1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
// Copyright 2025 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "crypto/sign.h"
#include "base/check.h"
#include "base/check_op.h"
#include "crypto/openssl_util.h"
#include "third_party/boringssl/src/include/openssl/evp.h"
#include "third_party/boringssl/src/include/openssl/rsa.h"
namespace crypto::sign {
namespace {
enum SignatureMode {
kOneShot,
kStreaming,
};
bool CanUseKeyForSignatureKind(SignatureKind kind,
const EVP_PKEY* key,
SignatureMode mode) {
// There is a separate EVP_PKEY_RSA_PSS value that this can return for
// PSS-specific keys, but it's not used by PublicKey or PrivateKey.
const int id = EVP_PKEY_id(key);
switch (kind) {
case RSA_PKCS1_SHA1:
case RSA_PKCS1_SHA256:
case RSA_PSS_SHA256:
// There exists an EVP_PKEY_RSA_PSS key type for RSA-PSS-specific keys,
// but BoringSSL doesn't implement it and Chromium doesn't use it.
return id == EVP_PKEY_RSA;
case ECDSA_SHA256:
return id == EVP_PKEY_EC;
case ED25519:
return id == EVP_PKEY_ED25519 && mode == kOneShot;
}
return false;
}
const EVP_MD* DigestForSignatureKind(SignatureKind kind) {
switch (kind) {
case RSA_PKCS1_SHA1:
return EVP_sha1();
case RSA_PKCS1_SHA256:
return EVP_sha256();
case RSA_PSS_SHA256:
return EVP_sha256();
case ECDSA_SHA256:
return EVP_sha256();
case ED25519:
return nullptr;
}
}
void ConfigurePkeyCtx(EVP_PKEY_CTX* pkctx, SignatureKind kind) {
if (kind == RSA_PSS_SHA256) {
CHECK(EVP_PKEY_CTX_set_rsa_padding(pkctx, RSA_PKCS1_PSS_PADDING));
CHECK(EVP_PKEY_CTX_set_rsa_mgf1_md(pkctx, DigestForSignatureKind(kind)));
CHECK(EVP_PKEY_CTX_set_rsa_pss_saltlen(pkctx, RSA_PSS_SALTLEN_DIGEST));
}
}
} // namespace
std::vector<uint8_t> Sign(SignatureKind kind,
const crypto::keypair::PrivateKey& key,
base::span<const uint8_t> data) {
CHECK(CanUseKeyForSignatureKind(kind, key.key(), kOneShot));
const EVP_MD* const md = DigestForSignatureKind(kind);
EVP_PKEY_CTX* pkctx;
bssl::UniquePtr<EVP_MD_CTX> context(EVP_MD_CTX_new());
CHECK(EVP_DigestSignInit(context.get(), &pkctx, md, nullptr,
const_cast<EVP_PKEY*>(key.key())));
ConfigurePkeyCtx(pkctx, kind);
size_t len = 0;
CHECK(EVP_DigestSign(context.get(), nullptr, &len, data.data(), data.size()));
std::vector<uint8_t> result(len);
CHECK(EVP_DigestSign(context.get(), result.data(), &len, data.data(),
data.size()));
result.resize(len);
return result;
}
bool Verify(SignatureKind kind,
const crypto::keypair::PublicKey& key,
base::span<const uint8_t> data,
base::span<const uint8_t> signature) {
CHECK(CanUseKeyForSignatureKind(kind, key.key(), kOneShot));
const EVP_MD* const md = DigestForSignatureKind(kind);
EVP_PKEY_CTX* pkctx;
bssl::UniquePtr<EVP_MD_CTX> context(EVP_MD_CTX_new());
CHECK(EVP_DigestVerifyInit(context.get(), &pkctx, md, nullptr,
const_cast<EVP_PKEY*>(key.key())));
ConfigurePkeyCtx(pkctx, kind);
return EVP_DigestVerify(context.get(), signature.data(), signature.size(),
data.data(), data.size()) == 1;
}
Signer::Signer(SignatureKind kind, crypto::keypair::PrivateKey key)
: key_(key), sign_context_(EVP_MD_CTX_new()) {
CHECK(CanUseKeyForSignatureKind(kind, key.key(), kStreaming));
OpenSSLErrStackTracer err_tracer(FROM_HERE);
const EVP_MD* const md = DigestForSignatureKind(kind);
EVP_PKEY_CTX* pkctx;
CHECK(
EVP_DigestSignInit(sign_context_.get(), &pkctx, md, nullptr, key.key()));
ConfigurePkeyCtx(pkctx, kind);
}
Signer::~Signer() = default;
void Signer::Update(base::span<const uint8_t> data) {
CHECK(EVP_DigestSignUpdate(sign_context_.get(), data.data(), data.size()));
}
std::vector<uint8_t> Signer::Finish() {
OpenSSLErrStackTracer err_tracer(FROM_HERE);
size_t len = 0;
// Determine the maximum length of the signature.
CHECK(EVP_DigestSignFinal(sign_context_.get(), nullptr, &len));
std::vector<uint8_t> signature(len);
CHECK(EVP_DigestSignFinal(sign_context_.get(), signature.data(), &len));
signature.resize(len);
return signature;
}
Verifier::Verifier(SignatureKind kind,
crypto::keypair::PublicKey key,
base::span<const uint8_t> signature)
: key_(key), verify_context_(EVP_MD_CTX_new()) {
OpenSSLErrStackTracer err_tracer(FROM_HERE);
CHECK(CanUseKeyForSignatureKind(kind, key.key(), kStreaming));
signature_.resize(signature.size());
base::span(signature_).copy_from(signature);
EVP_PKEY_CTX* pkctx;
const EVP_MD* const md = DigestForSignatureKind(kind);
CHECK(EVP_DigestVerifyInit(verify_context_.get(), &pkctx, md, nullptr,
key.key()));
ConfigurePkeyCtx(pkctx, kind);
}
Verifier::~Verifier() = default;
void Verifier::Update(base::span<const uint8_t> data) {
OpenSSLErrStackTracer err_tracer(FROM_HERE);
CHECK_EQ(
EVP_DigestVerifyUpdate(verify_context_.get(), data.data(), data.size()),
1);
}
bool Verifier::Finish() {
OpenSSLErrStackTracer err_tracer(FROM_HERE);
int rv = EVP_DigestVerifyFinal(verify_context_.get(), signature_.data(),
signature_.size());
return rv == 1;
}
} // namespace crypto::sign
|