1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "gpu/command_buffer/client/internal/mappable_buffer_io_surface.h"
#include "base/apple/mach_logging.h"
#include "base/debug/dump_without_crashing.h"
#include "base/functional/bind.h"
#include "base/functional/callback_helpers.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/notimplemented.h"
#include "base/numerics/safe_conversions.h"
#include "components/viz/common/resources/shared_image_format_utils.h"
#include "ui/gfx/mac/io_surface.h"
namespace gpu {
namespace {
uint32_t LockFlags(gfx::BufferUsage usage) {
switch (usage) {
case gfx::BufferUsage::SCANOUT_VEA_CPU_READ:
// This constant is used for buffers used by video capture. On macOS,
// these buffers are only ever written to in the capture process,
// directly as IOSurfaces.
// Once they are sent to other processes, no CPU writes are performed.
return kIOSurfaceLockReadOnly;
case gfx::BufferUsage::GPU_READ_CPU_READ_WRITE:
case gfx::BufferUsage::VEA_READ_CAMERA_AND_CPU_READ_WRITE:
case gfx::BufferUsage::GPU_READ:
case gfx::BufferUsage::SCANOUT:
case gfx::BufferUsage::SCANOUT_CAMERA_READ_WRITE:
case gfx::BufferUsage::CAMERA_AND_CPU_READ_WRITE:
case gfx::BufferUsage::SCANOUT_CPU_READ_WRITE:
case gfx::BufferUsage::SCANOUT_VDA_WRITE:
case gfx::BufferUsage::PROTECTED_SCANOUT:
case gfx::BufferUsage::PROTECTED_SCANOUT_VDA_WRITE:
case gfx::BufferUsage::SCANOUT_FRONT_RENDERING:
return 0;
}
NOTREACHED();
}
} // namespace
MappableBufferIOSurface::MappableBufferIOSurface(
const gfx::Size& size,
viz::SharedImageFormat format,
gfx::GpuMemoryBufferHandle handle,
uint32_t lock_flags)
: size_(size),
format_(format),
handle_(std::move(handle)),
lock_flags_(lock_flags) {}
MappableBufferIOSurface::~MappableBufferIOSurface() {
#if DCHECK_IS_ON()
{
base::AutoLock auto_lock(map_lock_);
DCHECK_EQ(map_count_, 0u);
}
#endif
}
void MappableBufferIOSurface::AssertMapped() {
#if DCHECK_IS_ON()
base::AutoLock auto_lock(map_lock_);
DCHECK_GT(map_count_, 0u);
#endif
}
// static
std::unique_ptr<MappableBufferIOSurface>
MappableBufferIOSurface::CreateFromHandleForTesting(
const gfx::GpuMemoryBufferHandle& handle,
const gfx::Size& size,
viz::SharedImageFormat format,
gfx::BufferUsage usage) {
return CreateFromHandleImpl(std::move(handle), size, format,
LockFlags(usage));
}
// static
base::OnceClosure MappableBufferIOSurface::AllocateForTesting(
const gfx::Size& size,
viz::SharedImageFormat format,
gfx::BufferUsage usage,
gfx::GpuMemoryBufferHandle* handle) {
*handle = gfx::GpuMemoryBufferHandle(gfx::CreateIOSurface(size, format));
return base::DoNothing();
}
// static
std::unique_ptr<MappableBufferIOSurface>
MappableBufferIOSurface::CreateFromHandle(
const gfx::GpuMemoryBufferHandle& handle,
const gfx::Size& size,
viz::SharedImageFormat format,
bool is_read_only_cpu_usage) {
uint32_t lock_flags = is_read_only_cpu_usage ? kIOSurfaceLockReadOnly : 0;
return CreateFromHandleImpl(std::move(handle), size, format, lock_flags);
}
// static
std::unique_ptr<MappableBufferIOSurface>
MappableBufferIOSurface::CreateFromHandleImpl(
const gfx::GpuMemoryBufferHandle& handle,
const gfx::Size& size,
viz::SharedImageFormat format,
int32_t lock_flags) {
// The maximum number of times to dump before throttling (to avoid sending
// thousands of crash dumps).
constexpr int kMaxCrashDumps = 10;
static int dump_counter = kMaxCrashDumps;
#if BUILDFLAG(IS_IOS)
if (!handle.io_surface_shared_memory_region().IsValid()) {
LOG(ERROR) << "Invalid shared memory region returned to client.";
if (dump_counter) {
dump_counter -= 1;
base::debug::DumpWithoutCrashing();
}
return nullptr;
}
#else
if (!handle.io_surface()) {
LOG(ERROR) << "Failed to open IOSurface via mach port returned to client.";
if (dump_counter) {
dump_counter -= 1;
base::debug::DumpWithoutCrashing();
}
return nullptr;
}
int64_t io_surface_width = IOSurfaceGetWidth(handle.io_surface().get());
int64_t io_surface_height = IOSurfaceGetHeight(handle.io_surface().get());
if (io_surface_width < size.width() || io_surface_height < size.height()) {
DLOG(ERROR) << "IOSurface size does not match handle.";
return nullptr;
}
#endif
return base::WrapUnique(
new MappableBufferIOSurface(size, format, handle.Clone(), lock_flags));
}
bool MappableBufferIOSurface::Map() {
base::AutoLock auto_lock(map_lock_);
if (map_count_++) {
return true;
}
#if BUILDFLAG(IS_IOS)
if (!shared_memory_mapping_.IsValid()) {
shared_memory_mapping_ = handle_.io_surface_shared_memory_region().Map();
}
if (!shared_memory_mapping_.IsValid()) {
LOG(ERROR) << "Invalid shared memory mapping";
return false;
}
#else
kern_return_t kr =
IOSurfaceLock(handle_.io_surface().get(), lock_flags_, nullptr);
DCHECK_EQ(kr, KERN_SUCCESS) << " lock_flags_: " << lock_flags_;
MACH_LOG_IF(ERROR, kr != KERN_SUCCESS, kr)
<< "MappableBufferIOSurface::Map IOSurfaceLock lock_flags_: "
<< lock_flags_;
#endif
return true;
}
void* MappableBufferIOSurface::memory(size_t plane) {
AssertMapped();
CHECK_LT(base::checked_cast<int>(plane), format_.NumberOfPlanes());
#if BUILDFLAG(IS_IOS)
// SAFETY: We trust the GPU process to allocate the IOSurface and initialize
// the shared memory region from it correctly and we assert that below too.
CHECK(shared_memory_mapping_.IsValid());
CHECK_LT(plane, gfx::kMaxIOSurfacePlanes);
const size_t plane_offset = handle_.io_surface_plane_offset(plane);
CHECK_LE(plane_offset, shared_memory_mapping_.mapped_size());
return UNSAFE_BUFFERS(shared_memory_mapping_.data() + plane_offset);
#else
return IOSurfaceGetBaseAddressOfPlane(handle_.io_surface().get(), plane);
#endif
}
void MappableBufferIOSurface::Unmap() {
base::AutoLock auto_lock(map_lock_);
DCHECK_GT(map_count_, 0u);
if (--map_count_) {
return;
}
#if !BUILDFLAG(IS_IOS)
kern_return_t kr =
IOSurfaceUnlock(handle_.io_surface().get(), lock_flags_, nullptr);
DCHECK_EQ(kr, KERN_SUCCESS) << " lock_flags_: " << lock_flags_;
MACH_LOG_IF(ERROR, kr != KERN_SUCCESS, kr)
<< "MappableBufferIOSurface::Unmap IOSurfaceUnlock lock_flags_: "
<< lock_flags_;
#endif
}
int MappableBufferIOSurface::stride(size_t plane) const {
CHECK_LT(base::checked_cast<int>(plane), format_.NumberOfPlanes());
#if BUILDFLAG(IS_IOS)
CHECK_LT(plane, gfx::kMaxIOSurfacePlanes);
return handle_.io_surface_plane_stride(plane);
#else
return IOSurfaceGetBytesPerRowOfPlane(handle_.io_surface().get(), plane);
#endif
}
gfx::GpuMemoryBufferType MappableBufferIOSurface::GetType() const {
DCHECK_EQ(handle_.type, gfx::IO_SURFACE_BUFFER);
return handle_.type;
}
gfx::GpuMemoryBufferHandle MappableBufferIOSurface::CloneHandle() const {
return handle_.Clone();
}
void MappableBufferIOSurface::MapAsync(
base::OnceCallback<void(bool)> callback) {
std::move(callback).Run(Map());
}
bool MappableBufferIOSurface::AsyncMappingIsNonBlocking() const {
return false;
}
} // namespace gpu
|