();
auto decoded_frames = new_decoded_frames - segment_decoded_frames_;
segment_decoded_frames_ = new_decoded_frames;
if (!decoded_frames)
return;
cb_.Run(dropped_frames, decoded_frames);
}
private:
raw_ptr<SmoothnessHelper::Client> player_ = nullptr;
WindowCB cb_;
base::RepeatingTimer update_timer_;
// Current dropped, decoded frames at the start of the segment.
int64_t segment_decoded_frames_;
int64_t segment_dropped_frames_;
};
SmoothnessHelper::SmoothnessHelper(const FeatureVector& features)
: features_(features) {}
SmoothnessHelper::~SmoothnessHelper() = default;
class SmoothnessHelperImpl : public SmoothnessHelper {
public:
SmoothnessHelperImpl(
std::unique_ptr<LearningTaskController> consecutive_controller,
std::unique_ptr<LearningTaskController> nnr_controller,
const FeatureVector& features,
Client* player)
: SmoothnessHelper(features),
consecutive_bad_(std::move(consecutive_controller)),
consecutive_nnr_(std::move(nnr_controller)),
player_(player) {
monitor_ = std::make_unique<SmoothnessWindowMonitor>(
player_, WTF::BindRepeating(&SmoothnessHelperImpl::OnWindow,
WTF::Unretained(this)));
}
// This will ignore the last segment, if any, which is fine since it's not
// a complete segment. However, any in-progress observation will be completed
// with the default value if we've gotten enough data to set one.
~SmoothnessHelperImpl() override = default;
// See if we've exceeded the intra-NNR distance, and reset everything. Note
// that this can be called even when there isn't an NNR.
void UpdateNNRWindow() {
if (!most_recent_nnr_)
return;
auto now = base::TimeTicks::Now();
auto delta = now - *most_recent_nnr_;
if (delta >= kMaxNNRDistance) {
most_recent_nnr_.reset();
num_consecutive_nnrs_ = 0;
}
}
void NotifyNNR() override {
UpdateNNRWindow();
most_recent_nnr_ = base::TimeTicks::Now();
num_consecutive_nnrs_++;
if (num_consecutive_nnrs_ > max_num_consecutive_nnrs_) {
max_num_consecutive_nnrs_ = num_consecutive_nnrs_;
// Insist that we've started the NNR instance, so that we enforce a
// minimum amount of playback time before recording anything. Though
// it's possible that an NNR is interesting enough to record it anyway,
// and we only want to elide zero-NNR observations for short playbacks.
if (consecutive_nnr_.is_started()) {
consecutive_nnr_.UpdateObservation(
features(), TargetValue(max_num_consecutive_nnrs_));
}
}
}
// Split playback into segments of length |kSegmentSize|, and update the
// default value of the current playback.
void OnWindow(int64_t dropped_frames, int64_t decoded_frames) {
// After the first window, start the NNR observation. We want to ignore any
// short playback windows. We might want to require more than one window.
// TODO(liberato): How many windows count as a playback for NNR?
if (!consecutive_nnr_.is_started()) {
UpdateNNRWindow();
consecutive_nnr_.UpdateObservation(
features(), TargetValue(max_num_consecutive_nnrs_));
}
// Compute the percentage of dropped frames for this window.
double pct = (static_cast<double>(dropped_frames)) / decoded_frames;
// Once we get one full window, default to 0 for the consecutive windows
// prediction task.
if (!consecutive_bad_.is_started())
consecutive_bad_.UpdateObservation(features(), TargetValue(0));
// If this is a bad window, extend the run of consecutive bad windows, and
// update the target value if this is a new longest run.
if (pct >= kMaxDroppedFramesPerWindow) {
consecutive_bad_windows_++;
if (consecutive_bad_windows_ > max_consecutive_bad_windows_) {
max_consecutive_bad_windows_ = consecutive_bad_windows_;
consecutive_bad_.UpdateObservation(
features(), TargetValue(max_consecutive_bad_windows_));
}
} else {
consecutive_bad_windows_ = 0;
// Don't update the target value, since any previous target value is still
// the max consecutive windows.
}
}
// Helper for different learning tasks.
struct Task {
Task(std::unique_ptr<LearningTaskController> controller)
: controller_(std::move(controller)) {}
Task(const Task&) = delete;
Task& operator=(const Task&) = delete;
~Task() = default;
// Return true if and only if we've started an observation.
bool is_started() const { return !!id_; }
void UpdateObservation(const FeatureVector& features,
TargetValue current_target) {
target_value_ = current_target;
if (!is_started()) {
id_ = base::UnguessableToken::Create();
controller_->BeginObservation(*id_, features, target_value_);
} else {
controller_->UpdateDefaultTarget(*id_, target_value_);
}
}
const TargetValue& target_value() const { return target_value_; }
private:
// If an observation is in progress, then this is the id.
std::optional<base::UnguessableToken> id_;
std::unique_ptr<LearningTaskController> controller_;
TargetValue target_value_;
};
// Struct to hold all of the "at least |n| consecutive bad windows" data.
struct Task consecutive_bad_;
int consecutive_bad_windows_ = 0;
int max_consecutive_bad_windows_ = 0;
struct Task consecutive_nnr_;
// Time of the most recent nnr.
std::optional<base::TimeTicks> most_recent_nnr_;
// Number of NNRs that have occurred within |kMaxNNRDistance|.
int num_consecutive_nnrs_ = 0;
// Maximum value of |num_consecutive_nnrs_| that we've observed.
int max_num_consecutive_nnrs_ = 0;
// WebMediaPlayer which will tell us about the decoded / dropped frame counts.
raw_ptr<Client> player_;
std::unique_ptr<SmoothnessWindowMonitor> monitor_;
};
// static
std::unique_ptr<SmoothnessHelper> SmoothnessHelper::Create(
std::unique_ptr<LearningTaskController> bad_controller,
std::unique_ptr<LearningTaskController> nnr_controller,
const FeatureVector& features,
Client* player) {
return std::make_unique<SmoothnessHelperImpl>(
std::move(bad_controller), std::move(nnr_controller), features, player);
}
// static
base::TimeDelta SmoothnessHelper::SegmentSizeForTesting() {
return kSegmentSize;
}
} // namespace blink
|