1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "base/containers/span.h"
#include "base/numerics/safe_conversions.h"
// This file is automatically generated using tfNative from a neural network,
// trained by TensorFlow. Please do not edit.
#include "darkmode_classifier.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstring>
#include <limits>
#include <tuple>
#if USE_EIGEN
#include "third_party/eigen3/Eigen/Core"
#endif
namespace darkmode_tfnative_model {
namespace {
// -----------------------------------------------------------------------------
// OP LIBRARY
// Copied here to make sure that the inferece code always stays in sync with the
// lib that it was generated for.
// -----------------------------------------------------------------------------
// Default to using std::copy and std::fill over memcpy and memset as they
// are usually faster, thanks to the compiler getting stricter alignment
// guarantees.
#ifndef USE_TYPED_MEMSETMEMCPY
#define USE_TYPED_MEMSETMEMCPY 1
#endif
#define USE_EIGEN 0
#ifndef USE_EIGEN
#error Please define USE_EIGEN to either 0 or 1
#endif
// Helper to reinterpret memory as Eigen matrices.
#if USE_EIGEN
template <typename Scalar>
using ConstMatrixMap = typename Eigen::Map<
const Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename Scalar>
using ConstRowVectorMap =
typename Eigen::Map<const Eigen::Matrix<Scalar, Eigen::Dynamic, 1>>;
template <typename Scalar>
using RowVectorMap =
typename Eigen::Map<Eigen::Matrix<Scalar, Eigen::Dynamic, 1>>;
template <typename Scalar>
using MatrixMap =
typename Eigen::Map<Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>>;
#endif
#define BENCHMARK_TIMER(...)
// The size of a shape in terms of number of coefficients.
inline int ShapeSize(const int32_t rank, base::span<const int32_t> shape) {
int size = 1;
for (int i = 0; i < rank; ++i)
size *= shape[i];
return size;
}
template <typename T>
void FullyConnected(base::span<const int32_t> input_shape,
base::span<const T> input_values,
base::span<const int32_t> weight_shape,
base::span<const T> weight_values,
base::span<const int32_t> bias_shape,
base::span<const T> bias_values,
base::span<T> output_values) {
BENCHMARK_TIMER("FullyConnected");
#if USE_EIGEN
const auto in =
ConstMatrixMap<T>(input_values, input_shape[1], input_shape[0]);
const auto weight =
ConstMatrixMap<T>(weight_values, weight_shape[1], weight_shape[0]);
const auto bias = ConstRowVectorMap<T>(bias_values, bias_shape[0]);
auto result = MatrixMap<T>(output_values, weight_shape[1], input_shape[0]);
result.noalias() = (weight * in).colwise() + bias;
#else
const int batch_size = input_shape[0];
const int num_inputs = weight_shape[0];
const int num_outputs = weight_shape[1];
assert(input_shape[1] == num_inputs);
assert(bias_shape[0] == num_outputs);
for (int batch = 0; batch < batch_size; ++batch) {
for (int out_i = 0; out_i < num_outputs; ++out_i) {
T value = 0;
for (int in_i = 0; in_i < num_inputs; ++in_i) {
value += input_values[batch * num_inputs + in_i] *
weight_values[in_i * num_outputs + out_i];
}
value += bias_values[out_i];
output_values[batch * num_outputs + out_i] = value;
}
}
#endif
}
// -----------------------------------------------------------------------------
// Simple unary ops
// -----------------------------------------------------------------------------
// We use macros instead of template functions with templated functors here
// because it's a lot less verbose and easier for the compiler to optimize.
#if USE_EIGEN
#define SIMPLE_UNARY_OP(OP_NAME, _, EXPR_EIGEN) \
template <typename T> \
void OP_NAME(const int32_t rank, base::span<const int32_t> input_shape, \
base::span<const T> input_values, \
base::span<T> output_values) { \
BENCHMARK_TIMER(#OP_NAME); \
const int size = ShapeSize(rank, input_shape); \
auto values = ConstRowVectorMap<T>(input_values.data(), size).array(); \
auto output = RowVectorMap<T>(output_values.data(), size).array(); \
output = EXPR_EIGEN; \
}
#else
#define SIMPLE_UNARY_OP(OP_NAME, EXPR, _) \
template <typename T> \
void OP_NAME(const int32_t rank, base::span<const int32_t> input_shape, \
base::span<const T> input_values, \
base::span<T> output_values) { \
BENCHMARK_TIMER(#OP_NAME); \
const int size = ShapeSize(rank, input_shape); \
for (int i = 0; i < size; ++i) { \
const T value = input_values[i]; \
output_values[i] = EXPR; \
} \
}
#endif
// Second macro param is value expression, third entry is Eigen vector
// expression.
SIMPLE_UNARY_OP(Relu, std::max(value, static_cast<T>(0)), values.max(0))
// -----------------------------------------------------------------------------
// CONSTANTS
// Note that for now, endianness of the target machine needs to match that of
// the one training was performed on.
// -----------------------------------------------------------------------------
const int32_t dnn_hiddenlayer_0_weights_part_0_shape[2] = {4, 10};
const union {
uint8_t bytes[160];
float values[40];
} dnn_hiddenlayer_0_weights_part_0 = {{
0xbc, 0x22, 0x0a, 0xbf, 0xb4, 0x46, 0x8c, 0x3f, 0xba, 0x31, 0x34, 0xbe,
0x4c, 0x65, 0xdb, 0xbe, 0xf0, 0x54, 0x5e, 0xbe, 0xc1, 0x5d, 0xb3, 0x3f,
0xf4, 0xe6, 0x15, 0xbf, 0x05, 0xc6, 0x34, 0xbf, 0xc0, 0x37, 0x7e, 0xbd,
0x6c, 0x35, 0x0b, 0xbf, 0xca, 0x53, 0x26, 0xbf, 0x58, 0xb4, 0x87, 0x3f,
0x37, 0xee, 0x39, 0xbf, 0xda, 0xfa, 0xf9, 0xbe, 0x97, 0xc1, 0x06, 0xbf,
0xf9, 0x4e, 0x81, 0x3f, 0xb2, 0x44, 0x85, 0xbf, 0x7f, 0x98, 0x7c, 0x3d,
0x15, 0x26, 0xbc, 0xbe, 0x5c, 0x48, 0x05, 0x3f, 0xc8, 0xaa, 0xa1, 0xbd,
0x35, 0xb3, 0x43, 0xbe, 0xeb, 0x46, 0x91, 0x3f, 0x80, 0x71, 0xe3, 0x3c,
0xd1, 0x98, 0x79, 0x3f, 0x3c, 0xd0, 0x0d, 0xbf, 0x1e, 0x02, 0xd3, 0x3e,
0x5d, 0x4b, 0xa2, 0xbf, 0x68, 0xac, 0xaa, 0xbd, 0xf8, 0xe1, 0x75, 0x3e,
0x4a, 0x9c, 0x27, 0xbe, 0xf8, 0xae, 0xb2, 0xbe, 0x7f, 0x9d, 0x91, 0x3f,
0x1e, 0x8b, 0xa8, 0xbe, 0x35, 0x7e, 0xb2, 0x3f, 0xbe, 0x8c, 0xd3, 0xbe,
0xf9, 0xcd, 0xb5, 0x3f, 0xa1, 0x50, 0xaa, 0x3f, 0xe4, 0x6d, 0xdd, 0xbe,
0x0d, 0xce, 0xd3, 0xbe,
}};
const int32_t dnn_hiddenlayer_0_biases_part_0_shape[1] = {10};
const union {
uint8_t bytes[40];
float values[10];
} dnn_hiddenlayer_0_biases_part_0 = {{
0x00, 0x00, 0x00, 0x00, 0xbf, 0x6a, 0x53, 0x3e, 0xd3, 0xc1,
0xd0, 0x3e, 0x00, 0x00, 0x00, 0x00, 0xb6, 0xd8, 0xc0, 0x3e,
0xca, 0xe7, 0x35, 0x3e, 0x23, 0xa5, 0x44, 0x3f, 0x61, 0xfd,
0xd2, 0x3e, 0x00, 0x00, 0x00, 0x00, 0xb6, 0xe0, 0x43, 0x3c,
}};
const int32_t dnn_logits_biases_part_0_shape[1] = {1};
const union {
uint8_t bytes[4];
float values[1];
} dnn_logits_biases_part_0 = {{
0x75,
0xca,
0xd7,
0xbe,
}};
const int32_t dnn_logits_weights_part_0_shape[2] = {10, 1};
const union {
uint8_t bytes[40];
float values[10];
} dnn_logits_weights_part_0 = {{
0x13, 0x12, 0x39, 0x3f, 0xf3, 0xa5, 0xc2, 0xbf, 0x81, 0x7f,
0xbe, 0x3f, 0xf8, 0x17, 0x26, 0x3e, 0xa4, 0x19, 0xa6, 0x3f,
0xf0, 0xc9, 0xb7, 0xbf, 0x6a, 0x99, 0xd2, 0x3f, 0x8a, 0x7d,
0xe9, 0x3f, 0x83, 0x9a, 0x3a, 0xbf, 0xf1, 0x6c, 0x08, 0x3e,
}};
} // anonymous namespace
// -----------------------------------------------------------------------------
// INFERENCE
// -----------------------------------------------------------------------------
int32_t input0Shape[2] = {1, 4};
int32_t logits_MatMul_merged_with_dnn_logits_BiasAdd0Shape[2] = {1, 1};
void Inference(
base::span<const float> input0 /* shape: 1,4 */,
base::span<float> logits_MatMul_merged_with_dnn_logits_BiasAdd0 /* shape:
1,1 */
,
FixedAllocations* __restrict fixed) {
const int32_t input0_shape[] = {1, 4};
std::array<int32_t, 2> logits_MatMul_merged_with_dnn_logits_BiasAdd0_shape;
// dnn/hiddenlayer_0/MatMul_merged_with_dnn/hiddenlayer_0/BiasAdd
FullyConnected<float>(input0_shape, input0,
dnn_hiddenlayer_0_weights_part_0_shape,
dnn_hiddenlayer_0_weights_part_0.values,
dnn_hiddenlayer_0_biases_part_0_shape,
dnn_hiddenlayer_0_biases_part_0.values, fixed->alloc0);
fixed->alloc0_shape[0] = 1;
fixed->alloc0_shape[1] = 10;
// dnn/hiddenlayer_0/hiddenlayer_0/Relu
Relu<float>(2, // rank
fixed->alloc0_shape, fixed->alloc0, fixed->alloc1);
fixed->alloc1_shape[0] = 1;
fixed->alloc1_shape[1] = 10;
// dnn/logits/MatMul_merged_with_dnn/logits/BiasAdd
FullyConnected<float>(
fixed->alloc1_shape, fixed->alloc1, dnn_logits_weights_part_0_shape,
dnn_logits_weights_part_0.values, dnn_logits_biases_part_0_shape,
dnn_logits_biases_part_0.values,
logits_MatMul_merged_with_dnn_logits_BiasAdd0);
logits_MatMul_merged_with_dnn_logits_BiasAdd0_shape[0] = 1;
logits_MatMul_merged_with_dnn_logits_BiasAdd0_shape[1] = 1;
}
} // namespace darkmode_tfnative_model
|