1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
# Example Investigation of a Heap Dump
This document describes the steps taken to investigate a real memory leak
discovered by heap profiling in the wild. For investigators less familiar with
the code base, `Navigating the Stack Trace` should be enough information to
determine the relevant component, and to forward the bug to a component OWNER.
## Understanding the heap dump summary
The opening comment of [Issue
834033](https://bugs.chromium.org/p/chromium/issues/detail?id=834033) contains a
heap dump summary. The highlights are:
* 315723 calls to malloc without corresponding call to free.
* 806MB of memory.
* The common stacktrace for all 315723 allocations.
Usually, anything that uses over 10MB of memory is a red flag. With the
exception of large image resources, most code in Chrome should use much less
than 10MB. Anything that has over 100k allocations is also a red flag.
### Navigating the Stack Trace - Detailed Breakdown
Let's take a look at the stack trace:
```
profiling::(anonymous namespace)::HookAlloc(base::allocator::AllocatorDispatch const*, unsigned long, void*)
base::allocator::MallocZoneFunctionsToReplaceDefault()::$_1::__invoke(_malloc_zone_t*, unsigned long)
<???>
<???>
base::allocator::UncheckedMallocMac(unsigned long, void**)
sk_malloc_flags(unsigned long, unsigned int)
SkMallocPixelRef::MakeAllocate(SkImageInfo const&, unsigned long)
SkBitmap::tryAllocPixels(SkImageInfo const&, unsigned long)
IPC::ParamTraits<SkBitmap>::Read(base::Pickle const*, base::PickleIterator*, SkBitmap*)
ExtensionAction::ParseIconFromCanvasDictionary(base::DictionaryValue const&, gfx::ImageSkia*)
extensions::ExtensionActionSetIconFunction::RunExtensionAction()
extensions::ExtensionActionFunction::Run()
ExtensionFunction::RunWithValidation()
extensions::ExtensionFunctionDispatcher::DispatchWithCallbackInternal(ExtensionHostMsg_Request_Params const&, content::RenderFrameHost*, int, base::RepeatingCallback<void (ExtensionFunction::ResponseType, base::ListValue const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, extensions::functions::HistogramValue)> const&)
extensions::ExtensionFunctionDispatcher::Dispatch(ExtensionHostMsg_Request_Params const&, content::RenderFrameHost*, int)
bool IPC::MessageT<ExtensionHostMsg_Request_Meta, std::__1::tuple<ExtensionHostMsg_Request_Params>, void>::Dispatch<extensions::ExtensionWebContentsObserver, extensions::ExtensionWebContentsObserver, content::RenderFrameHost, void (extensions::ExtensionWebContentsObserver::*)(content::RenderFrameHost*, ExtensionHostMsg_Request_Params const&)>(IPC::Message const*, extensions::ExtensionWebContentsObserver*, extensions::ExtensionWebContentsObserver*, content::RenderFrameHost*, void (extensions::ExtensionWebContentsObserver::*)(content::RenderFrameHost*, ExtensionHostMsg_Request_Params const&))
extensions::ExtensionWebContentsObserver::OnMessageReceived(IPC::Message const&, content::RenderFrameHost*)
extensions::ChromeExtensionWebContentsObserver::OnMessageReceived(IPC::Message const&, content::RenderFrameHost*)
content::WebContentsImpl::OnMessageReceived(content::RenderFrameHostImpl*, IPC::Message const&)
content::RenderFrameHostImpl::OnMessageReceived(IPC::Message const&)
IPC::ChannelProxy::Context::OnDispatchMessage(IPC::Message const&)
base::debug::TaskAnnotator::RunTask(char const*, base::PendingTask*)
base::MessageLoop::RunTask(base::PendingTask*)
base::MessageLoop::DoWork()
base::MessagePumpCFRunLoopBase::RunWork()
base::mac::CallWithEHFrame(void () block_pointer)
base::MessagePumpCFRunLoopBase::RunWorkSource(void*)
<???>
<???>
<???>
<???>
<???>
<???>
<???>
<???>
<???>
__71-[BrowserCrApplication nextEventMatchingMask:untilDate:inMode:dequeue:]_block_invoke
base::mac::CallWithEHFrame(void () block_pointer)
-[BrowserCrApplication nextEventMatchingMask:untilDate:inMode:dequeue:]
<???>
base::MessagePumpNSApplication::DoRun(base::MessagePump::Delegate*)
base::MessagePumpCFRunLoopBase::Run(base::MessagePump::Delegate*)
<name omitted>
ChromeBrowserMainParts::MainMessageLoopRun(int*)
content::BrowserMainLoop::RunMainMessageLoopParts()
content::BrowserMainRunnerImpl::Run()
content::BrowserMain(content::MainFunctionParams const&)
content::ContentMainRunnerImpl::Run()
service_manager::Main(service_manager::MainParams const&)
content::ContentMain(content::ContentMainParams const&)
ChromeMain
main
<???>
```
The first step is to divide the stack trace into smaller segments to get a
better understanding of what's happening at the time of allocations. The best
way to do this is to segment by name space and/or function prefixes.
```
profiling::(anonymous namespace)::HookAlloc(base::allocator::AllocatorDispatch const*, unsigned long, void*)
base::allocator::MallocZoneFunctionsToReplaceDefault()::$_1::__invoke(_malloc_zone_t*, unsigned long)
<???>
<???>
base::allocator::UncheckedMallocMac(unsigned long, void**)
```
The top of each stack will always contain some `base` and/or `profiling`
code. This is the code responsible for allocating and recording the memory.
```
sk_malloc_flags(unsigned long, unsigned int)
SkMallocPixelRef::MakeAllocate(SkImageInfo const&, unsigned long)
SkBitmap::tryAllocPixels(SkImageInfo const&, unsigned long)
```
Next, we three 3 frames with the prefix `sk`. Searching for
`sk_malloc_flags` on
[codesearch](https://cs.chromium.org/search/?q=sk_malloc_flags&sq=package:chromium&type=cs)
reveals that the component is `third_party/skia`. Looking at the
[README](https://cs.chromium.org/chromium/src/third_party/skia/README) reveals
that Skia is a 2D graphics library.
```
IPC::ParamTraits<SkBitmap>::Read(base::Pickle const*, base::PickleIterator*, SkBitmap*)
```
Next we see a templated function called `Read` in the namespace `IPC`.
`IPC` stands for inter-process communication. This suggests that the
function is responsible for reading an IPC Message, perhaps concerning an
`SkBitmap`.
```
ExtensionAction::ParseIconFromCanvasDictionary(base::DictionaryValue const&, gfx::ImageSkia*)
extensions::ExtensionActionSetIconFunction::RunExtensionAction()
extensions::ExtensionActionFunction::Run()
ExtensionFunction::RunWithValidation()
extensions::ExtensionFunctionDispatcher::DispatchWithCallbackInternal(ExtensionHostMsg_Request_Params const&, content::RenderFrameHost*, int, base::RepeatingCallback<void (ExtensionFunction::ResponseType, base::ListValue const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, extensions::functions::HistogramValue)> const&)
extensions::ExtensionFunctionDispatcher::Dispatch(ExtensionHostMsg_Request_Params const&, content::RenderFrameHost*, int)
bool IPC::MessageT<ExtensionHostMsg_Request_Meta, std::__1::tuple<ExtensionHostMsg_Request_Params>, void>::Dispatch<extensions::ExtensionWebContentsObserver, extensions::ExtensionWebContentsObserver, content::RenderFrameHost, void (extensions::ExtensionWebContentsObserver::*)(content::RenderFrameHost*, ExtensionHostMsg_Request_Params const&)>(IPC::Message const*, extensions::ExtensionWebContentsObserver*, extensions::ExtensionWebContentsObserver*, content::RenderFrameHost*, void (extensions::ExtensionWebContentsObserver::*)(content::RenderFrameHost*, ExtensionHostMsg_Request_Params const&))
extensions::ExtensionWebContentsObserver::OnMessageReceived(IPC::Message const&, content::RenderFrameHost*)
extensions::ChromeExtensionWebContentsObserver::OnMessageReceived(IPC::Message const&, content::RenderFrameHost*)
```
Next, we see many frames with the `extension` prefix. Extensions are exactly
what they sound like - Chrome extensions like AdBlock are used to modify the
behavior of the browser.
```
content::WebContentsImpl::OnMessageReceived(content::RenderFrameHostImpl*, IPC::Message const&)
content::RenderFrameHostImpl::OnMessageReceived(IPC::Message const&)
```
`content` is the name of code that glues together web code [like extensions] and
the rest of Chrome.
```
IPC::ChannelProxy::Context::OnDispatchMessage(IPC::Message const&)
```
More `IPC` code.
```
base::debug::TaskAnnotator::RunTask(char const*, base::PendingTask*)
base::MessageLoop::RunTask(base::PendingTask*)
base::MessageLoop::DoWork()
base::MessagePumpCFRunLoopBase::RunWork()
base::mac::CallWithEHFrame(void () block_pointer)
base::MessagePumpCFRunLoopBase::RunWorkSource(void*)
```
More `base` code. The bottom of most stack traces should go back to
`MessageLoop`, a primitive Chrome construct used to run tasks.
### Navigating the Stack Trace - Summary
* The top and bottom of the stack should generally be the same and are not very
interesting.
* The prefixes of frames can be used to get a rough idea of the components
involved.
* Function names can be used to get a rough idea of what's going on.
In this case, extension code is calling `ParseIconFromCanvasDictionary` - so
it's probably trying to parse an icon. This calls into Skia code. Given that
Skia is a 2D drawing library, and the function is `tryAllocPixels`, Skia is
allocating some pixels for the icon. This process is being repeated 315 thousand
times, and the icon is being leaked every time.
## Diving into the code
Now that we have a rough idea of what's happening, let's look at the code for
ParseIconFromCanvasDictionary.
```cpp
bool ExtensionAction::ParseIconFromCanvasDictionary(
const base::DictionaryValue& dict,
gfx::ImageSkia* icon) {
for (base::DictionaryValue::Iterator iter(dict); !iter.IsAtEnd();
iter.Advance()) {
std::string binary_string64;
IPC::Message pickle;
if (iter.value().is_blob()) {
pickle = IPC::Message(iter.value().GetBlob().data(),
iter.value().GetBlob().size());
} else if (iter.value().GetAsString(&binary_string64)) {
std::string binary_string;
if (!base::Base64Decode(binary_string64, &binary_string))
return false;
pickle = IPC::Message(binary_string.c_str(), binary_string.length());
} else {
continue;
}
base::PickleIterator pickle_iter(pickle);
SkBitmap bitmap;
if (!IPC::ReadParam(&pickle, &pickle_iter, &bitmap))
return false;
CHECK(!bitmap.isNull());
// Chrome helpfully scales the provided icon(s), but let's not go overboard.
const int kActionIconMaxSize = 10 * ActionIconSize();
if (bitmap.drawsNothing() || bitmap.width() > kActionIconMaxSize)
continue;
float scale = static_cast<float>(bitmap.width()) / ActionIconSize();
icon->AddRepresentation(gfx::ImageSkiaRep(bitmap, scale));
}
return true;
}
```
There's a lot going on here, but we can use the information we have to focus.
The leak happens in IPC::ReadParam, so the relevant lines are:
```
SkBitmap bitmap;
if (!IPC::ReadParam(&pickle, &pickle_iter, &bitmap))
return false;
```
The `IPC` message is being decoded into `bitmap`.
```
icon->AddRepresentation(gfx::ImageSkiaRep(bitmap, scale));
```
Looking at subsequent consumers of `bitmap`, we see that it is being added as a
representation to `icon`. `icon` is an output parameter of this function, so we
have to look at the calling frame,
`ExtensionActionSetIconFunction::RunExtensionAction`.
```
ExtensionFunction::ResponseAction
ExtensionActionSetIconFunction::RunExtensionAction() {
...
EXTENSION_FUNCTION_VALIDATE(
ExtensionAction::ParseIconFromCanvasDictionary(*canvas_set, &icon));
if (icon.isNull())
return RespondNow(Error("Icon invalid."));
extension_action_->SetIcon(tab_id_, gfx::Image(icon));
...
}
```
In this case, I've already focused on the code that calls
`ParseIconFromCanvasDictionary`. Let's look at `SetIcon`.
```
void ExtensionAction::SetIcon(int tab_id, const gfx::Image& image) {
SetValue(&icon_, tab_id, image);
}
```
```
template<class T>
void SetValue(std::map<int, T>* map, int tab_id, const T& val) {
(*map)[tab_id] = val;
}
```
The icon is being added to a map `icon_`, with `tab_id` as the key. Ah ha!
Adding elements to a container [and never removing them] is one of the most
common sources of memory issues.
There are two ways for this memory to be released - the container `icon_` can be
destroyed, or the element can be removed from the container.
`icon_` is a member of `ExtensionAction`, whose documentation reads:
```
// ExtensionAction encapsulates the state of a browser action or page action.
// Instances can have both global and per-tab state. If a property does not have
// a per-tab value, the global value is used instead.
```
This suggests that the lifetime of `icon_` is tied to the lifetime of the
ExtensionAction, which we can guess is tied to the lifetime of the Extension. As
long as the extension stays installed and enabled, `icon_` will not be
destroyed.
Next, we use codesearch to look at all code that removes elements from `icon_`.
The only place that performs removal is
```
void ExtensionAction::ClearAllValuesForTab(int tab_id) {
...
icon_.erase(tab_id);
...
}
```
This is called by `ExtensionActionAPI::ClearAllValuesForTab`, which is called by
`TabHelper::DidFinishNavigation`. The name of this method suggests that each
time a tab is navigated, the previous tab-specific icon is cleared. However,
that means that if a tab is closed, then the icon is leaked forever.
|