1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
|
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <iterator>
#include <map>
#include <vector>
#include "base/base64.h"
#include "base/command_line.h"
#include "base/files/file_path.h"
#include "base/files/file_util.h"
#include "base/strings/strcat.h"
#include "base/strings/stringprintf.h"
#include "base/test/trace_event_analyzer.h"
#include "base/time/default_tick_clock.h"
#include "base/values.h"
#include "build/build_config.h"
#include "chrome/browser/extensions/api/tab_capture/tab_capture_performance_test_base.h"
#include "chrome/browser/ui/browser.h"
#include "chrome/common/chrome_paths.h"
#include "chrome/common/chrome_switches.h"
#include "chrome/test/base/tracing.h"
#include "content/public/common/content_switches.h"
#include "content/public/test/browser_test_utils.h"
#include "media/base/audio_bus.h"
#include "media/base/video_frame.h"
#include "media/cast/test/skewed_tick_clock.h"
#include "media/cast/test/utility/audio_utility.h"
#include "media/cast/test/utility/barcode.h"
#include "media/cast/test/utility/default_config.h"
#include "media/cast/test/utility/in_process_receiver.h"
#include "media/cast/test/utility/net_utility.h"
#include "media/cast/test/utility/standalone_cast_environment.h"
#include "media/cast/test/utility/udp_proxy.h"
#include "net/base/ip_address.h"
#include "net/base/ip_endpoint.h"
#include "net/base/net_errors.h"
#include "net/base/rand_callback.h"
#include "net/log/net_log_source.h"
#include "net/socket/udp_server_socket.h"
#include "testing/perf/perf_test.h"
namespace {
// Number of events to trim from the begining and end. These events don't
// contribute anything toward stable measurements: A brief moment of startup
// "jank" is acceptable, and shutdown may result in missing events (e.g., if
// streaming stops a few frames before capture stops).
constexpr size_t kTrimEvents = 24; // 1 sec at 24fps, or 0.4 sec at 60 fps.
// Minimum number of events required for a reasonable analysis.
constexpr size_t kMinDataPoints = 100; // 1 sec of audio, or ~5 sec at 24fps.
enum TestFlags {
kSmallWindow = 1 << 2, // Window size: 1 = 800x600, 0 = 2000x1000
k24fps = 1 << 3, // Use 24 fps video.
k30fps = 1 << 4, // Use 30 fps video.
k60fps = 1 << 5, // Use 60 fps video (captured at 30 fps).
kProxyWifi = 1 << 6, // Run UDP through UDPProxy wifi profile.
kProxySlow = 1 << 7, // Run UDP through UDPProxy slow profile.
kProxyBad = 1 << 8, // Run UDP through UDPProxy bad profile.
kSlowClock = 1 << 9, // Receiver clock is 10 seconds slow.
kFastClock = 1 << 10, // Receiver clock is 10 seconds fast.
kAutoThrottling = 1 << 11, // Use auto-resolution/framerate throttling.
};
// These are just for testing! Use cryptographically-secure random keys in
// production code!
static constexpr char kAesKey[16] = {0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15};
static constexpr char kAesIvMask[16] = {15, 14, 13, 12, 11, 10, 9, 8,
7, 6, 5, 4, 3, 2, 1, 0};
media::cast::FrameReceiverConfig WithAesKeyAndIvSet(
const media::cast::FrameReceiverConfig& config) {
media::cast::FrameReceiverConfig result = config;
result.aes_key = std::string(kAesKey, kAesKey + sizeof(kAesKey));
result.aes_iv_mask = std::string(kAesIvMask, kAesIvMask + sizeof(kAesIvMask));
return result;
}
class SkewedCastEnvironment : public media::cast::StandaloneCastEnvironment {
public:
explicit SkewedCastEnvironment(const base::TimeDelta& delta)
: StandaloneCastEnvironment(),
skewed_clock_(base::DefaultTickClock::GetInstance()) {
// If testing with a receiver clock that is ahead or behind the sender
// clock, fake a clock that is offset and also ticks at a rate of 50 parts
// per million faster or slower than the local sender's clock. This is the
// worst-case scenario for skew in-the-wild.
if (!delta.is_zero()) {
const double skew = delta < base::TimeDelta() ? 0.999950 : 1.000050;
skewed_clock_.SetSkew(skew, delta);
}
clock_ = &skewed_clock_;
}
protected:
~SkewedCastEnvironment() override {}
private:
media::cast::test::SkewedTickClock skewed_clock_;
};
// We log one of these for each call to OnAudioFrame/OnVideoFrame.
struct TimeData {
TimeData(uint16_t frame_no_, base::TimeTicks playout_time_)
: frame_no(frame_no_), playout_time(playout_time_) {}
// The unit here is video frames, for audio data there can be duplicates.
// This was decoded from the actual audio/video data.
uint16_t frame_no;
// This is when we should play this data, according to the sender.
base::TimeTicks playout_time;
};
// TODO(hubbe): Move to media/cast to use for offline log analysis.
class MeanAndError {
public:
explicit MeanAndError(const std::vector<double>& values) {
double sum = 0.0;
double sqr_sum = 0.0;
num_values_ = values.size();
if (num_values_ > 0) {
for (size_t i = 0; i < num_values_; i++) {
sum += values[i];
sqr_sum += values[i] * values[i];
}
mean_ = sum / num_values_;
std_dev_ =
sqrt(std::max(0.0, num_values_ * sqr_sum - sum * sum)) / num_values_;
} else {
mean_ = NAN;
std_dev_ = NAN;
}
}
void SetMeanAsAbsoluteValue() { mean_ = std::abs(mean_); }
std::string AsString() const {
return base::StringPrintf("%f,%f", mean_, std_dev_);
}
void Print(const std::string& measurement,
const std::string& modifier,
const std::string& trace,
const std::string& unit) {
if (num_values_ >= 20) {
perf_test::PrintResultMeanAndError(measurement,
modifier,
trace,
AsString(),
unit,
true);
} else {
LOG(ERROR) << "Not enough events (" << num_values_ << ") for "
<< measurement << modifier << " " << trace;
}
}
private:
size_t num_values_;
double mean_;
double std_dev_;
};
// This function checks how smooth the data in |data| is.
// It computes the average error of deltas and the average delta.
// If data[x] == x * A + B, then this function returns zero.
// The unit is milliseconds.
static MeanAndError AnalyzeJitter(const std::vector<TimeData>& data) {
CHECK_GT(data.size(), 1UL);
VLOG(0) << "Jitter analysis on " << data.size() << " values.";
std::vector<double> deltas;
double sum = 0.0;
for (size_t i = 1; i < data.size(); i++) {
double delta =
(data[i].playout_time - data[i - 1].playout_time).InMillisecondsF();
deltas.push_back(delta);
sum += delta;
}
double mean = sum / deltas.size();
for (size_t i = 0; i < deltas.size(); i++) {
deltas[i] = fabs(mean - deltas[i]);
}
return MeanAndError(deltas);
}
// An in-process Cast receiver that examines the audio/video frames being
// received and logs some data about each received audio/video frame.
class TestPatternReceiver : public media::cast::InProcessReceiver {
public:
explicit TestPatternReceiver(
const scoped_refptr<media::cast::CastEnvironment>& cast_environment,
const net::IPEndPoint& local_end_point)
: InProcessReceiver(
cast_environment,
local_end_point,
net::IPEndPoint(),
WithAesKeyAndIvSet(media::cast::GetDefaultAudioReceiverConfig()),
WithAesKeyAndIvSet(media::cast::GetDefaultVideoReceiverConfig())) {}
typedef std::map<uint16_t, base::TimeTicks> TimeMap;
// Build a map from frame ID (as encoded in the audio and video data)
// to the rtp timestamp for that frame. Note that there will be multiple
// audio frames which all have the same frame ID. When that happens we
// want the minimum rtp timestamp, because that audio frame is supposed
// to play at the same time that the corresponding image is presented.
void MapFrameTimes(const std::vector<TimeData>& events, TimeMap* map) {
for (size_t i = kTrimEvents; i < events.size() - kTrimEvents; i++) {
base::TimeTicks& frame_tick = (*map)[events[i].frame_no];
if (frame_tick.is_null()) {
frame_tick = events[i].playout_time;
} else {
frame_tick = std::min(events[i].playout_time, frame_tick);
}
}
}
void Analyze(const std::string& name, const std::string& modifier) {
// First, find the minimum rtp timestamp for each audio and video frame.
// Note that the data encoded in the audio stream contains video frame
// numbers. So in a 30-fps video stream, there will be 1/30s of "1", then
// 1/30s of "2", etc.
TimeMap audio_frame_times, video_frame_times;
MapFrameTimes(audio_events_, &audio_frame_times);
EXPECT_GE(audio_frame_times.size(), kMinDataPoints);
MapFrameTimes(video_events_, &video_frame_times);
EXPECT_GE(video_frame_times.size(), kMinDataPoints);
std::vector<double> deltas;
for (TimeMap::const_iterator i = audio_frame_times.begin();
i != audio_frame_times.end();
++i) {
TimeMap::const_iterator j = video_frame_times.find(i->first);
if (j != video_frame_times.end()) {
deltas.push_back((i->second - j->second).InMillisecondsF());
}
}
EXPECT_GE(deltas.size(), kMinDataPoints);
MeanAndError av_sync(deltas);
av_sync.Print(name, modifier, "av_sync", "ms");
// Close to zero is better (av_sync can be negative).
av_sync.SetMeanAsAbsoluteValue();
av_sync.Print(name, modifier, "abs_av_sync", "ms");
// lower is better.
AnalyzeJitter(audio_events_).Print(name, modifier, "audio_jitter", "ms");
// lower is better.
AnalyzeJitter(video_events_).Print(name, modifier, "video_jitter", "ms");
// Mean resolution of video at receiver. Lower stddev is better, while the
// mean should be something reasonable given the network constraints
// (usually 480 lines or more). Note that this is the video resolution at
// the receiver, but changes originate on the sender side.
std::vector<double> slice_for_analysis;
if (video_frame_lines_.size() > kTrimEvents * 2) {
slice_for_analysis.reserve(video_frame_lines_.size() - kTrimEvents * 2);
EXPECT_GE(slice_for_analysis.capacity(), kMinDataPoints);
std::transform(video_frame_lines_.begin() + kTrimEvents,
video_frame_lines_.end() - kTrimEvents,
std::back_inserter(slice_for_analysis),
[](int lines) { return static_cast<double>(lines); });
}
MeanAndError(slice_for_analysis)
.Print(name, modifier, "playout_resolution", "lines");
// Number of resolution changes. Lower is better (and 1 is ideal). Zero
// indicates a lack of data.
int last_lines = -1;
int change_count = 0;
for (size_t i = kTrimEvents; i < video_frame_lines_.size() - kTrimEvents;
++i) {
if (video_frame_lines_[i] != last_lines) {
++change_count;
last_lines = video_frame_lines_[i];
}
}
EXPECT_GT(change_count, 0);
perf_test::PrintResult(name, modifier, "resolution_changes",
base::IntToString(change_count), "count", true);
}
private:
// Invoked by InProcessReceiver for each received audio frame.
void OnAudioFrame(std::unique_ptr<media::AudioBus> audio_frame,
const base::TimeTicks& playout_time,
bool is_continuous) override {
CHECK(cast_env()->CurrentlyOn(media::cast::CastEnvironment::MAIN));
if (audio_frame->frames() <= 0) {
NOTREACHED() << "OnAudioFrame called with no samples?!?";
return;
}
// Note: This is the number of the video frame that this audio belongs to.
uint16_t frame_no;
if (media::cast::DecodeTimestamp(audio_frame->channel(0),
audio_frame->frames(),
&frame_no)) {
audio_events_.push_back(TimeData(frame_no, playout_time));
} else {
DVLOG(2) << "Failed to decode audio timestamp!";
}
}
void OnVideoFrame(const scoped_refptr<media::VideoFrame>& video_frame,
const base::TimeTicks& playout_time,
bool is_continuous) override {
CHECK(cast_env()->CurrentlyOn(media::cast::CastEnvironment::MAIN));
TRACE_EVENT_INSTANT1("cast_perf_test", "VideoFramePlayout",
TRACE_EVENT_SCOPE_THREAD, "playout_time",
(playout_time - base::TimeTicks()).InMicroseconds());
uint16_t frame_no;
if (media::cast::test::DecodeBarcode(video_frame, &frame_no)) {
video_events_.push_back(TimeData(frame_no, playout_time));
} else {
DVLOG(2) << "Failed to decode barcode!";
}
video_frame_lines_.push_back(video_frame->visible_rect().height());
}
std::vector<TimeData> audio_events_;
std::vector<TimeData> video_events_;
// The height (number of lines) of each video frame received.
std::vector<int> video_frame_lines_;
DISALLOW_COPY_AND_ASSIGN(TestPatternReceiver);
};
class CastV2PerformanceTest : public TabCapturePerformanceTestBase,
public testing::WithParamInterface<int> {
public:
CastV2PerformanceTest() = default;
~CastV2PerformanceTest() override = default;
bool HasFlag(TestFlags flag) const {
return (GetParam() & flag) == flag;
}
std::string GetSuffixForTestFlags() const {
std::string suffix;
// Note: Add "_gpu" tag for backwards-compatibility with existing
// Performance Dashboard timeseries data.
suffix += "_gpu";
if (HasFlag(kSmallWindow))
suffix += "_small";
if (HasFlag(k24fps))
suffix += "_24fps";
if (HasFlag(k30fps))
suffix += "_30fps";
if (HasFlag(k60fps))
suffix += "_60fps";
if (HasFlag(kProxyWifi))
suffix += "_wifi";
if (HasFlag(kProxySlow))
suffix += "_slowwifi";
if (HasFlag(kProxyBad))
suffix += "_bad";
if (HasFlag(kSlowClock))
suffix += "_slow";
if (HasFlag(kFastClock))
suffix += "_fast";
if (HasFlag(kAutoThrottling))
suffix += "_autothrottling";
return suffix;
}
int get_fps() const {
if (HasFlag(k24fps))
return 24;
if (HasFlag(k30fps))
return 30;
if (HasFlag(k60fps))
return 60;
NOTREACHED();
return 0;
}
void SetUp() override {
// Produce the full HTML test page with the barcode video embedded within
// (as a data URI).
const base::FilePath video_file =
GetApiTestDataDir()
.AppendASCII("cast_streaming")
.AppendASCII(
base::StringPrintf("test_video_%dfps.webm", get_fps()));
std::string file_contents;
const bool success = base::ReadFileToString(video_file, &file_contents);
CHECK(success) << "Failed to load video at: " << video_file.AsUTF8Unsafe();
std::string video_in_base64;
base::Base64Encode(file_contents, &video_in_base64);
test_page_html_ =
base::StrCat({"<html><body>\n"
"<video width='100%' height='100%'>\n"
" <source src='data:video/webm;base64,",
video_in_base64,
"'>\n"
"</video>\n"
"</body></html>"});
TabCapturePerformanceTestBase::SetUp();
}
void SetUpCommandLine(base::CommandLine* command_line) override {
if (HasFlag(kSmallWindow)) {
command_line->AppendSwitchASCII(switches::kWindowSize, "800,600");
} else {
command_line->AppendSwitchASCII(switches::kWindowSize, "2000,1500");
}
TabCapturePerformanceTestBase::SetUpCommandLine(command_line);
}
void GetTraceEvents(trace_analyzer::TraceAnalyzer* analyzer,
const std::string& event_name,
trace_analyzer::TraceEventVector* events) {
trace_analyzer::Query query =
trace_analyzer::Query::EventNameIs(event_name) &&
(trace_analyzer::Query::EventPhaseIs(TRACE_EVENT_PHASE_BEGIN) ||
trace_analyzer::Query::EventPhaseIs(TRACE_EVENT_PHASE_ASYNC_BEGIN) ||
trace_analyzer::Query::EventPhaseIs(TRACE_EVENT_PHASE_FLOW_BEGIN) ||
trace_analyzer::Query::EventPhaseIs(TRACE_EVENT_PHASE_INSTANT) ||
trace_analyzer::Query::EventPhaseIs(TRACE_EVENT_PHASE_COMPLETE));
analyzer->FindEvents(query, events);
VLOG(0) << "Retrieved " << events->size() << " events for: " << event_name;
}
// The key contains the name of the argument and the argument.
typedef std::pair<std::string, double> EventMapKey;
typedef std::map<EventMapKey, const trace_analyzer::TraceEvent*> EventMap;
// Make events findable by their arguments, for instance, if an
// event has a "timestamp": 238724 argument, the map will contain
// pair<"timestamp", 238724> -> &event. All arguments are indexed.
void IndexEvents(trace_analyzer::TraceAnalyzer* analyzer,
const std::string& event_name,
EventMap* event_map) {
trace_analyzer::TraceEventVector events;
GetTraceEvents(analyzer, event_name, &events);
for (size_t i = 0; i < events.size(); i++) {
std::map<std::string, double>::const_iterator j;
for (j = events[i]->arg_numbers.begin();
j != events[i]->arg_numbers.end();
++j) {
(*event_map)[*j] = events[i];
}
}
}
// Look up an event in |event_map|. The return event will have the same
// value for the argument |key_name| as |prev_event|.
const trace_analyzer::TraceEvent* FindNextEvent(
const EventMap& event_map,
const trace_analyzer::TraceEvent* prev_event,
std::string key_name) {
const auto arg_it = prev_event->arg_numbers.find(key_name);
if (arg_it == prev_event->arg_numbers.end())
return nullptr;
const EventMapKey& key = *arg_it;
const auto event_it = event_map.find(key);
if (event_it == event_map.end())
return nullptr;
return event_it->second;
}
// Given a vector of vector of data, extract the difference between
// two columns (|col_a| and |col_b|) and output the result as a
// performance metric.
void OutputMeasurement(const std::string& test_name,
const std::vector<std::vector<double>>& data,
const std::string& measurement_name,
int col_a,
int col_b) {
std::vector<double> tmp;
for (size_t i = 0; i < data.size(); i++) {
tmp.push_back((data[i][col_b] - data[i][col_a]) / 1000.0);
}
return MeanAndError(tmp).Print(test_name,
GetSuffixForTestFlags(),
measurement_name,
"ms");
}
// Analyze the latency of each frame as it goes from capture to playout. The
// event tracing system is used to track the frames.
void AnalyzeLatency(const std::string& test_name,
trace_analyzer::TraceAnalyzer* analyzer) {
// Retrieve and index all "checkpoint" events related to frames progressing
// from start to finish.
trace_analyzer::TraceEventVector capture_events;
// Sender side:
GetTraceEvents(analyzer, "Capture", &capture_events);
EventMap onbuffer, sink, inserted, encoded, transmitted, decoded, done;
IndexEvents(analyzer, "OnBufferReceived", &onbuffer);
IndexEvents(analyzer, "ConsumeVideoFrame", &sink);
IndexEvents(analyzer, "InsertRawVideoFrame", &inserted);
IndexEvents(analyzer, "VideoFrameEncoded", &encoded);
// Receiver side:
IndexEvents(analyzer, "PullEncodedVideoFrame", &transmitted);
IndexEvents(analyzer, "VideoFrameDecoded", &decoded);
IndexEvents(analyzer, "VideoFramePlayout", &done);
// Analyzing latency is non-trivial, because only the frame timestamps
// uniquely identify frames AND the timestamps take varying forms throughout
// the pipeline (TimeTicks, TimeDelta, RtpTimestamp, etc.). Luckily, each
// neighboring stage in the pipeline knows about the timestamp from the
// prior stage, in whatever form it had, and so it's possible to track
// specific frames all the way from capture until playout at the receiver.
std::vector<std::pair<EventMap*, std::string>> event_maps;
event_maps.push_back(std::make_pair(&onbuffer, "time_delta"));
event_maps.push_back(std::make_pair(&sink, "time_delta"));
event_maps.push_back(std::make_pair(&inserted, "timestamp"));
event_maps.push_back(std::make_pair(&encoded, "rtp_timestamp"));
event_maps.push_back(std::make_pair(&transmitted, "rtp_timestamp"));
event_maps.push_back(std::make_pair(&decoded, "rtp_timestamp"));
event_maps.push_back(std::make_pair(&done, "playout_time"));
// For each "begin capture" event, search for all the events following it,
// producing a matrix of when each frame reached each pipeline checkpoint.
// See the "cheat sheet" below for a description of each pipeline
// checkpoint.
ASSERT_GT(capture_events.size(), 2 * kTrimEvents);
std::vector<std::vector<double>> traced_frames;
for (size_t i = kTrimEvents; i < capture_events.size() - kTrimEvents; i++) {
std::vector<double> times;
const trace_analyzer::TraceEvent* event = capture_events[i];
if (!event->other_event)
continue; // Begin capture event without a corresponding end event.
times.push_back(event->timestamp); // begin capture
event = event->other_event;
times.push_back(event->timestamp); // end capture
const trace_analyzer::TraceEvent* prev_event = event;
for (size_t j = 0; j < event_maps.size(); j++) {
event = FindNextEvent(*event_maps[j].first, prev_event,
event_maps[j].second);
if (!event)
break; // Missing an event: The frame was dropped along the way.
prev_event = event;
times.push_back(event->timestamp);
}
if (event) {
// Successfully traced frame from beginning to end.
traced_frames.push_back(std::move(times));
}
}
// Report the fraction of captured frames that were dropped somewhere along
// the way (i.e., before playout at the receiver).
const size_t capture_event_count = capture_events.size() - 2 * kTrimEvents;
EXPECT_GE(capture_event_count, kMinDataPoints);
const double success_percent =
100.0 * traced_frames.size() / capture_event_count;
perf_test::PrintResult(
test_name, GetSuffixForTestFlags(), "frame_drop_rate",
base::StringPrintf("%f", 100 - success_percent), "percent", true);
// Report the latency between various pairs of checkpoints in the pipeline.
// Lower latency is better for all of these measurements.
//
// Cheat sheet:
// 0 = Sender: capture begin
// 1 = Sender: capture end
// 2 = Sender: memory buffer reached the render process
// 3 = Sender: frame routed to Cast RTP consumer
// 4 = Sender: frame reached VideoSender::InsertRawVideoFrame()
// 5 = Sender: frame encoding complete, queueing for transmission
// 6 = Receiver: frame fully received from network
// 7 = Receiver: frame decoded
// 8 = Receiver: frame played out
OutputMeasurement(test_name, traced_frames, "total_latency", 0, 8);
OutputMeasurement(test_name, traced_frames, "capture_duration", 0, 1);
OutputMeasurement(test_name, traced_frames, "send_to_renderer", 1, 3);
OutputMeasurement(test_name, traced_frames, "encode", 3, 5);
OutputMeasurement(test_name, traced_frames, "transmit", 5, 6);
OutputMeasurement(test_name, traced_frames, "decode", 6, 7);
OutputMeasurement(test_name, traced_frames, "cast_latency", 3, 8);
}
MeanAndError AnalyzeTraceDistance(trace_analyzer::TraceAnalyzer* analyzer,
const std::string& event_name) {
trace_analyzer::TraceEventVector events;
GetTraceEvents(analyzer, event_name, &events);
std::vector<double> deltas;
for (size_t i = kTrimEvents + 1; i < events.size() - kTrimEvents; ++i) {
double delta_micros = events[i]->timestamp - events[i - 1]->timestamp;
deltas.push_back(delta_micros / 1000.0);
}
return MeanAndError(deltas);
}
protected:
// The complete HTML test web page without any external dependencies,
// including the entire barcode video as an embedded data URI. Populated in
// SetUp().
std::string test_page_html_;
// While the source video frame rate may vary (24, 30, or 60 FPS), the maximum
// capture frame rate is always fixed at 30 FPS. This allows testing of the
// entire system when it is forced to perform a 60→30 frame rate conversion.
static constexpr int kMaxCaptureFrameRate = 30;
// Naming of performance measurement written to stdout.
static const char kTestName[];
};
// static
const char CastV2PerformanceTest::kTestName[] = "CastV2Performance";
} // namespace
IN_PROC_BROWSER_TEST_P(CastV2PerformanceTest, Performance) {
net::IPEndPoint receiver_end_point = media::cast::test::GetFreeLocalPort();
VLOG(1) << "Got local UDP port for testing: "
<< receiver_end_point.ToString();
// Start the in-process receiver that examines audio/video for the expected
// test patterns.
base::TimeDelta delta = base::TimeDelta::FromSeconds(0);
if (HasFlag(kFastClock)) {
delta = base::TimeDelta::FromSeconds(10);
}
if (HasFlag(kSlowClock)) {
delta = base::TimeDelta::FromSeconds(-10);
}
scoped_refptr<media::cast::StandaloneCastEnvironment> cast_environment(
new SkewedCastEnvironment(delta));
TestPatternReceiver* const receiver =
new TestPatternReceiver(cast_environment, receiver_end_point);
receiver->Start();
// Create a proxy for the UDP packets that simulates certain network
// environments.
std::unique_ptr<media::cast::test::UDPProxy> udp_proxy;
if (HasFlag(kProxyWifi) || HasFlag(kProxySlow) || HasFlag(kProxyBad)) {
net::IPEndPoint proxy_end_point = media::cast::test::GetFreeLocalPort();
if (HasFlag(kProxyWifi)) {
udp_proxy = media::cast::test::UDPProxy::Create(
proxy_end_point, receiver_end_point, media::cast::test::WifiNetwork(),
media::cast::test::WifiNetwork(), nullptr);
} else if (HasFlag(kProxySlow)) {
udp_proxy = media::cast::test::UDPProxy::Create(
proxy_end_point, receiver_end_point, media::cast::test::SlowNetwork(),
media::cast::test::SlowNetwork(), nullptr);
} else if (HasFlag(kProxyBad)) {
udp_proxy = media::cast::test::UDPProxy::Create(
proxy_end_point, receiver_end_point, media::cast::test::BadNetwork(),
media::cast::test::BadNetwork(), nullptr);
}
receiver_end_point = proxy_end_point;
}
// Load the extension and test page, and tell the extension to start tab
// capture + Cast Streaming.
LoadExtension(GetApiTestDataDir()
.AppendASCII("cast_streaming")
.AppendASCII("perftest_extension"));
NavigateToTestPage(test_page_html_);
const base::Value response = SendMessageToExtension(base::StringPrintf(
"{start:true, enableAutoThrottling:%s, maxFrameRate:%d, recvPort:%d,"
" aesKey:'%s', aesIvMask:'%s'}",
HasFlag(kAutoThrottling) ? "true" : "false", kMaxCaptureFrameRate,
receiver_end_point.port(),
base::HexEncode(kAesKey, sizeof(kAesKey)).c_str(),
base::HexEncode(kAesIvMask, sizeof(kAesIvMask)).c_str()));
const std::string* reason = response.FindStringKey("reason");
ASSERT_TRUE(response.FindBoolKey("success").value_or(false))
<< (reason ? *reason : std::string("<MISSING REASON>"));
// Now that capture has started, start playing the barcode video in the test
// page.
const std::string javascript_to_play_video(
"new Promise((resolve) => {\n"
" const video = document.getElementsByTagName('video')[0];\n"
" video.addEventListener('playing', () => { resolve(true); });\n"
" video.play();\n"
"})");
LOG(INFO) << "Starting playback of barcode video...";
ASSERT_EQ(true, content::EvalJs(
browser()->tab_strip_model()->GetActiveWebContents(),
javascript_to_play_video));
// Observe the running browser for a while, collecting a trace.
const std::string json_events = TraceAndObserve("gpu.capture,cast_perf_test");
// Shut down the receiver and all the CastEnvironment threads.
VLOG(1) << "Shutting-down receiver and CastEnvironment...";
receiver->Stop();
cast_environment->Shutdown();
VLOG(2) << "Dump of trace events (trace_events.json.gz.b64):\n"
<< MakeBase64EncodedGZippedString(json_events);
VLOG(1) << "Analyzing trace events...";
std::unique_ptr<trace_analyzer::TraceAnalyzer> analyzer;
analyzer.reset(trace_analyzer::TraceAnalyzer::Create(json_events));
analyzer->AssociateAsyncBeginEndEvents();
// This prints out the average time between capture events.
// Depending on the test, the capture frame rate is capped (e.g., at 30fps,
// this score cannot get any better than 33.33 ms). However, the measurement
// is important since it provides a valuable check that capture can keep up
// with the content's framerate.
MeanAndError capture_data = AnalyzeTraceDistance(analyzer.get(), "Capture");
// Lower is better.
capture_data.Print(kTestName, GetSuffixForTestFlags(),
"time_between_captures", "ms");
receiver->Analyze(kTestName, GetSuffixForTestFlags());
AnalyzeLatency(kTestName, analyzer.get());
}
// Note: First argument is optional and intentionally left blank.
// (it's a prefix for the generated test cases)
INSTANTIATE_TEST_CASE_P(,
CastV2PerformanceTest,
testing::Values(k24fps,
k30fps,
k60fps,
k30fps | kProxyWifi,
k30fps | kProxyBad,
k30fps | kSlowClock,
k30fps | kFastClock,
k30fps | kProxyWifi | kAutoThrottling,
k30fps | kProxySlow | kAutoThrottling,
k30fps | kProxyBad | kAutoThrottling));
|