File: permissions_aiv4_handler_unittest.cc

package info (click to toggle)
chromium 141.0.7390.107-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 6,246,132 kB
  • sloc: cpp: 35,264,965; ansic: 7,169,920; javascript: 4,250,185; python: 1,460,635; asm: 950,788; xml: 751,751; pascal: 187,972; sh: 89,459; perl: 88,691; objc: 79,953; sql: 53,924; cs: 44,622; fortran: 24,137; makefile: 22,313; tcl: 15,277; php: 14,018; yacc: 8,995; ruby: 7,553; awk: 3,720; lisp: 3,096; lex: 1,330; ada: 727; jsp: 228; sed: 36
file content (485 lines) | stat: -rw-r--r-- 19,425 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
// Copyright 2025 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "components/permissions/prediction_service/permissions_aiv4_handler.h"

#include "base/path_service.h"
#include "base/strings/strcat.h"
#include "base/strings/string_number_conversions.h"
#include "base/task/cancelable_task_tracker.h"
#include "base/test/bind.h"
#include "base/test/metrics/histogram_tester.h"
#include "base/test/task_environment.h"
#include "base/test/test_future.h"
#include "components/optimization_guide/core/delivery/test_model_info_builder.h"
#include "components/optimization_guide/core/delivery/test_optimization_guide_model_provider.h"
#include "components/optimization_guide/core/inference/test_model_handler.h"
#include "components/optimization_guide/proto/common_types.pb.h"
#include "components/permissions/prediction_service/permissions_ai_encoder_base.h"
#include "components/permissions/prediction_service/permissions_aiv4_executor.h"
#include "components/permissions/prediction_service/permissions_aiv4_model_metadata.pb.h"
#include "components/permissions/test/aivx_modelhandler_utils.h"
#include "components/permissions/test/enums_to_string.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/tflite_support/src/tensorflow_lite_support/cc/task/core/task_utils.h"

namespace permissions {
namespace {
using ModelCallbackFuture =
    ::base::test::TestFuture<const std::optional<PermissionRequestRelevance>&>;
using ::optimization_guide::proto::OptimizationTarget;
using ::testing::SizeIs;
using ::testing::ValuesIn;
using ModelInput = PermissionsAiv4Handler::ModelInput;

constexpr OptimizationTarget kOptTargetNotifications = OptimizationTarget::
    OPTIMIZATION_TARGET_PERMISSIONS_AIV4_NOTIFICATIONS_DESKTOP;

constexpr std::string_view kZeroReturnModel = "aiv4_ret_0.tflite";
constexpr std::string_view k0_023ReturnModel = "aiv4_ret_0_023.tflite";
constexpr std::string_view kOneReturnModel = "aiv4_ret_1.tflite";
constexpr std::string_view kExpects42InputModel =
    "aiv4_ret_0_expects_42_input.tflite";

constexpr SkColor kDefaultColor = SkColorSetRGB(0x1E, 0x1C, 0x0F);

auto kImageInputWidth = PermissionsAiv4Executor::kImageInputWidth;
auto kImageInputHeight = PermissionsAiv4Executor::kImageInputHeight;
constexpr char kModelExecutionTimeoutHistogram[] =
    "Permissions.AIv4.ModelExecutionTimeout";

constexpr int kTestTextInputSize = 768;

PermissionsAiv4ModelMetadata BuildMetadataFromValues(
    const std::array<float, 4>& thresholds,
    std::optional<int> text_embeddings_input_size = std::nullopt) {
  PermissionsAiv4ModelMetadata metadata;
  std::string serialized_metadata;
  metadata.mutable_relevance_thresholds()->set_min_low_relevance(thresholds[0]);
  metadata.mutable_relevance_thresholds()->set_min_medium_relevance(
      thresholds[1]);
  metadata.mutable_relevance_thresholds()->set_min_high_relevance(
      thresholds[2]);
  metadata.mutable_relevance_thresholds()->set_min_very_high_relevance(
      thresholds[3]);
  if (text_embeddings_input_size.has_value()) {
    metadata.set_text_embeddings_input_size(text_embeddings_input_size.value());
  }
  return metadata;
}

passage_embeddings::Embedding GetDummyEmbeddings(
    int input_size = kTestTextInputSize) {
  std::vector<float> data(input_size, 42.f);
  return passage_embeddings::Embedding(data,
                                       /*passage_word_count=*/42);
}

class PermissionsAiv4ExecutorFake : public PermissionsAiv4Executor {
 public:
  explicit PermissionsAiv4ExecutorFake(RequestType type)
      : PermissionsAiv4Executor(type) {}

  void set_preprocess_hook(
      base::OnceCallback<void(const std::vector<TfLiteTensor*>& input_tensors)>
          hook) {
    preprocess_hook_ = std::move(hook);
  }

  void set_postprocess_hook(
      base::OnceCallback<
          void(const std::vector<const TfLiteTensor*>& output_tensors)> hook) {
    postprocess_hook_ = std::move(hook);
  }

 protected:
  std::optional<PermissionRequestRelevance> relevance_;
  base::OnceCallback<void(const std::vector<TfLiteTensor*>& input_tensors)>
      preprocess_hook_;
  base::OnceCallback<void(
      const std::vector<const TfLiteTensor*>& output_tensors)>
      postprocess_hook_;

  bool Preprocess(const std::vector<TfLiteTensor*>& input_tensors,
                  const ModelInput& input) override {
    auto ret = PermissionsAiv4Executor::Preprocess(input_tensors, input);
    if (preprocess_hook_) {
      std::move(preprocess_hook_).Run(input_tensors);
    }
    return ret;
  }

  std::optional<PermissionsAiv4Executor::ModelOutput> Postprocess(
      const std::vector<const TfLiteTensor*>& output_tensors) override {
    if (postprocess_hook_) {
      std::move(postprocess_hook_).Run(output_tensors);
    }

    return PermissionsAiv4Executor::Postprocess(output_tensors);
  }
};

class PermissionsAiv4HandlerMock : public PermissionsAiv4Handler {
 public:
  PermissionsAiv4HandlerMock(
      optimization_guide::OptimizationGuideModelProvider* model_provider,
      optimization_guide::proto::OptimizationTarget optimization_target,
      RequestType request_type,
      std::unique_ptr<PermissionsAiv4Executor> model_executor)
      : PermissionsAiv4Handler(model_provider,
                               optimization_target,
                               request_type,
                               std::move(model_executor)) {}

  // This is a mock implementation of ExecuteModelWithInput that does not
  // schedule the real model execution but captures the callback. This gives the
  // test control over the duration of the model execution and can be used to
  // simulate the model execution being stuck (or simply too long).
  void ExecuteModelWithInput(
      ExecutionCallback callback,
      const PermissionsAiv4Executor::ModelInput& input) override {
    callback_ = std::move(callback);
  }

  void ReleaseCallback(PermissionRequestRelevance relevance) {
    EXPECT_TRUE(callback_);
    std::move(callback_).Run(relevance);
  }

 private:
  ExecutionCallback callback_;
};

class Aiv4HandlerTestBase : public testing::Test {
 public:
  Aiv4HandlerTestBase() = default;
  ~Aiv4HandlerTestBase() override = default;

  void SetUp() override {
    model_provider_ = std::make_unique<
        optimization_guide::TestOptimizationGuideModelProvider>();

    auto notification_executor_mock =
        std::make_unique<PermissionsAiv4ExecutorFake>(
            RequestType::kNotifications);
    notification_executor_mock_ = notification_executor_mock.get();
    notification_model_handler_ = std::make_unique<PermissionsAiv4Handler>(
        model_provider_.get(),
        /*optimization_target=*/kOptTargetNotifications,
        /*request_type=*/RequestType::kNotifications,
        std::move(notification_executor_mock));
  }

  void TearDown() override {
    notification_executor_mock_ = nullptr;
    notification_model_handler_.reset();
    model_provider_.reset();
    task_environment_.RunUntilIdle();
  }

  void PushModelFileToModelExecutor(
      OptimizationTarget opt_target,
      const base::FilePath& model_file_path,
      std::optional<PermissionsAiv4ModelMetadata> metadata = std::nullopt) {
    std::optional<optimization_guide::proto::Any> any;

    if (metadata.has_value()) {
      any = std::make_optional<optimization_guide::proto::Any>();
      std::string serialized_metadata;
      (metadata.value()).SerializeToString(&serialized_metadata);
      any->set_value(serialized_metadata);
      any->set_type_url(
          "type.googleapis.com/"
          "google.privacy.webpermissionpredictions.aiv4.v1."
          "PermissionsAiv4ModelMetadata");
    }

    auto model_metadata = optimization_guide::TestModelInfoBuilder()
                              .SetModelMetadata(any)
                              .SetModelFilePath(model_file_path)
                              .SetVersion(123)
                              .Build();

    model_handler()->OnModelUpdated(opt_target, *model_metadata);

    task_environment_.RunUntilIdle();
  }

  PermissionsAiv4Handler* model_handler() {
    return notification_model_handler_.get();
  }

  optimization_guide::TestOptimizationGuideModelProvider* GetModelProvider() {
    return model_provider_.get();
  }

  base::test::TaskEnvironment& task_environment() { return task_environment_; }

 protected:
  raw_ptr<PermissionsAiv4ExecutorFake> notification_executor_mock_;
  std::unique_ptr<PermissionsAiv4Handler> notification_model_handler_;

  std::unique_ptr<optimization_guide::TestOptimizationGuideModelProvider>
      model_provider_;
  base::test::TaskEnvironment task_environment_{
      base::test::TaskEnvironment::TimeSource::MOCK_TIME};
};

class Aiv4HandlerTest : public Aiv4HandlerTestBase {};

struct RelevanceTestCase {
  OptimizationTarget optimization_target;
  base::FilePath model_file_path;
  float expected_model_return_value;
  PermissionRequestRelevance expected_relevance;
  std::optional<PermissionsAiv4ModelMetadata> metadata;
};

class RelevanceAiv4HandlerTest
    : public Aiv4HandlerTestBase,
      public testing::WithParamInterface<RelevanceTestCase> {};

INSTANTIATE_TEST_SUITE_P(
    ModelResults,
    RelevanceAiv4HandlerTest,
    ValuesIn<RelevanceTestCase>({
        {kOptTargetNotifications, test::ModelFilePath(kZeroReturnModel),
         /*expected_model_return_value=*/0.0f,
         PermissionRequestRelevance::kVeryLow, /*metadata=*/std::nullopt},
        {kOptTargetNotifications, test::ModelFilePath(k0_023ReturnModel),
         /*expected_model_return_value=*/0.023f,
         PermissionRequestRelevance::kLow, /*metadata=*/std::nullopt},
        {kOptTargetNotifications, test::ModelFilePath(kOneReturnModel),
         /*expected_model_return_value=*/1.0f,
         PermissionRequestRelevance::kVeryHigh, /*metadata=*/std::nullopt},
        {kOptTargetNotifications, test::ModelFilePath(k0_023ReturnModel),
         /*expected_model_return_value=*/0.023f,
         PermissionRequestRelevance::kVeryLow,
         BuildMetadataFromValues({0.6, 0.7, 0.8, 0.9})},
        {kOptTargetNotifications, test::ModelFilePath(k0_023ReturnModel),
         /*expected_model_return_value=*/0.023f,
         PermissionRequestRelevance::kLow,
         BuildMetadataFromValues({0.023, 0.6, 0.7, 0.8})},
        {kOptTargetNotifications, test::ModelFilePath(k0_023ReturnModel),
         /*expected_model_return_value=*/0.023f,
         PermissionRequestRelevance::kMedium,
         BuildMetadataFromValues({0.022, 0.023, 0.6, 0.7})},
        {kOptTargetNotifications, test::ModelFilePath(k0_023ReturnModel),
         /*expected_model_return_value=*/0.023f,
         PermissionRequestRelevance::kHigh,
         BuildMetadataFromValues({0.021, 0.022, 0.023, 0.6})},
        {kOptTargetNotifications, test::ModelFilePath(k0_023ReturnModel),
         /*expected_model_return_value=*/0.023f,
         PermissionRequestRelevance::kVeryHigh,
         BuildMetadataFromValues({0.020, 0.021, 0.022, 0.023})},
    }),
    /*name_generator=*/
    [](const testing::TestParamInfo<RelevanceAiv4HandlerTest::ParamType>&
           info) {
      return base::StrCat(
          {"With",
           info.param.metadata.has_value() ? "Metadata" : "DefaultThresholds",
           "NotificationsModelReturns",
           test::ToString(info.param.expected_relevance)});
    });

TEST_P(RelevanceAiv4HandlerTest,
       RelevanceIsMatchedToTheCorrectModelThresholds) {
  PushModelFileToModelExecutor(GetParam().optimization_target,
                               GetParam().model_file_path, GetParam().metadata);
  auto* aiv4_handler = model_handler();
  EXPECT_TRUE(aiv4_handler->ModelAvailable());

  bool flag = false;
  notification_executor_mock_->set_postprocess_hook(base::BindLambdaForTesting(
      [&flag](const std::vector<const TfLiteTensor*>& output_tensors) {
        std::vector<float> data;
        EXPECT_TRUE(
            tflite::task::core::PopulateVector<float>(output_tensors[0], &data)
                .ok());
        EXPECT_FLOAT_EQ(data[0], GetParam().expected_model_return_value);
        flag = true;
      }));

  ModelCallbackFuture future;
  aiv4_handler->ExecuteModel(
      future.GetCallback(),
      /*model_input=*/
      ModelInput{/*snapshot=*/test::BuildBitmap(
                     kImageInputWidth, kImageInputHeight, kDefaultColor),
                 /*rendered_text_embedding=*/GetDummyEmbeddings()});
  EXPECT_EQ(future.Take(), GetParam().expected_relevance);
  EXPECT_TRUE(flag);
}

TEST_F(Aiv4HandlerTest, BitmapGetsCopiedToTensor) {
  PushModelFileToModelExecutor(kOptTargetNotifications,
                               test::ModelFilePath(kZeroReturnModel));

  auto snapshot =
      test::BuildBitmap(kImageInputWidth, kImageInputHeight, kDefaultColor);

  bool flag = false;
  notification_executor_mock_->set_preprocess_hook(base::BindLambdaForTesting(
      [&flag](const std::vector<TfLiteTensor*>& input_tensors) {
        std::vector<float> data;
        ASSERT_TRUE(
            tflite::task::core::PopulateVector<float>(input_tensors[1], &data)
                .ok());
        EXPECT_THAT(data, SizeIs(kImageInputWidth * kImageInputHeight * 3));
        for (int i = 0; i < kImageInputWidth * kImageInputHeight; i += 3) {
          EXPECT_FLOAT_EQ(data[i], SkColorGetR(kDefaultColor) / 255.0f);
          EXPECT_FLOAT_EQ(data[i + 1], SkColorGetG(kDefaultColor) / 255.0f);
          EXPECT_FLOAT_EQ(data[i + 2], SkColorGetB(kDefaultColor) / 255.0f);
        }
        flag = true;
      }));

  ModelCallbackFuture future;
  auto* aiv4_handler = model_handler();
  aiv4_handler->ExecuteModel(
      future.GetCallback(),
      ModelInput{std::move(snapshot), GetDummyEmbeddings()});
  EXPECT_EQ(future.Take(), PermissionRequestRelevance::kVeryLow);
  EXPECT_TRUE(flag);
}

// This test verifies the timeout behavior of the permission model handler.
// The timeout is triggered when the model execution takes longer than the
// timeout threshold. Additionally, this test verifies that the model handler
// prevents concurrent executions after the timeout is triggered and before the
// first execution is completed.
TEST_F(Aiv4HandlerTest, ModelHandlerTimeoutExecutions) {
  base::HistogramTester histograms;

  auto geolocation_executor_mock =
      std::make_unique<PermissionsAiv4ExecutorFake>(RequestType::kGeolocation);
  std::unique_ptr<PermissionsAiv4HandlerMock> model_handler_mock =
      std::make_unique<PermissionsAiv4HandlerMock>(
          GetModelProvider(),
          /*optimization_target=*/kOptTargetNotifications,
          /*request_type=*/RequestType::kNotifications,
          std::move(geolocation_executor_mock));

  // Because of `PermissionsAiv3ExecutorFake` the first execution will be hold
  // until manually released. In this case we release the callback before we
  // try to execute the model again.
  ModelCallbackFuture future1;
  // The image size is arbitrary and does not affect the test.
  auto snapshot1 =
      test::BuildBitmap(/*width=*/32, /*height=*/32, kDefaultColor);
  model_handler_mock->ExecuteModel(
      future1.GetCallback(),
      ModelInput{std::move(snapshot1), GetDummyEmbeddings()});

  task_environment().FastForwardBy(
      base::Seconds(PermissionsAiv4Handler::kModelExecutionTimeout + 1));

  // Because the execution took longer than the timeout, the execution should
  // return `std::nullopt` result even without manually releasing the callback.
  EXPECT_EQ(future1.Take(), std::nullopt);

  // The second execution should return an empty response because the model is
  // still busy with the first execution.
  ModelCallbackFuture future2;
  // The image size is arbitrary and does not affect the test.
  auto snapshot2 =
      test::BuildBitmap(/*width=*/32, /*height=*/32, kDefaultColor);
  model_handler_mock->ExecuteModel(
      future2.GetCallback(),
      ModelInput{std::move(snapshot2), GetDummyEmbeddings()});

  EXPECT_EQ(future2.Take(), std::nullopt);

  // This will resets the flags that prevent concurrent executions. `kVeryLow`
  // will not be returned because the callback was released after the timeout.
  model_handler_mock->ReleaseCallback(PermissionRequestRelevance::kVeryLow);

  ModelCallbackFuture future3;
  // The image size is arbitrary and does not affect the test.
  auto snapshot3 =
      test::BuildBitmap(/*width=*/32, /*height=*/32, kDefaultColor);
  model_handler_mock->ExecuteModel(
      future3.GetCallback(),
      ModelInput{std::move(snapshot3), GetDummyEmbeddings()});

  // Because all flags are reset, the execution will not timeout and the
  // correct relevance will be returned.
  model_handler_mock->ReleaseCallback(PermissionRequestRelevance::kVeryLow);

  EXPECT_EQ(future3.Take(), PermissionRequestRelevance::kVeryLow);

  histograms.ExpectBucketCount(kModelExecutionTimeoutHistogram, true, 1u);
}

TEST_F(Aiv4HandlerTest, TextEmbeddingGetsCopiedToTensor) {
  PushModelFileToModelExecutor(kOptTargetNotifications,
                               test::ModelFilePath(kZeroReturnModel));

  auto snapshot =
      test::BuildBitmap(kImageInputWidth, kImageInputHeight, kDefaultColor);

  bool flag = false;
  notification_executor_mock_->set_preprocess_hook(base::BindLambdaForTesting(
      [&flag](const std::vector<TfLiteTensor*>& input_tensors) {
        std::vector<float> data;
        ASSERT_TRUE(
            tflite::task::core::PopulateVector<float>(input_tensors[0], &data)
                .ok());
        EXPECT_THAT(data, SizeIs(kTestTextInputSize));
        for (int i = 0; i < kTestTextInputSize; i++) {
          EXPECT_FLOAT_EQ(data[i], 42.f);
        }
        flag = true;
      }));

  ModelCallbackFuture future;
  auto* aiv4_handler = model_handler();
  aiv4_handler->ExecuteModel(
      future.GetCallback(),
      ModelInput{std::move(snapshot), GetDummyEmbeddings()});
  EXPECT_EQ(future.Take(), PermissionRequestRelevance::kVeryLow);
  EXPECT_TRUE(flag);
}

TEST_F(Aiv4HandlerTest, TextEmbeddingSizeMatchesMetadata) {
  auto metadata = BuildMetadataFromValues({0.1, 0.2, 0.3, 0.4}, 42);
  PushModelFileToModelExecutor(kOptTargetNotifications,
                               test::ModelFilePath(kExpects42InputModel),
                               metadata);

  auto snapshot =
      test::BuildBitmap(kImageInputWidth, kImageInputHeight, kDefaultColor);

  ModelCallbackFuture future;
  auto* aiv4_handler = model_handler();
  aiv4_handler->ExecuteModel(
      future.GetCallback(),
      ModelInput{std::move(snapshot), GetDummyEmbeddings(/*input_size=*/42)});

  EXPECT_EQ(future.Take(), PermissionRequestRelevance::kVeryLow);
}

TEST_F(Aiv4HandlerTest, TextEmbeddingSizeDoesNotMatchAiv4InputSize) {
  PushModelFileToModelExecutor(kOptTargetNotifications,
                               test::ModelFilePath(kZeroReturnModel));

  auto snapshot =
      test::BuildBitmap(kImageInputWidth, kImageInputHeight, kDefaultColor);

  ModelCallbackFuture future;
  auto* aiv4_handler = model_handler();
  aiv4_handler->ExecuteModel(
      future.GetCallback(),
      ModelInput{std::move(snapshot), GetDummyEmbeddings(/*input_size=*/42)});

  // We do not execute the model and call the callback with nullopt if input
  // size does not match expectations.
  EXPECT_EQ(future.Take(), std::nullopt);
}

}  // namespace
}  // namespace permissions