1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
/*
* Copyright (C) 2013 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef THIRD_PARTY_BLINK_RENDERER_CORE_ANIMATION_TIMING_CALCULATIONS_H_
#define THIRD_PARTY_BLINK_RENDERER_CORE_ANIMATION_TIMING_CALCULATIONS_H_
#include "third_party/blink/renderer/core/animation/animation_effect.h"
#include "third_party/blink/renderer/core/animation/timing.h"
#include "third_party/blink/renderer/platform/animation/animation_utilities.h"
#include "third_party/blink/renderer/platform/wtf/math_extras.h"
namespace blink {
static inline double MultiplyZeroAlwaysGivesZero(double x, double y) {
DCHECK(!IsNull(x));
DCHECK(!IsNull(y));
return x && y ? x * y : 0;
}
static inline double MultiplyZeroAlwaysGivesZero(AnimationTimeDelta x,
double y) {
DCHECK(!IsNull(y));
return x.is_zero() || y == 0 ? 0 : (x * y).InSecondsF();
}
// https://drafts.csswg.org/web-animations-1/#animation-effect-phases-and-states
static inline AnimationEffect::Phase CalculatePhase(
double active_duration,
double local_time,
AnimationEffect::AnimationDirection direction,
const Timing& specified) {
DCHECK_GE(active_duration, 0);
if (IsNull(local_time))
return AnimationEffect::kPhaseNone;
double end_time = std::max(
specified.start_delay + active_duration + specified.end_delay, 0.0);
double before_active_boundary_time =
std::max(std::min(specified.start_delay, end_time), 0.0);
if (local_time < before_active_boundary_time ||
(local_time == before_active_boundary_time &&
direction == AnimationEffect::AnimationDirection::kBackwards)) {
return AnimationEffect::kPhaseBefore;
}
double active_after_boundary_time = std::max(
std::min(specified.start_delay + active_duration, end_time), 0.0);
if (local_time > active_after_boundary_time ||
(local_time == active_after_boundary_time &&
direction == AnimationEffect::AnimationDirection::kForwards)) {
return AnimationEffect::kPhaseAfter;
}
return AnimationEffect::kPhaseActive;
}
static inline bool IsActiveInParentPhase(AnimationEffect::Phase parent_phase,
Timing::FillMode fill_mode) {
switch (parent_phase) {
case AnimationEffect::kPhaseBefore:
return fill_mode == Timing::FillMode::BACKWARDS ||
fill_mode == Timing::FillMode::BOTH;
case AnimationEffect::kPhaseActive:
return true;
case AnimationEffect::kPhaseAfter:
return fill_mode == Timing::FillMode::FORWARDS ||
fill_mode == Timing::FillMode::BOTH;
default:
NOTREACHED();
return false;
}
}
static inline double CalculateActiveTime(double active_duration,
Timing::FillMode fill_mode,
double local_time,
AnimationEffect::Phase parent_phase,
AnimationEffect::Phase phase,
const Timing& specified) {
DCHECK_GE(active_duration, 0);
switch (phase) {
case AnimationEffect::kPhaseBefore:
if (fill_mode == Timing::FillMode::BACKWARDS ||
fill_mode == Timing::FillMode::BOTH)
return std::max(local_time - specified.start_delay, 0.0);
return NullValue();
case AnimationEffect::kPhaseActive:
if (IsActiveInParentPhase(parent_phase, fill_mode))
return local_time - specified.start_delay;
return NullValue();
case AnimationEffect::kPhaseAfter:
if (fill_mode == Timing::FillMode::FORWARDS ||
fill_mode == Timing::FillMode::BOTH) {
return std::max(
0.0, std::min(active_duration, local_time - specified.start_delay));
}
return NullValue();
case AnimationEffect::kPhaseNone:
DCHECK(IsNull(local_time));
return NullValue();
default:
NOTREACHED();
return NullValue();
}
}
static inline double CalculateOffsetActiveTime(double active_duration,
double active_time,
double start_offset) {
DCHECK_GE(active_duration, 0);
DCHECK_GE(start_offset, 0);
if (IsNull(active_time))
return NullValue();
DCHECK(active_time >= 0 && active_time <= active_duration);
if (!std::isfinite(active_time))
return std::numeric_limits<double>::infinity();
return active_time + start_offset;
}
static inline bool EndsOnIterationBoundary(double iteration_count,
double iteration_start) {
DCHECK(std::isfinite(iteration_count));
return !fmod(iteration_count + iteration_start, 1);
}
// TODO(crbug.com/630915): Align this function with current Web Animations spec
// text.
static inline double CalculateIterationTime(double iteration_duration,
double repeated_duration,
double offset_active_time,
double start_offset,
AnimationEffect::Phase phase,
const Timing& specified) {
DCHECK_GT(iteration_duration, 0);
DCHECK_EQ(repeated_duration,
MultiplyZeroAlwaysGivesZero(iteration_duration,
specified.iteration_count));
if (IsNull(offset_active_time))
return NullValue();
DCHECK_GE(offset_active_time, 0);
DCHECK_LE(offset_active_time, repeated_duration + start_offset);
if (!std::isfinite(offset_active_time) ||
(offset_active_time - start_offset == repeated_duration &&
specified.iteration_count &&
EndsOnIterationBoundary(specified.iteration_count,
specified.iteration_start)))
return iteration_duration;
DCHECK(std::isfinite(offset_active_time));
double iteration_time = fmod(offset_active_time, iteration_duration);
// This implements step 3 of
// https://drafts.csswg.org/web-animations/#calculating-the-simple-iteration-progress
if (iteration_time == 0 && phase == AnimationEffect::kPhaseAfter &&
repeated_duration != 0 && offset_active_time != 0)
return iteration_duration;
return iteration_time;
}
static inline double CalculateCurrentIteration(double iteration_duration,
double iteration_time,
double offset_active_time,
const Timing& specified) {
DCHECK_GT(iteration_duration, 0);
DCHECK(IsNull(iteration_time) || iteration_time >= 0);
if (IsNull(offset_active_time))
return NullValue();
DCHECK_GE(iteration_time, 0);
DCHECK_LE(iteration_time, iteration_duration);
DCHECK_GE(offset_active_time, 0);
if (!offset_active_time)
return 0;
if (iteration_time == iteration_duration)
return specified.iteration_start + specified.iteration_count - 1;
return floor(offset_active_time / iteration_duration);
}
static inline double CalculateDirectedTime(double current_iteration,
double iteration_duration,
double iteration_time,
const Timing& specified) {
DCHECK(IsNull(current_iteration) || current_iteration >= 0);
DCHECK_GT(iteration_duration, 0);
if (IsNull(iteration_time))
return NullValue();
DCHECK_GE(current_iteration, 0);
DCHECK_GE(iteration_time, 0);
DCHECK_LE(iteration_time, iteration_duration);
const bool current_iteration_is_odd = fmod(current_iteration, 2) >= 1;
const bool current_direction_is_forwards =
specified.direction == Timing::PlaybackDirection::NORMAL ||
(specified.direction == Timing::PlaybackDirection::ALTERNATE_NORMAL &&
!current_iteration_is_odd) ||
(specified.direction == Timing::PlaybackDirection::ALTERNATE_REVERSE &&
current_iteration_is_odd);
return current_direction_is_forwards ? iteration_time
: iteration_duration - iteration_time;
}
static inline base::Optional<double> CalculateTransformedTime(
double current_iteration,
double iteration_duration,
double iteration_time,
const Timing& specified) {
DCHECK(IsNull(current_iteration) || current_iteration >= 0);
DCHECK_GT(iteration_duration, 0);
DCHECK(IsNull(iteration_time) ||
(iteration_time >= 0 && iteration_time <= iteration_duration));
double directed_time = CalculateDirectedTime(
current_iteration, iteration_duration, iteration_time, specified);
if (IsNull(directed_time))
return base::nullopt;
if (!std::isfinite(iteration_duration))
return directed_time;
double time_fraction = directed_time / iteration_duration;
DCHECK(time_fraction >= 0 && time_fraction <= 1);
return MultiplyZeroAlwaysGivesZero(
iteration_duration,
specified.timing_function->Evaluate(
time_fraction, AccuracyForDuration(iteration_duration)));
}
} // namespace blink
#endif
|