File: gpu_persistent_cache_unittest.cc

package info (click to toggle)
chromium 144.0.7559.109-2
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 5,915,868 kB
  • sloc: cpp: 35,866,215; ansic: 7,599,035; javascript: 3,623,761; python: 1,639,407; xml: 833,084; asm: 716,173; pascal: 185,323; sh: 88,763; perl: 88,699; objc: 79,984; sql: 58,217; cs: 42,430; fortran: 24,101; makefile: 20,747; tcl: 15,277; php: 14,022; yacc: 9,059; ruby: 7,553; awk: 3,720; lisp: 3,233; lex: 1,330; ada: 727; jsp: 228; sed: 36
file content (530 lines) | stat: -rw-r--r-- 20,863 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
// Copyright 2025 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "gpu/command_buffer/service/gpu_persistent_cache.h"

#include "base/barrier_closure.h"
#include "base/containers/heap_array.h"
#include "base/files/scoped_temp_dir.h"
#include "base/run_loop.h"
#include "base/strings/string_number_conversions.h"
#include "base/task/thread_pool.h"
#include "base/test/gmock_expected_support.h"
#include "base/test/metrics/histogram_tester.h"
#include "base/test/task_environment.h"
#include "base/test/trace_test_utils.h"
#include "base/trace_event/trace_config.h"
#include "base/trace_event/trace_log.h"
#include "components/persistent_cache/backend_storage.h"
#include "components/persistent_cache/backend_type.h"
#include "components/persistent_cache/pending_backend.h"
#include "components/persistent_cache/sqlite/vfs/sandboxed_file.h"
#include "gpu/command_buffer/service/memory_cache.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace gpu {

namespace {
static constexpr size_t kDefaultMemoryCacheSizeForTesting = 1 << 16;
}

class GpuPersistentCacheTest : public testing::Test {
 public:
  void SetUp() override {
    cache_ = base::MakeRefCounted<GpuPersistentCache>("Test",
                                                      MakeDefaultMemoryCache());
    ASSERT_TRUE(temp_dir_.CreateUniqueTempDir());
    backend_storage_.emplace(persistent_cache::BackendType::kSqlite,
                             temp_dir_.GetPath());
  }

 protected:
  static scoped_refptr<MemoryCache> MakeDefaultMemoryCache() {
    return base::MakeRefCounted<MemoryCache>(kDefaultMemoryCacheSizeForTesting);
  }

  void InitializeCache() {
    ASSERT_OK_AND_ASSIGN(
        auto pending_backend,
        backend_storage_->MakePendingBackend(
            base::FilePath(FILE_PATH_LITERAL("test")),
            /*single_connection=*/true, /*journal_mode_wal=*/true));
    cache_->InitializeCache(std::move(pending_backend));
  }

  void RunStoreAndLoadDataMultiThreaded(int num_threads);

  base::test::TaskEnvironment task_environment_{
      base::test::TaskEnvironment::TimeSource::MOCK_TIME};
  base::ScopedTempDir temp_dir_;
  std::optional<persistent_cache::BackendStorage> backend_storage_;
  scoped_refptr<GpuPersistentCache> cache_;
};

TEST_F(GpuPersistentCacheTest,
       StoreAndLoadDataBeforeInitializeWithNoMemoryCache) {
  // Don't initialize cache.
  auto cache_with_no_memory_cache =
      base::MakeRefCounted<GpuPersistentCache>("Test", nullptr);
  const std::string key = "my_key";
  const std::string value = "my_value";

  // StoreData() won't do anything but also won't crash.
  cache_with_no_memory_cache->StoreData(key.c_str(), key.size(), value.c_str(),
                                        value.size());

  // LoadData() will return zero size since there is no cache yet.
  EXPECT_EQ(
      cache_with_no_memory_cache->LoadData(key.c_str(), key.size(), nullptr, 0),
      0u);
}

// Tests basic store and load functionality on a single thread.
TEST_F(GpuPersistentCacheTest, StoreAndLoadData) {
  InitializeCache();

  const std::string key = "my_key";
  const std::string value = "my_value";
  cache_->StoreData(key.c_str(), key.size(), value.c_str(), value.size());

  std::vector<char> buffer(value.size());
  size_t loaded_size =
      cache_->LoadData(key.c_str(), key.size(), buffer.data(), buffer.size());

  EXPECT_EQ(loaded_size, value.size());
  EXPECT_EQ(std::string(buffer.begin(), buffer.end()), value);
}

// Tests basic load and store using the Skia, ANGLE and Dawn caching interfaces.
TEST_F(GpuPersistentCacheTest, StoreAndLoadDataMixedInterfaces) {
  InitializeCache();

  // Insert 3 key/value pairs with the 3 caching interfaces.
  const std::string key_dawn = "my_key_dawn";
  const std::string value_dawn = "my_value_dawn";
  cache_->StoreData(key_dawn.c_str(), key_dawn.size(), value_dawn.c_str(),
                    value_dawn.size());

  const std::string key_gr = "my_key_gr";
  sk_sp<SkData> key_gr_data =
      SkData::MakeWithoutCopy(key_gr.c_str(), key_gr.size());
  const std::string value_gr = "my_value_gr";
  sk_sp<SkData> value_gr_data =
      SkData::MakeWithoutCopy(value_gr.c_str(), value_gr.size());
  cache_->store(*key_gr_data, *value_gr_data);

  const std::string key_gl = "my_key_gl";
  const std::string value_gl = "my_value_gl";
  cache_->GLBlobCacheSet(key_gl.c_str(), static_cast<int64_t>(key_gl.size()),
                         value_gl.c_str(),
                         static_cast<int64_t>(value_gl.size()));

  // Load with dawn::Platform::CachingInterface
  auto test_load_dawn = [this](const std::string& key,
                               const std::string& value) {
    std::vector<char> buffer(value.size());
    size_t loaded_size =
        cache_->LoadData(key.c_str(), key.size(), buffer.data(), buffer.size());

    EXPECT_EQ(loaded_size, value.size());
    EXPECT_EQ(std::string(buffer.begin(), buffer.end()), value);
  };
  test_load_dawn(key_dawn, value_dawn);
  test_load_dawn(key_gr, value_gr);
  test_load_dawn(key_gl, value_gl);

  // Load with GrContextOptions::PersistentCache
  auto test_load_gr = [this](const std::string& key, const std::string& value) {
    sk_sp<SkData> key_data = SkData::MakeWithoutCopy(key.c_str(), key.size());
    sk_sp buffer = cache_->load(*key_data);

    EXPECT_EQ(buffer->size(), value.size());
    EXPECT_EQ(
        std::string(static_cast<const char*>(buffer->data()), buffer->size()),
        value);
  };
  test_load_gr(key_dawn, value_dawn);
  test_load_gr(key_gr, value_gr);
  test_load_gr(key_gl, value_gl);

  // Load with GL_ANGLE_blob_cache
  auto test_load_gl = [this](const std::string& key, const std::string& value) {
    std::vector<char> buffer(value.size());
    int64_t loaded_size = cache_->GLBlobCacheGet(key.c_str(), key.size(),
                                                 buffer.data(), buffer.size());

    EXPECT_EQ(loaded_size, static_cast<int64_t>(value.size()));
    EXPECT_EQ(std::string(buffer.begin(), buffer.end()), value);
  };
  test_load_gl(key_dawn, value_dawn);
  test_load_gl(key_gr, value_gr);
  test_load_gl(key_gl, value_gl);
}

// Tests that loading a non-existent key returns 0.
TEST_F(GpuPersistentCacheTest, LoadNonExistentKey) {
  InitializeCache();

  const std::string key = "non_existent_key";
  std::vector<char> buffer(16);
  size_t loaded_size =
      cache_->LoadData(key.c_str(), key.size(), buffer.data(), buffer.size());
  EXPECT_EQ(loaded_size, 0u);
}

void GpuPersistentCacheTest::RunStoreAndLoadDataMultiThreaded(int num_threads) {
  constexpr int kNumOperationsPerThread = 2;

  base::RunLoop run_loop;
  auto barrier = base::BarrierClosure(num_threads, run_loop.QuitClosure());

  // Post tasks to multiple threads to store and immediately load data.
  for (int i = 0; i < num_threads; ++i) {
    base::ThreadPool::PostTask(
        FROM_HERE, {base::MayBlock()},
        base::BindOnce(
            [](scoped_refptr<GpuPersistentCache> cache, int thread_id,
               base::OnceClosure done_closure) {
              for (int j = 0; j < kNumOperationsPerThread; ++j) {
                std::string key = "key_" + base::NumberToString(thread_id) +
                                  "_" + base::NumberToString(j);
                std::string value = "value_" + base::NumberToString(thread_id) +
                                    "_" + base::NumberToString(j);

                cache->StoreData(key.c_str(), key.size(), value.c_str(),
                                 value.size());

                std::vector<char> buffer(value.size());
                size_t loaded_size = cache->LoadData(
                    key.c_str(), key.size(), buffer.data(), buffer.size());
                ASSERT_EQ(loaded_size, value.size());
                ASSERT_EQ(std::string(buffer.begin(), buffer.end()), value);
              }
              std::move(done_closure).Run();
            },
            cache_, i, barrier));
  }

  // Wait for all threads to complete.
  run_loop.Run();

  // After all threads are done, verify from the main thread that all data is
  // still present and correct. This ensures that writes from different threads
  // did not corrupt each other's data.
  for (int i = 0; i < num_threads; ++i) {
    for (int j = 0; j < kNumOperationsPerThread; ++j) {
      std::string key =
          "key_" + base::NumberToString(i) + "_" + base::NumberToString(j);
      std::string value =
          "value_" + base::NumberToString(i) + "_" + base::NumberToString(j);
      std::vector<char> buffer(value.size());
      size_t loaded_size = cache_->LoadData(key.c_str(), key.size(),
                                            buffer.data(), buffer.size());
      EXPECT_EQ(loaded_size, value.size());
      EXPECT_EQ(std::string(buffer.begin(), buffer.end()), value);
    }
  }
}

// Tests that the cache can be safely written to and read from by multiple
// threads concurrently.
TEST_F(GpuPersistentCacheTest, StoreAndLoadDataMultiThreaded) {
  InitializeCache();

  RunStoreAndLoadDataMultiThreaded(8);
}

// Some internal sql code especially tracings checks that they are called on a
// correct sequence. This test verifies that we can use the cache on multiple
// threads without violating sequence checkers. There is no need to stress test
// with many threads like the above StoreAndLoadDataMultiThreaded. A minimal
// number of threads should suffice.
TEST_F(GpuPersistentCacheTest, StoreAndLoadDataMultiThreadedWithSqlTrace) {
  InitializeCache();

  base::test::TracingEnvironment tracing_environment;
  base::trace_event::TraceLog::GetInstance()->SetEnabled(
      base::trace_event::TraceConfig("sql", ""));

  RunStoreAndLoadDataMultiThreaded(3);

  base::trace_event::TraceLog::GetInstance()->SetDisabled();
}

class GpuPersistentCacheAsyncTest : public GpuPersistentCacheTest {
 protected:
  scoped_refptr<GpuPersistentCache> OpenAsyncCache(
      size_t max_pending_bytes_to_write = std::numeric_limits<size_t>::max()) {
    auto pending_backend = backend_storage_->MakePendingBackend(
        base::FilePath(FILE_PATH_LITERAL("test")),
        /*single_connection=*/true, /*journal_mode_wal=*/true);
    if (!pending_backend) {
      ADD_FAILURE() << "Failed to make pending backend for test cache";
      return nullptr;
    }

    GpuPersistentCache::AsyncDiskWriteOpts options;
    options.task_runner = base::SingleThreadTaskRunner::GetCurrentDefault();
    options.max_pending_bytes_to_write = max_pending_bytes_to_write;
    auto async_cache = base::MakeRefCounted<GpuPersistentCache>(
        "TestAsync", MakeDefaultMemoryCache(), std::move(options));
    async_cache->InitializeCache(*std::move(pending_backend));
    return async_cache;
  }
};

// Tests that when an async task runner is used, the data is written to disk
// after a delay. It also verifies that the underlying DiskCache is kept alive
// by the posted task, even after the GpuPersistentCache instance is destroyed.
TEST_F(GpuPersistentCacheAsyncTest, StoreAndLoadDataAsync) {
  const std::string key = "my_key";
  const std::string value = "my_value";

  scoped_refptr<GpuPersistentCache> async_cache = OpenAsyncCache();

  base::HistogramTester histogram_tester;

  // Store data. This will be a delayed write.
  async_cache->StoreData(key.c_str(), key.size(), value.c_str(), value.size());

  // No writes should have taken place yet.
  histogram_tester.ExpectTotalCount("GPU.PersistentCache.TestAsync.Store", 0);

  // Destroy the cache. The posted write task will keep the underlying
  // DiskCache alive until it has run.
  async_cache.reset();

  // Fast forward time to trigger the write.
  task_environment_.FastForwardBy(base::Seconds(2));

  // Now the store should have taken place.
  histogram_tester.ExpectTotalCount("GPU.PersistentCache.TestAsync.Store", 1);

  // And the data should be in the cache.
  async_cache = OpenAsyncCache();
  auto buffer = base::HeapArray<char>::Uninit(value.size());
  size_t loaded_size = async_cache->LoadData(key.c_str(), key.size(),
                                             buffer.data(), buffer.size());
  EXPECT_EQ(loaded_size, value.size());
  EXPECT_EQ(std::string(buffer.begin(), buffer.end()), value);
}

// Tests the idle-rescheduling logic. If another cache operation occurs during
// the delay period, the write task should be postponed.
TEST_F(GpuPersistentCacheAsyncTest, StoreAndLoadDataAsync_IdleReschedule) {
  const std::string key = "my_key";
  const std::string value = "my_value";

  scoped_refptr<GpuPersistentCache> async_cache = OpenAsyncCache();

  base::HistogramTester histogram_tester;

  // Store data. This will be a delayed write.
  async_cache->StoreData(key.c_str(), key.size(), value.c_str(), value.size());

  // Fast forward a bit, but less than the delay.
  task_environment_.FastForwardBy(base::Milliseconds(500));

  // Perform another operation to reset the idle timer.
  std::vector<char> dummy_buffer(1);
  async_cache->LoadData("some_other_key", 14, dummy_buffer.data(), 1);

  // Fast forward past the original delay time.
  task_environment_.FastForwardBy(base::Seconds(1));

  // The write should not have happened yet because it was rescheduled.
  histogram_tester.ExpectTotalCount("GPU.PersistentCache.TestAsync.Store", 0);

  // Fast forward again to let the rescheduled write complete.
  task_environment_.FastForwardBy(base::Seconds(1));

  // The write should now have happened.
  histogram_tester.ExpectTotalCount("GPU.PersistentCache.TestAsync.Store", 1);

  // Destroy the cache.
  async_cache.reset();

  // And the data should be there.
  async_cache = OpenAsyncCache();
  auto buffer = base::HeapArray<char>::Uninit(value.size());
  size_t loaded_size = async_cache->LoadData(key.c_str(), key.size(),
                                             buffer.data(), buffer.size());
  EXPECT_EQ(loaded_size, value.size());
  EXPECT_EQ(std::string(buffer.begin(), buffer.end()), value);
}

// Tests that if pending bytes exceed the limit, the write happens after the
// first delay without being rescheduled.
TEST_F(GpuPersistentCacheAsyncTest,
       StoreAndLoadDataAsync_ExceedMaxPendingBytes) {
  // Create the cache with a pending byte limit.
  scoped_refptr<GpuPersistentCache> async_cache =
      OpenAsyncCache(/*max_pending_bytes_to_write=*/10);

  const std::string key = "my_key";
  const std::string value = "my_value_is_longer_than_10";
  ASSERT_GT(key.size() + value.size(), 10u);

  base::HistogramTester histogram_tester;

  // Store data. This will be a delayed write.
  async_cache->StoreData(key.c_str(), key.size(), value.c_str(), value.size());

  // Fast forward a bit, but less than the delay.
  task_environment_.FastForwardBy(base::Milliseconds(500));

  // Perform another operation to reset the idle timer. This is to ensure that
  // the write is triggered by the pending bytes limit and not the idle timeout.
  std::vector<char> dummy_buffer(1);
  async_cache->LoadData("some_other_key", 14, dummy_buffer.data(), 1);

  // The write should not have happened yet.
  histogram_tester.ExpectTotalCount("GPU.PersistentCache.TestAsync.Store", 0);

  // Fast forward past the delay. The write should have happened because of the
  // pending bytes limit, even though the cache was not idle.
  task_environment_.FastForwardBy(base::Seconds(1));

  // The write should have happened.
  histogram_tester.ExpectTotalCount("GPU.PersistentCache.TestAsync.Store", 1);

  // Destroy the cache.
  async_cache.reset();

  // Verify that the data was written by reopening and reading from the cache.
  async_cache = OpenAsyncCache();
  auto buffer = base::HeapArray<char>::Uninit(value.size());
  size_t loaded_size = async_cache->LoadData(key.c_str(), key.size(),
                                             buffer.data(), buffer.size());
  EXPECT_EQ(loaded_size, value.size());
  EXPECT_EQ(std::string(buffer.begin(), buffer.end()), value);
}

// Test that the persistent cache uses the memory backing if no database files
// are set
TEST_F(GpuPersistentCacheTest, MemoryBackingOnly) {
  const std::string key = "my_key";
  const std::string value = "my_value";
  cache_->StoreData(key.c_str(), key.size(), value.c_str(), value.size());

  // Check that the entry exists in the cache.
  std::vector<char> buffer(value.size());
  size_t loaded_size =
      cache_->LoadData(key.c_str(), key.size(), buffer.data(), buffer.size());

  EXPECT_EQ(loaded_size, value.size());
  EXPECT_EQ(std::string(buffer.begin(), buffer.end()), value);
}

// Test that the persistent cache uses the memory backing before the database
// files are initialized
TEST_F(GpuPersistentCacheTest, MemoryBackingSyncedToDisk) {
  const std::string key = "my_key";
  const std::string value = "my_value";

  {
    // Store the data to the cache without initializing the database files
    auto cache = base::MakeRefCounted<GpuPersistentCache>(
        "Test", MakeDefaultMemoryCache());
    cache->StoreData(key.c_str(), key.size(), value.c_str(), value.size());

    // Initialize the cache, the memory storage will be written to disk.
    ASSERT_OK_AND_ASSIGN(
        auto pending_backend,
        backend_storage_->MakePendingBackend(
            base::FilePath(FILE_PATH_LITERAL("MemoryBackingSyncedToDisk")),
            /*single_connection=*/true, /*journal_mode_wal=*/true));

    cache->InitializeCache(std::move(pending_backend));
  }

  // Reload the same persistent cache from disk
  {
    auto cache = base::MakeRefCounted<GpuPersistentCache>(
        "Test", MakeDefaultMemoryCache());
    ASSERT_OK_AND_ASSIGN(
        auto pending_backend,
        backend_storage_->MakePendingBackend(
            base::FilePath(FILE_PATH_LITERAL("MemoryBackingSyncedToDisk")),
            /*single_connection=*/true, /*journal_mode_wal=*/true));
    cache->InitializeCache(std::move(pending_backend));

    // Check that the entry exists in the cache.
    std::vector<char> buffer(value.size());
    size_t loaded_size =
        cache->LoadData(key.c_str(), key.size(), buffer.data(), buffer.size());

    EXPECT_EQ(loaded_size, value.size());
    EXPECT_EQ(std::string(buffer.begin(), buffer.end()), value);
  }
}

// Verifies that data stored in a persistent cache can be loaded back.
TEST_F(GpuPersistentCacheTest, ReOpenCacheFromFile) {
  const std::string key = "my_key";
  const std::string value = "my_value";

  // Store data to the persistent cache via store interface.
  {
    scoped_refptr<MemoryCache> memory_cache =
        base::MakeRefCounted<MemoryCache>(1024);
    auto cache = base::MakeRefCounted<GpuPersistentCache>("Test", memory_cache);
    ASSERT_OK_AND_ASSIGN(
        auto pending_backend,
        backend_storage_->MakePendingBackend(
            base::FilePath(FILE_PATH_LITERAL("ReOpenCacheFromFile")),
            /*single_connection=*/true, /*journal_mode_wal=*/true));
    cache->InitializeCache(std::move(pending_backend));

    cache->StoreData(key.c_str(), key.size(), value.c_str(), value.size());

    // Check that the entry exists in the memory cache.
    auto memory_entry = memory_cache->Find(key);
    EXPECT_NE(nullptr, memory_entry);
    EXPECT_EQ(value.size(), memory_entry->DataSize());
    EXPECT_EQ(
        std::string(memory_entry->Data().begin(), memory_entry->Data().end()),
        value);

    // Check that the entry exists in the persistent cache.
    std::vector<char> buffer(value.size());
    size_t loaded_size =
        cache->LoadData(key.c_str(), key.size(), buffer.data(), buffer.size());

    EXPECT_EQ(loaded_size, value.size());
    EXPECT_EQ(std::string(buffer.begin(), buffer.end()), value);
  }

  // Reload the same persistent cache from disk
  {
    scoped_refptr<MemoryCache> memory_cache =
        base::MakeRefCounted<MemoryCache>(1024);
    auto cache = base::MakeRefCounted<GpuPersistentCache>("Test", memory_cache);
    ASSERT_OK_AND_ASSIGN(
        auto pending_backend,
        backend_storage_->MakePendingBackend(
            base::FilePath(FILE_PATH_LITERAL("ReOpenCacheFromFile")),
            /*single_connection=*/true, /*journal_mode_wal=*/true));
    cache->InitializeCache(std::move(pending_backend));

    // Check that the entry exists in the persistent cache.
    std::vector<char> buffer(value.size());
    size_t loaded_size =
        cache->LoadData(key.c_str(), key.size(), buffer.data(), buffer.size());

    EXPECT_EQ(loaded_size, value.size());
    EXPECT_EQ(std::string(buffer.begin(), buffer.end()), value);

    // Check that the memory cache now contains the same entry after the
    // LoadData() call above
    auto memory_entry = memory_cache->Find(key);
    EXPECT_NE(nullptr, memory_entry);
    EXPECT_EQ(value.size(), memory_entry->DataSize());
    EXPECT_EQ(
        std::string(memory_entry->Data().begin(), memory_entry->Data().end()),
        value);
  }
}

}  // namespace gpu