1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
|
// Copyright 2025 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "gpu/command_buffer/service/gpu_persistent_cache.h"
#include <optional>
#include <string_view>
#include "base/compiler_specific.h"
#include "base/containers/span.h"
#include "base/dcheck_is_on.h"
#include "base/functional/bind.h"
#include "base/functional/function_ref.h"
#include "base/immediate_crash.h"
#include "base/logging.h"
#include "base/memory/ref_counted.h"
#include "base/metrics/histogram_functions.h"
#include "base/synchronization/condition_variable.h"
#include "base/synchronization/lock.h"
#include "base/task/task_runner.h"
#include "base/thread_annotations.h"
#include "base/threading/thread_restrictions.h"
#include "base/timer/elapsed_timer.h"
#include "base/trace_event/trace_event.h"
#include "base/types/expected_macros.h"
#include "components/persistent_cache/persistent_cache.h"
#include "components/persistent_cache/transaction_error.h"
#include "gpu/command_buffer/service/memory_cache.h"
#include "ui/gl/gl_bindings.h"
namespace gpu {
namespace {
constexpr size_t kMaxLoadStoreForTrackingCacheAvailable = 100;
constexpr base::TimeDelta kDiskWriteDelaySeconds = base::Seconds(1);
constexpr base::TimeDelta kDiskOpWaitTimeoutMs = base::Milliseconds(20);
class ScopedHistogramTimer {
public:
explicit ScopedHistogramTimer(const std::string& name) : name_(name) {}
~ScopedHistogramTimer() {
if (enabled_) {
base::UmaHistogramCustomMicrosecondsTimes(name_, timer_.Elapsed(),
base::Microseconds(1),
base::Seconds(30), 100);
}
}
void SetEnabled(bool enabled) { enabled_ = enabled; }
private:
const std::string name_;
base::ElapsedTimer timer_;
bool enabled_ = true;
};
class DiskCacheTraceScope {
public:
explicit DiskCacheTraceScope(const char* name) : name_(name) {
TRACE_EVENT_BEGIN0("gpu", name_);
}
~DiskCacheTraceScope() {
if (pending_bytes_) {
TRACE_EVENT_END2("gpu", name_, "idle_id", idle_id_, "pending_bytes",
pending_bytes_);
} else {
TRACE_EVENT_END1("gpu", name_, "idle_id", idle_id_);
}
}
void SetIdleId(uint64_t idle_id) { idle_id_ = idle_id; }
void SetPendingBytes(size_t pending_bytes) { pending_bytes_ = pending_bytes; }
private:
const char* name_;
uint64_t idle_id_ = 0;
std::optional<size_t> pending_bytes_;
};
GLsizeiptr GL_APIENTRY GLBlobCacheGetCallback(const void* key,
GLsizeiptr key_size,
void* value_out,
GLsizeiptr value_size,
const void* user_param) {
DCHECK(user_param != nullptr);
GpuPersistentCache* cache =
static_cast<GpuPersistentCache*>(const_cast<void*>(user_param));
return cache->GLBlobCacheGet(key, key_size, value_out, value_size);
}
void GL_APIENTRY GLBlobCacheSetCallback(const void* key,
GLsizeiptr key_size,
const void* value,
GLsizeiptr value_size,
const void* user_param) {
DCHECK(user_param != nullptr);
GpuPersistentCache* cache =
static_cast<GpuPersistentCache*>(const_cast<void*>(user_param));
cache->GLBlobCacheSet(key, key_size, value, value_size);
}
std::string GetHistogramName(std::string_view prefix, std::string_view metric) {
return "GPU.PersistentCache." + std::string(prefix) + "." +
std::string(metric);
}
NOINLINE NOOPT void HandlePersistentCacheError(
GpuProcessShmCount* use_shader_cache_shm_count,
persistent_cache::TransactionError error) {
switch (error) {
case persistent_cache::TransactionError::kPermanent:
if (use_shader_cache_shm_count) {
GpuProcessShmCount::ScopedIncrement scoped_increment(
use_shader_cache_shm_count);
base::ImmediateCrash();
}
break;
default:
break;
}
}
bool TimedWait(base::ConditionVariable& cond_var,
base::TimeDelta timeout,
base::FunctionRef<bool()> wait_condition) {
base::TimeTicks deadline = base::TimeTicks::Now() + timeout;
while (wait_condition()) {
base::TimeDelta remaining = deadline - base::TimeTicks::Now();
if (!remaining.is_positive()) {
return false; // Timeout
}
cond_var.TimedWait(remaining);
}
return true;
}
} // namespace
// AsyncDiskWriteOpts
GpuPersistentCache::AsyncDiskWriteOpts::AsyncDiskWriteOpts() = default;
GpuPersistentCache::AsyncDiskWriteOpts::AsyncDiskWriteOpts(
const AsyncDiskWriteOpts&) = default;
GpuPersistentCache::AsyncDiskWriteOpts::AsyncDiskWriteOpts(
AsyncDiskWriteOpts&&) = default;
GpuPersistentCache::AsyncDiskWriteOpts::~AsyncDiskWriteOpts() = default;
GpuPersistentCache::AsyncDiskWriteOpts&
GpuPersistentCache::AsyncDiskWriteOpts::operator=(const AsyncDiskWriteOpts&) =
default;
GpuPersistentCache::AsyncDiskWriteOpts&
GpuPersistentCache::AsyncDiskWriteOpts::operator=(AsyncDiskWriteOpts&&) =
default;
// Ref-counted wrapper for the persistent cache data, so it can be used safely
// with asynchronous operations.
struct GpuPersistentCache::DiskCache
: public base::RefCountedThreadSafe<DiskCache> {
explicit DiskCache(
std::string_view cache_prefix,
std::unique_ptr<persistent_cache::PersistentCache> cache,
const GpuPersistentCache::AsyncDiskWriteOpts& async_write_options,
scoped_refptr<RefCountedGpuProcessShmCount> use_shader_cache_shm_count);
bool Load(std::string_view key,
persistent_cache::BufferProvider buffer_provider);
void Store(scoped_refptr<MemoryCacheEntry> entry);
const persistent_cache::PersistentCache& persistent_cache() const {
return *cache_;
}
private:
friend class base::RefCountedThreadSafe<DiskCache>;
~DiskCache();
void SignalUsingCacheComplete();
void DoStoreToDisk(scoped_refptr<MemoryCacheEntry> entry);
void DoDelayedStoreToDisk(scoped_refptr<MemoryCacheEntry> entry,
uint64_t idle_id);
const std::string cache_prefix_;
const std::unique_ptr<persistent_cache::PersistentCache> cache_;
// Used to track cache activity to delay writes until idle. Relaxed memory
// order is sufficient because we only need to detect if any change has
// occurred, and the variable doesn't need to synchronize with other
// variables.
std::atomic<uint64_t> current_idle_id_{0};
// Used to track the total bytes of pending writes. Relaxed memory order is
// sufficient as this is used as a heuristic and strict synchronization is not
// required.
std::atomic<size_t> pending_bytes_to_write_{0};
const scoped_refptr<base::SequencedTaskRunner> disk_write_task_runner_;
const size_t max_pending_bytes_to_write_;
const scoped_refptr<RefCountedGpuProcessShmCount> use_shader_cache_shm_count_;
// Synchronization primitives to enforce timed waits between reads & writes.
base::Lock cache_in_use_mutex_;
base::ConditionVariable cache_in_use_cond_var_{&cache_in_use_mutex_};
bool cache_in_use_ GUARDED_BY(cache_in_use_mutex_) = false;
};
GpuPersistentCache::DiskCache::DiskCache(
std::string_view cache_prefix,
std::unique_ptr<persistent_cache::PersistentCache> cache,
const GpuPersistentCache::AsyncDiskWriteOpts& async_write_options,
scoped_refptr<RefCountedGpuProcessShmCount> use_shader_cache_shm_count)
: cache_prefix_(cache_prefix),
cache_(std::move(cache)),
disk_write_task_runner_(async_write_options.task_runner),
max_pending_bytes_to_write_(
async_write_options.max_pending_bytes_to_write),
use_shader_cache_shm_count_(std::move(use_shader_cache_shm_count)) {}
GpuPersistentCache::DiskCache::~DiskCache() = default;
void GpuPersistentCache::DiskCache::SignalUsingCacheComplete() {
{
base::AutoLock lock(cache_in_use_mutex_);
DCHECK(cache_in_use_);
cache_in_use_ = false;
}
cache_in_use_cond_var_.Signal();
}
bool GpuPersistentCache::DiskCache::Load(
std::string_view key,
persistent_cache::BufferProvider buffer_provider) {
ScopedHistogramTimer timer(GetHistogramName(cache_prefix_, "Load"));
DiskCacheTraceScope trace_scope("GpuPersistentCache::DiskCache::Load");
const uint64_t idle_id =
current_idle_id_.fetch_add(1, std::memory_order_relaxed) + 1;
trace_scope.SetIdleId(idle_id);
// The persistent cache backend can't read and write in parallel. Wait for
// any pending writes/reads to complete before loading from the cache, to
// avoid long waits in the backend. We wait for a maximum of 10ms.
{
base::ScopedAllowBaseSyncPrimitives allow_base_sync_primitives;
base::AutoLock lock(cache_in_use_mutex_);
if (!TimedWait(cache_in_use_cond_var_, kDiskOpWaitTimeoutMs,
[this]() { return cache_in_use_; })) {
// Treat as cache miss
return false;
}
cache_in_use_ = true;
}
// The work
base::expected<std::optional<persistent_cache::EntryMetadata>,
persistent_cache::TransactionError>
result;
{
TRACE_EVENT0("gpu", "GpuPersistentCache::DiskCache::Cache::Find");
result = cache_->Find(key, buffer_provider);
}
// Notify other threads
SignalUsingCacheComplete();
ASSIGN_OR_RETURN(auto metadata, result,
[&](persistent_cache::TransactionError error) {
HandlePersistentCacheError(
&use_shader_cache_shm_count_->data, error);
return false;
});
return metadata.has_value(); // Hit if present; miss otherwise.
}
void GpuPersistentCache::DiskCache::Store(
scoped_refptr<MemoryCacheEntry> entry) {
DiskCacheTraceScope trace_scope("GpuPersistentCache::DiskCache::Store");
const uint64_t idle_id =
current_idle_id_.fetch_add(1, std::memory_order_relaxed) + 1;
trace_scope.SetIdleId(idle_id);
if (!disk_write_task_runner_) {
// No async task runner, write to disk immediately.
DoStoreToDisk(entry);
return;
}
// Increment the pending bytes in write queue.
const size_t bytes_to_write = entry->TotalSize();
const auto pending_bytes = pending_bytes_to_write_.fetch_add(
bytes_to_write, std::memory_order_relaxed);
trace_scope.SetPendingBytes(pending_bytes + bytes_to_write);
disk_write_task_runner_->PostDelayedTask(
FROM_HERE,
base::BindOnce(&GpuPersistentCache::DiskCache::DoDelayedStoreToDisk,
base::WrapRefCounted(this), std::move(entry), idle_id),
kDiskWriteDelaySeconds);
}
void GpuPersistentCache::DiskCache::DoStoreToDisk(
scoped_refptr<MemoryCacheEntry> entry) {
ScopedHistogramTimer timer(GetHistogramName(cache_prefix_, "Store"));
TRACE_EVENT0("gpu", "GpuPersistentCache::DiskCache::DoStoreToDisk");
{
base::ScopedAllowBaseSyncPrimitives allow_base_sync_primitives;
base::AutoLock lock(cache_in_use_mutex_);
// Wait until the cache is not in use.
while (cache_in_use_) {
cache_in_use_cond_var_.Wait();
}
cache_in_use_ = true;
}
// The work.
base::expected<void, persistent_cache::TransactionError> result;
{
TRACE_EVENT0("gpu", "GpuPersistentCache::DiskCache::Cache::Insert");
result = cache_->Insert(entry->Key(), entry->Data());
}
// Unblock other threads.
SignalUsingCacheComplete();
RETURN_IF_ERROR(result, [&](persistent_cache::TransactionError error) {
HandlePersistentCacheError(&use_shader_cache_shm_count_->data, error);
});
}
void GpuPersistentCache::DiskCache::DoDelayedStoreToDisk(
scoped_refptr<MemoryCacheEntry> entry,
uint64_t idle_id) {
DiskCacheTraceScope trace_scope(
"GpuPersistentCache::DiskCache::DoDelayedStoreToDisk");
trace_scope.SetIdleId(idle_id);
// The idle ID is used to check if there has been any cache activity since
// the delayed store task was posted. If the IDs don't match, it means
// another cache operation has occurred, so we reschedule the task to wait
// for the next idle period. This ensures that we only perform the write
// when the cache is truly idle.
const uint64_t current_idle_id =
current_idle_id_.load(std::memory_order_relaxed);
const bool idle_id_match = current_idle_id == idle_id;
// We also force writing if the pending bytes exceed limit.
const size_t pending_bytes =
pending_bytes_to_write_.load(std::memory_order_relaxed);
const bool exceed_max_pending_bytes =
pending_bytes > max_pending_bytes_to_write_;
trace_scope.SetPendingBytes(pending_bytes);
if (idle_id_match || exceed_max_pending_bytes) {
DoStoreToDisk(entry);
pending_bytes_to_write_.fetch_sub(entry->TotalSize(),
std::memory_order_relaxed);
return;
}
// Re-schedule the write since the cache is not idle.
disk_write_task_runner_->PostDelayedTask(
FROM_HERE,
base::BindOnce(&GpuPersistentCache::DiskCache::DoDelayedStoreToDisk,
base::WrapRefCounted(this), std::move(entry),
current_idle_id),
kDiskWriteDelaySeconds);
}
// GpuPersistentCache
GpuPersistentCache::GpuPersistentCache(std::string_view cache_prefix,
scoped_refptr<MemoryCache> memory_cache,
AsyncDiskWriteOpts async_write_options)
: cache_prefix_(cache_prefix),
memory_cache_(std::move(memory_cache)),
async_write_options_(std::move(async_write_options)) {}
GpuPersistentCache::~GpuPersistentCache() = default;
void GpuPersistentCache::InitializeCache(
persistent_cache::PendingBackend pending_backend,
scoped_refptr<RefCountedGpuProcessShmCount> use_shader_cache_shm_count) {
CHECK(!disk_cache_initialized_.IsSet());
auto cache =
persistent_cache::PersistentCache::Bind(std::move(pending_backend));
if (cache) {
disk_cache_ = base::MakeRefCounted<DiskCache>(
cache_prefix_, std::move(cache), async_write_options_,
std::move(use_shader_cache_shm_count));
disk_cache_initialized_.Set();
if (memory_cache_) {
// If opening the persistent cache succeeded, copy all entries from the
// memory cache into it.
memory_cache_->ForEach([this](MemoryCacheEntry* memory_entry) {
// Query the existence of the disk cache entry by providing an empty
// buffer so no data is copied.
bool exists = disk_cache_->Load(
memory_entry->Key(), [](size_t) { return base::span<uint8_t>(); });
if (!exists) {
disk_cache_->Store(memory_entry);
}
});
}
}
}
size_t GpuPersistentCache::LoadData(const void* key,
size_t key_size,
void* value,
size_t value_size) {
std::string_view key_str(static_cast<const char*>(key), key_size);
size_t discovered_size = 0;
// A BufferProvider for PersistentCache that puts the size of the content, in
// bytes, into `discovered_size` and returns a view into the buffer at
// `value_out` if it is big enough or an empty span otherwise.
// SAFETY: Caller provides either null `value` or `value` plus `value_size`.
auto buffer_provider = [value = UNSAFE_BUFFERS(base::span(
static_cast<uint8_t*>(value), value_size)),
&discovered_size](size_t content_size) {
// Cache hit: retain the size.
discovered_size = content_size;
if (value.size() >= content_size) {
return value.first(content_size);
}
return base::span<uint8_t>();
};
CacheLoadResult result = LoadImpl(key_str, std::move(buffer_provider));
if (!IsCacheHitResult(result) || value_size == 0) {
// This function is called twice in the cache hit case, once to query the
// size of the buffer and again with a buffer to write into. To avoid
// skewing the metrics by generating two cache hit data points, only record
// a cache hit when there is no buffer provided.
RecordCacheLoadResultHistogram(result);
}
return static_cast<GLsizeiptr>(discovered_size);
}
sk_sp<SkData> GpuPersistentCache::load(const SkData& key) {
std::string_view key_str(static_cast<const char*>(key.data()), key.size());
sk_sp<SkData> output_data;
// A BufferProvider for PersistentCache that allocates a new SkData to hold an
// entry's content and returns a view into it.
auto buffer_provider = [&output_data](size_t content_size) {
output_data = SkData::MakeUninitialized(content_size);
// SAFETY: SkData doesn't provide an API to get its buffer as a
// writeable span.
return UNSAFE_BUFFERS(
base::span(static_cast<uint8_t*>(output_data->writable_data()),
output_data->size()));
};
CacheLoadResult result = LoadImpl(key_str, std::move(buffer_provider));
RecordCacheLoadResultHistogram(result);
return output_data;
}
int64_t GpuPersistentCache::GLBlobCacheGet(const void* key,
int64_t key_size,
void* value_out,
int64_t value_size) {
CHECK_GE(key_size, 0);
std::string_view key_str(static_cast<const char*>(key),
static_cast<size_t>(key_size));
size_t discovered_size = 0;
// A BufferProvider for PersistentCache that puts the size of the content, in
// bytes, into `discovered_size` and returns a view into the buffer at
// `value_out` if it is big enough or an empty span otherwise.
// SAFETY: Caller provides either null `value_out` or `value_out` plus
// `value_size`.
auto buffer_provider =
[value = UNSAFE_BUFFERS(base::span(static_cast<uint8_t*>(value_out),
static_cast<size_t>(value_size))),
&discovered_size](size_t content_size) {
// Cache hit: retain the size to return to the caller.
discovered_size = content_size;
if (value.size() >= content_size) {
return value.first(content_size);
}
return base::span<uint8_t>();
};
CacheLoadResult result = LoadImpl(key_str, std::move(buffer_provider));
if (!IsCacheHitResult(result) || value_size == 0) {
// This function is called twice in the cache hit case, once to query the
// size of the buffer and again with a buffer to write into. To avoid
// skewing the metrics by generating two cache hit data points, only record
// a cache hit when there is no buffer provided.
RecordCacheLoadResultHistogram(result);
}
return discovered_size;
}
void GpuPersistentCache::PurgeMemory(
base::MemoryPressureLevel memory_pressure_level) {
if (memory_cache_) {
memory_cache_->PurgeMemory(memory_pressure_level);
}
}
void GpuPersistentCache::OnMemoryDump(
const std::string& dump_name,
base::trace_event::ProcessMemoryDump* pmd) {
if (memory_cache_) {
memory_cache_->OnMemoryDump(dump_name, pmd);
}
}
const persistent_cache::PersistentCache&
GpuPersistentCache::GetPersistentCacheForTesting() const {
return disk_cache_->persistent_cache();
}
bool GpuPersistentCache::IsCacheHitResult(CacheLoadResult result) {
return result > CacheLoadResult::kMaxMissValue;
}
GpuPersistentCache::CacheLoadResult GpuPersistentCache::LoadImpl(
std::string_view key,
persistent_cache::BufferProvider buffer_provider) {
const bool disk_cache_initialized = disk_cache_initialized_.IsSet();
TRACE_EVENT1("gpu", "GpuPersistentCache::LoadImpl", "persistent_cache",
disk_cache_initialized);
// Track cache available for the 1st kMaxLoadStoreForTrackingCacheAvailable
// loads.
if (load_count_.fetch_add(1, std::memory_order_relaxed) <
kMaxLoadStoreForTrackingCacheAvailable) {
base::UmaHistogramBoolean(
GetHistogramName(cache_prefix_, "Load.CacheAvailable"),
disk_cache_initialized);
}
if (memory_cache_) {
if (auto memory_entry = memory_cache_->Find(key)) {
base::span<uint8_t> output_buffer =
buffer_provider(memory_entry->DataSize());
memory_entry->ReadData(output_buffer.data(), output_buffer.size());
return CacheLoadResult::kHitMemory;
}
}
if (!disk_cache_initialized) {
return CacheLoadResult::kMissNoDiskCache;
}
base::span<uint8_t> provided_buffer;
base::HeapArray<uint8_t> local_allocated_buffer;
// A BufferProvider for PersistentCache that returns one of:
// 1. a view into the buffer at `provided_buffer` if it is big enough
// 2. an empty span if no memory_cache_ exists, or
// 3. a view into a new base::HeapArray (`local_allocated_buffer`)
auto wrapped_buffer_provider =
[buffer_provider, memory_cache_exists = memory_cache_ != nullptr,
&provided_buffer, &local_allocated_buffer](size_t content_size) {
// First attempt to use the buffer_provider to allocate a buffer for the
// result.
provided_buffer = buffer_provider(content_size);
// If the `provided_buffer` is large enough, simply return it and let
// the disk cache write into it
if (provided_buffer.size() >= content_size) {
return provided_buffer.first(content_size); // Case 1.
}
if (!memory_cache_exists) {
return base::span<uint8_t>(); // Case 2.
}
// Allocate our own buffer into `local_allocated_buffer` so the result
// can be put in the memory cache
DCHECK(content_size != 0);
local_allocated_buffer = base::HeapArray<uint8_t>::Uninit(content_size);
return base::span<uint8_t>(local_allocated_buffer); // Case 3.
};
if (!disk_cache_->Load(key, wrapped_buffer_provider)) {
return CacheLoadResult::kMiss;
}
if (memory_cache_) {
// Verify the assumptions above. There should always be data in one of the
// two buffers if the load was successful and a memory cache exists.
DCHECK(!local_allocated_buffer.empty() || !provided_buffer.empty());
// After loading from the disk cache, copy the entry into the memory cache
// for faster access on future loads.
if (!local_allocated_buffer.empty()) {
// Prefer the `local_allocated_buffer` because it can be moved directly
// into the memory cache.
memory_cache_->Store(key, std::move(local_allocated_buffer));
} else {
// Otherwise we need to copy the result from the user provided buffer
memory_cache_->Store(key, provided_buffer);
}
}
return CacheLoadResult::kHitDisk;
}
void GpuPersistentCache::StoreData(const void* key,
size_t key_size,
const void* value,
size_t value_size) {
std::string_view key_str(static_cast<const char*>(key), key_size);
base::span<const uint8_t> value_span = UNSAFE_BUFFERS(
base::span(static_cast<const uint8_t*>(value), value_size));
StoreImpl(key_str, value_span);
}
void GpuPersistentCache::store(const SkData& key, const SkData& data) {
std::string_view key_str(static_cast<const char*>(key.data()), key.size());
base::span<const uint8_t> value_span = UNSAFE_BUFFERS(
base::span(static_cast<const uint8_t*>(data.bytes()), data.size()));
StoreImpl(key_str, value_span);
}
void GpuPersistentCache::GLBlobCacheSet(const void* key,
int64_t key_size,
const void* value,
int64_t value_size) {
CHECK_GE(key_size, 0);
CHECK_GE(value_size, 0);
std::string_view key_str(static_cast<const char*>(key),
static_cast<size_t>(key_size));
base::span<const uint8_t> value_span = UNSAFE_BUFFERS(base::span(
static_cast<const uint8_t*>(value), static_cast<size_t>(value_size)));
StoreImpl(key_str, value_span);
}
void GpuPersistentCache::StoreImpl(std::string_view key,
base::span<const uint8_t> value) {
const bool disk_cache_initialized = disk_cache_initialized_.IsSet();
TRACE_EVENT1("gpu", "GpuPersistentCache::StoreImpl", "persistent_cache",
disk_cache_initialized);
// Track cache available for the 1st kMaxLoadStoreForTrackingCacheAvailable
// stores.
if (store_count_.fetch_add(1, std::memory_order_relaxed) <
kMaxLoadStoreForTrackingCacheAvailable) {
base::UmaHistogramBoolean(
GetHistogramName(cache_prefix_, "Store.CacheAvailable"),
disk_cache_initialized);
}
scoped_refptr<MemoryCacheEntry> memory_cache_entry;
if (memory_cache_) {
memory_cache_entry = memory_cache_->Store(key, value);
}
if (!disk_cache_initialized) {
return;
}
// If there was no memory cache, wrap the data in a new MemoryCacheEntry for
// insertion.
if (!memory_cache_entry) {
memory_cache_entry = base::MakeRefCounted<MemoryCacheEntry>(key, value);
}
disk_cache_->Store(memory_cache_entry);
}
void GpuPersistentCache::RecordCacheLoadResultHistogram(
CacheLoadResult result) {
base::UmaHistogramEnumeration(GetHistogramName(cache_prefix_, "LoadResult"),
result);
}
void BindCacheToCurrentOpenGLContext(GpuPersistentCache* cache) {
if (!cache || !gl::g_current_gl_driver->ext.b_GL_ANGLE_blob_cache) {
return;
}
glBlobCacheCallbacksANGLE(GLBlobCacheSetCallback, GLBlobCacheGetCallback,
cache);
}
void UnbindCacheFromCurrentOpenGLContext() {
if (!gl::g_current_gl_driver->ext.b_GL_ANGLE_blob_cache) {
return;
}
glBlobCacheCallbacksANGLE(nullptr, nullptr, nullptr);
}
} // namespace gpu
|