File: sandboxed_file.cc

package info (click to toggle)
chromium 144.0.7559.109-2
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 5,915,868 kB
  • sloc: cpp: 35,866,215; ansic: 7,599,035; javascript: 3,623,761; python: 1,639,407; xml: 833,084; asm: 716,173; pascal: 185,323; sh: 88,763; perl: 88,699; objc: 79,984; sql: 58,217; cs: 42,430; fortran: 24,101; makefile: 20,747; tcl: 15,277; php: 14,022; yacc: 9,059; ruby: 7,553; awk: 3,720; lisp: 3,233; lex: 1,330; ada: 727; jsp: 228; sed: 36
file content (510 lines) | stat: -rw-r--r-- 18,024 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
// Copyright 2025 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "components/persistent_cache/sqlite/vfs/sandboxed_file.h"

#include <utility>

#include "base/files/platform_file.h"
#include "base/metrics/histogram_functions.h"
#include "base/notreached.h"
#include "base/numerics/safe_conversions.h"
#include "build/build_config.h"
#include "third_party/sqlite/sqlite3.h"

#if BUILDFLAG(IS_WIN)
#include <windows.h>
#endif

namespace persistent_cache {

namespace {

constexpr uint32_t kMaxSharedLocks = 0x08000000;
constexpr uint32_t kSharedMask = 0x0FFFFFFF;
constexpr uint32_t kReservedBit = 0x20000000;
constexpr uint32_t kPendingBit = 0x40000000;
constexpr uint32_t kAbandonedBit = 0x80000000;

}  // namespace

SandboxedFile::SandboxedFile(
    base::File file,
    AccessRights access_rights,
    base::WritableSharedMemoryMapping mapped_shared_lock)
    : underlying_file_(std::move(file)),
      access_rights_(access_rights),
      mapped_shared_lock_(std::move(mapped_shared_lock)) {}

SandboxedFile::~SandboxedFile() = default;

base::File SandboxedFile::TakeUnderlyingFile(FileType file_type) {
  // Lock the file via filesystem APIs if this is the main database file and its
  // creator wishes this to be the only connection allowed.
  if (file_type == FileType::kMainDb && is_single_connection() &&
      !AcquireSingleConnectionlock()) {
    return {};
  }
  file_type_ = file_type;
  return std::move(underlying_file_);
}

void SandboxedFile::OnFileOpened(base::File file) {
  CHECK(file.IsValid());
  opened_file_ = std::move(file);
}

const base::File& SandboxedFile::GetFile() const {
  return underlying_file_.IsValid() ? underlying_file_ : opened_file_;
}

base::File& SandboxedFile::GetFile() {
  return const_cast<base::File&>(
      const_cast<const SandboxedFile*>(this)->GetFile());
}

int SandboxedFile::Close() {
  CHECK(IsValid());
  underlying_file_ = std::move(opened_file_);

  // Unlock the file via filesystem APIs if this is the main database file and
  // its creator wishes this to be the only connection allowed.
  if (file_type_ == FileType::kMainDb && is_single_connection()) {
    ReleaseSingleConnectionlock();
  }
  file_type_ = std::nullopt;
  return SQLITE_OK;
}

LockState SandboxedFile::Abandon() {
  // Set `kAbandonedBit`, causing all subsequent attempts to raise the lock's
  // state to a higher level by any party to fail with `SQLITE_IOERR_LOCK`.
  // Determination of the state of the lock at the time of abandonment is made
  // based on a snapshot of the lock at the moment that the bit is set. This is
  // the only point where it is possible to know the state of the lock owing to
  // the nature of atomic bitwise operations on the lock itself --
  // `kReservedBit` and `kPendingBit` may be added to the lock after
  // abandonment; such parties will properly detect that the lock has been
  // abandoned.
  uint32_t previous_state = GetSharedAtomicLock().fetch_or(kAbandonedBit);

  LockState state =
      ((previous_state & (kReservedBit | kPendingBit)) != 0)
          ? LockState::kWriting
          : (((previous_state & kSharedMask) != 0) ? LockState::kReading
                                                   : LockState::kNotHeld);
  base::UmaHistogramEnumeration(
      "PersistentCache.SandboxedFile.LockStateOnAbandon", state);
  return state;
}

int SandboxedFile::Read(void* buffer, int size, sqlite3_int64 offset) {
  // Make a safe span from the pair <buffer, size>. The buffer and the
  // size are received from sqlite.
  CHECK(buffer);
  CHECK_GE(size, 0);
  CHECK_GE(offset, 0);
  const size_t checked_size = base::checked_cast<size_t>(size);
  // SAFETY: `buffer` always points to at least `size` valid bytes.
  auto data =
      UNSAFE_BUFFERS(base::span(static_cast<uint8_t*>(buffer), checked_size));

  // Read data from the file.
  CHECK(IsValid());
  std::optional<size_t> bytes_read = opened_file_.Read(offset, data);
  if (!bytes_read.has_value()) {
    return SQLITE_IOERR_READ;
  }

  // The buffer was fully read.
  if (bytes_read.value() == checked_size) {
    return SQLITE_OK;
  }

  // Some bytes were read but the buffer was not filled. SQLite requires that
  // the unread bytes must be filled with zeros.
  auto remaining_bytes = data.subspan(bytes_read.value());
  std::fill(remaining_bytes.begin(), remaining_bytes.end(), 0);
  return SQLITE_IOERR_SHORT_READ;
}

int SandboxedFile::Write(const void* buffer, int size, sqlite3_int64 offset) {
  // Make a safe span from the pair <buffer, size>. The buffer and the
  // size are received from sqlite.
  CHECK(buffer);
  CHECK_GE(size, 0);
  CHECK_GE(offset, 0);
  const size_t checked_size = base::checked_cast<size_t>(size);
  // SAFETY: `buffer` always points to at least `size` valid bytes.
  auto data = UNSAFE_BUFFERS(
      base::span(static_cast<const uint8_t*>(buffer), checked_size));

  CHECK(IsValid());
  std::optional<size_t> bytes_written = opened_file_.Write(offset, data);
  if (!bytes_written.has_value()) {
    return SQLITE_IOERR_WRITE;
  }
  CHECK_LE(bytes_written.value(), checked_size);

  // The bytes were successfully written to disk.
  if (bytes_written.value() == checked_size) {
    return SQLITE_OK;
  }

  // Detect the case where there is no space on the disk.
  base::File::Error last_error = base::File::GetLastFileError();
  if (last_error == base::File::Error::FILE_ERROR_NO_SPACE) {
    return SQLITE_FULL;
  }

  // A generic write error.
  return SQLITE_IOERR_WRITE;
}

int SandboxedFile::Truncate(sqlite3_int64 size) {
  CHECK(IsValid());
  if (!opened_file_.SetLength(size)) {
    return SQLITE_IOERR_TRUNCATE;
  }
  return SQLITE_OK;
}

int SandboxedFile::Sync(int flags) {
  CHECK(IsValid());
  if (!opened_file_.Flush()) {
    return SQLITE_IOERR_FSYNC;
  }
  return SQLITE_OK;
}

int SandboxedFile::FileSize(sqlite3_int64* result_size) {
  CHECK(IsValid());
  int64_t length = opened_file_.GetLength();
  if (length < 0) {
    return SQLITE_IOERR_FSTAT;
  }

  *result_size = length;
  return SQLITE_OK;
}

// This function implements the database locking mechanism as defined by the
// SQLite VFS (Virtual File System) interface. It is responsible for escalating
// locks on the database file to ensure that multiple processes can access the
// database in a controlled and serialized manner, preventing data corruption.
//
// In this shared memory implementation, the lock states are managed directly
// in a shared memory region accessible by all client processes, rather than
// relying on traditional file-system locks (like fcntl on Unix or LockFileEx
// on Windows).
//
// The lock implementation mirrors the state transitions of the standard SQLite
// locking mechanism:
//
//     SHARED: Allows multiple readers.
//     RESERVED: A process signals its intent to write.
//     PENDING: A writer is waiting for readers to finish.
//     EXCLUSIVE: A single process has exclusive write access.
//
// The valid transitions are:
//
//    UNLOCKED -> SHARED
//    SHARED -> RESERVED
//    SHARED -> (PENDING) -> EXCLUSIVE
//    RESERVED -> (PENDING) -> EXCLUSIVE
//    PENDING -> EXCLUSIVE
//
// See original implementation:
//    https://source.chromium.org/chromium/chromium/src/+/main:third_party/sqlite/src/src/os_win.c;l=3514;drc=4a0b7a332f3aeb27814cfa12dc0ebdbbd994a928
//
// Some issues related to file system locks:
//    https://source.chromium.org/chromium/chromium/src/+/main:third_party/sqlite/src/src/os_unix.c;l=1077;drc=5d60f47001bf64b48abac68ed59621e528144ea4
//
// The SQLite core uses two distinct strategies to acquire an EXCLUSIVE lock.
// This VFS implementation must correctly handle lock requests from both paths.
//
// 1. Normal transaction path
//   The standard database operations (INSERT, UPDATE, BEGIN COMMIT, etc.) on a
//   healthy database will escalate the lock sequentially:
//       SHARED -> RESERVED -> PENDING -> EXCLUSIVE.
//   The intermediate RESERVED lock is mandatory. It signals an intent to write
//   while still permitting other connections to hold SHARED locks for reading.
//
// 2. Hot-journal recovery path
//   A special case that occurs upon initial connection when a hot-journal is
//   detected, indicating a previous crash or power loss. A direct request for
//   an EXCLUSIVE lock is required. In this state, the database is known to be
//   inconsistent. The RESERVED lock is intentionally skipped because its
//   purpose is to allow concurrent readers, which would be disastrous. A direct
//   EXCLUSIVE lock acts as an emergency lockdown, preventing ALL other
//   connections from reading corrupt data until the recovery process is
//   complete.
//
//   see:
//     https://source.chromium.org/chromium/chromium/src/+/main:third_party/sqlite/src/src/pager.c;l=5260;drc=65d0312c96cd23958372fac8940314c782a6b03c
int SandboxedFile::Lock(int mode) {
  CHECK(*file_type_ == FileType::kMainDb);
  // Ensures valid lock states are used (see: sqlite3OsLock(...) assertions).
  CHECK(mode == SQLITE_LOCK_SHARED || mode == SQLITE_LOCK_RESERVED ||
        mode == SQLITE_LOCK_EXCLUSIVE);

  // Do nothing if there is already a lock of this type or more restrictive.
  if (sqlite_lock_mode_ >= mode) {
    return SQLITE_OK;
  }

  if (is_single_connection()) {
    sqlite_lock_mode_ = mode;
    return SQLITE_OK;
  }

  auto& shared_atomic_lock = GetSharedAtomicLock();
  switch (mode) {
    case SQLITE_LOCK_SHARED: {
      // Try to increment the SHARED lock count as long as the PENDING lock
      // remains unheld and there is room remaining to count a new SHARED lock.
      uint32_t lock_snapshot = shared_atomic_lock.load();

      if ((lock_snapshot & kAbandonedBit) != 0) {
        return SQLITE_IOERR_LOCK;
      }

      for (int i = 0; i < 5; ++i) {
        if ((lock_snapshot & kPendingBit) != 0 ||
            (lock_snapshot & kSharedMask) == kMaxSharedLocks) {
          break;
        }
        if (shared_atomic_lock.compare_exchange_strong(lock_snapshot,
                                                       lock_snapshot + 1)) {
          // The SHARED lock was successfully acquired.
          sqlite_lock_mode_ = SQLITE_LOCK_SHARED;
          return SQLITE_OK;
        }

        if ((lock_snapshot & kAbandonedBit) != 0) {
          return SQLITE_IOERR_LOCK;
        }

        // Perform up to four retries in case this client is racing against
        // other changes to the shared lock.
      }
      return SQLITE_BUSY;
    }

    case SQLITE_LOCK_RESERVED: {
      // To acquire a RESERVED lock, the current connection must already have
      // a shared access to it.
      CHECK_EQ(sqlite_lock_mode_, SQLITE_LOCK_SHARED);

      // Acquire a RESERVED lock to prevent a different writer to declare its
      // intention to modify the database. At this point, readers are still
      // allowed to get a SHARED lock on the database.
      const uint32_t lock_snapshot = shared_atomic_lock.fetch_or(kReservedBit);
      if ((lock_snapshot & kAbandonedBit) != 0) {
        return SQLITE_IOERR_LOCK;
      }

      if ((lock_snapshot & kReservedBit) != 0) {
        return SQLITE_BUSY;
      }

      // The RESERVED lock was successfully acquired.
      sqlite_lock_mode_ = SQLITE_LOCK_RESERVED;
      return SQLITE_OK;
    }

    case SQLITE_LOCK_EXCLUSIVE: {
      // Acquiring an EXCLUSIVE lock may happen through multiple calls to
      // SandboxedFile::Lock(...) and the PENDING lock may be kept between these
      // calls.

      // To acquire an EXCLUSIVE lock, the current connection must already have
      // at least SHARED lock. Owning RESERVED lock not mandatory.
      CHECK_GE(sqlite_lock_mode_, SQLITE_LOCK_SHARED);

      // Acquire the PENDING lock, if not already acquired. Hold it until the
      // EXCLUSIVE lock is obtained. No new SHARED locks will be granted in
      // the meantime, but current SHARED locks remain valid.
      uint32_t lock_snapshot = 0;
      if (sqlite_lock_mode_ < SQLITE_LOCK_PENDING) {
        lock_snapshot = shared_atomic_lock.fetch_or(kPendingBit);
        if ((lock_snapshot & kAbandonedBit) != 0) {
          // This instance may have just set `kPendingBit`. There is no need to
          // clear it since all other parties will detect that the instance is
          // abandoned on their next attempt to acquire any lock.
          return SQLITE_IOERR_LOCK;
        }

        if ((lock_snapshot & kPendingBit) != 0) {
          // This connection is not the owner of the PENDING lock.
          return SQLITE_BUSY;
        }
        // The PENDING lock was acquired. Keep it for subsequent calls until all
        // SHARED locks are released.
        sqlite_lock_mode_ = SQLITE_LOCK_PENDING;
        // Update the copy of the current state of the lock for use below.
        lock_snapshot |= kPendingBit;
      } else {
        // Fetch the current state of the lock for use below.
        lock_snapshot = shared_atomic_lock.load();

        if ((lock_snapshot & kAbandonedBit) != 0) {
          return SQLITE_IOERR_LOCK;
        }
      }

      // Do not grant the EXCLUSIVE lock until all other readers have released
      // their SHARED locks. This connection still owns and keeps a SHARED lock.
      if ((lock_snapshot & kSharedMask) != 1) {
        return SQLITE_BUSY;
      }

      // There is no active SHARED lock except for this connection. The PENDING
      // lock is owned by this connection so it is valid to grant the EXCLUSIVE
      // lock.
      sqlite_lock_mode_ = SQLITE_LOCK_EXCLUSIVE;
      return SQLITE_OK;
    }
  }

  return SQLITE_IOERR_LOCK;
}

// This function is the counterpart to Lock and is responsible for reducing the
// lock level on the database file. This typically happens after a transaction
// is committed or rolled back, or when a process holding a write lock is
// ready to allow other readers in.
//
// The valid transitions are:
//
//    SHARED -> UNLOCKED
//    EXCLUSIVE -> UNLOCKED
//    EXCLUSIVE -> SHARED
//
// It is also valid to release any pending state (PENDING or RESERVED) even if
// the state never went to EXCLUSIVE. This can happen when a connection gives up
// on trying to get an EXCLUSIVE lock.
int SandboxedFile::Unlock(int mode) {
  CHECK(*file_type_ == FileType::kMainDb);

  // Ensures valid lock states are used (see: sqlite3OsUnlock(...) assertions).
  CHECK(mode == SQLITE_LOCK_NONE || mode == SQLITE_LOCK_SHARED);

  // Do nothing if there is already a lock of this type or less restrictive.
  if (sqlite_lock_mode_ <= mode) {
    return SQLITE_OK;
  }

  if (is_single_connection()) {
    sqlite_lock_mode_ = mode;
    return SQLITE_OK;
  }

  auto& shared_atomic_lock = GetSharedAtomicLock();

  // Release the RESERVED or RESERVED and PENDING bits, if held.
  if (uint32_t clear_mask =
          (sqlite_lock_mode_ >= SQLITE_LOCK_PENDING
               ? (kPendingBit | kReservedBit)
               : (sqlite_lock_mode_ == SQLITE_LOCK_RESERVED ? kReservedBit
                                                            : 0U))) {
    shared_atomic_lock.fetch_and(~clear_mask);
  }

  // Release the SHARED lock if no longer needed.
  if (mode == SQLITE_LOCK_NONE) {
    const uint32_t lock_snapshot = shared_atomic_lock.fetch_sub(1);
    CHECK_GE(lock_snapshot & kSharedMask, 1u);
  }

  // Lock was successfully released.
  sqlite_lock_mode_ = mode;
  return SQLITE_OK;
}

int SandboxedFile::CheckReservedLock(int* has_reserved_lock) {
  CHECK(*file_type_ == FileType::kMainDb);
  if (is_single_connection()) {
    *has_reserved_lock = sqlite_lock_mode_ >= SQLITE_LOCK_RESERVED;
  } else {
    uint32_t lock_snapshot = GetSharedAtomicLock().load();
    *has_reserved_lock = (lock_snapshot & kReservedBit) != 0;
  }
  return SQLITE_OK;
}

int SandboxedFile::FileControl(int opcode, void* data) {
  return SQLITE_NOTFOUND;
}

int SandboxedFile::SectorSize() {
  return 0;
}

int SandboxedFile::DeviceCharacteristics() {
  return 0;
}

int SandboxedFile::ShmMap(int page_index,
                          int page_size,
                          int extend_file_if_needed,
                          void volatile** result) {
  // Write-ahead logging is only supported in combination with exclusive mode
  // (is_single_connection() == true); see https://sqlite.org/wal.html#noshm
  NOTREACHED();
}

int SandboxedFile::ShmLock(int offset, int size, int flags) {
  // Write-ahead logging is only supported in combination with exclusive mode
  // (is_single_connection() == true); see https://sqlite.org/wal.html#noshm
  NOTREACHED();
}

void SandboxedFile::ShmBarrier() {
  // Write-ahead logging is only supported in combination with exclusive mode
  // (is_single_connection() == true); see https://sqlite.org/wal.html#noshm
  NOTREACHED();
}

int SandboxedFile::ShmUnmap(int also_delete_file) {
  // Write-ahead logging is only supported in combination with exclusive mode
  // (is_single_connection() == true); see https://sqlite.org/wal.html#noshm
  NOTREACHED();
}

int SandboxedFile::Fetch(sqlite3_int64 offset, int size, void** result) {
  // TODO(https://crbug.com/377475540): Implement shared memory.
  *result = nullptr;
  return SQLITE_IOERR;
}

int SandboxedFile::Unfetch(sqlite3_int64 offset, void* fetch_result) {
  // TODO(https://crbug.com/377475540): Implement shared memory.
  return SQLITE_IOERR;
}

SharedAtomicLock& SandboxedFile::GetSharedAtomicLock() {
  CHECK(mapped_shared_lock_.IsValid());
  return *mapped_shared_lock_.GetMemoryAs<SharedAtomicLock>();
}

bool SandboxedFile::AcquireSingleConnectionlock() {
  CHECK(underlying_file_.IsValid());
  const auto error = underlying_file_.Lock(base::File::LockMode::kExclusive);
  if (error == base::File::FILE_OK) {
    return true;
  }

  base::UmaHistogramExactLinear("PersistentCache.Sqlite.LockError", -error,
                                -base::File::FILE_ERROR_MAX);

  return false;
}

void SandboxedFile::ReleaseSingleConnectionlock() {
  CHECK(underlying_file_.IsValid());
  underlying_file_.Unlock();
}

}  // namespace persistent_cache