1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
// Copyright 2020 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <memory>
#include "base/run_loop.h"
#include "base/task/thread_pool/thread_pool_instance.h"
#include "base/test/metrics/histogram_tester.h"
#include "chrome/services/machine_learning/metrics.h"
#include "chrome/services/machine_learning/public/cpp/service_connection.h"
#include "chrome/services/machine_learning/public/cpp/test_support/machine_learning_test_utils.h"
#include "chrome/services/machine_learning/public/mojom/decision_tree.mojom.h"
#include "chrome/services/machine_learning/public/mojom/machine_learning_service.mojom.h"
#include "chrome/test/base/in_process_browser_test.h"
#include "components/metrics/content/subprocess_metrics_provider.h"
#include "components/optimization_guide/proto/models.pb.h"
#include "content/public/browser/service_process_host.h"
#include "content/public/browser/service_process_info.h"
#include "content/public/test/browser_test.h"
#include "content/public/test/browser_test_utils.h"
#include "mojo/public/cpp/bindings/remote.h"
namespace machine_learning {
namespace {
class ServiceProcessObserver : public content::ServiceProcessHost::Observer {
public:
ServiceProcessObserver() { content::ServiceProcessHost::AddObserver(this); }
~ServiceProcessObserver() override {
content::ServiceProcessHost::RemoveObserver(this);
}
ServiceProcessObserver(const ServiceProcessObserver&) = delete;
ServiceProcessObserver& operator=(const ServiceProcessObserver&) = delete;
// Whether the service is launched.
int IsLaunched() const { return is_launched_; }
// Whether the service is terminated normally.
bool IsTerminated() const { return is_terminated_; }
// Launch |launch_wait_loop_| to wait until a service launch is detected.
void WaitForLaunch() { launch_wait_loop_.Run(); }
// Launch |terminate_wait_loop_| to wait until a normal service termination is
// detected.
void WaitForTerminate() { terminate_wait_loop_.Run(); }
void OnServiceProcessLaunched(
const content::ServiceProcessInfo& info) override {
if (info.IsService<mojom::MachineLearningService>()) {
is_launched_ = true;
if (launch_wait_loop_.running())
launch_wait_loop_.Quit();
}
}
void OnServiceProcessTerminatedNormally(
const content::ServiceProcessInfo& info) override {
if (info.IsService<mojom::MachineLearningService>()) {
is_terminated_ = true;
if (terminate_wait_loop_.running())
terminate_wait_loop_.Quit();
}
}
private:
base::RunLoop launch_wait_loop_;
base::RunLoop terminate_wait_loop_;
bool is_launched_ = false;
bool is_terminated_ = false;
};
// Retries fetching |histogram_name| until it contains at least |count| samples.
void RetryForHistogramUntilCountReached(base::HistogramTester* histogram_tester,
const std::string& histogram_name,
size_t count) {
while (true) {
const std::vector<base::Bucket> buckets =
histogram_tester->GetAllSamples(histogram_name);
size_t total_count = 0;
for (const auto& bucket : buckets)
total_count += bucket.count;
if (total_count >= count)
return;
content::FetchHistogramsFromChildProcesses();
::metrics::SubprocessMetricsProvider::MergeHistogramDeltasForTesting();
base::RunLoop().RunUntilIdle();
}
}
} // namespace
using MachineLearningServiceBrowserTest = InProcessBrowserTest;
IN_PROC_BROWSER_TEST_F(MachineLearningServiceBrowserTest, LaunchAndTerminate) {
base::HistogramTester histogram_tester;
ServiceProcessObserver observer;
auto* service_connection = ServiceConnection::GetInstance();
service_connection->GetService();
observer.WaitForLaunch();
RetryForHistogramUntilCountReached(
&histogram_tester, machine_learning::metrics::kServiceLaunch, 1);
EXPECT_TRUE(service_connection);
EXPECT_TRUE(observer.IsLaunched());
histogram_tester.ExpectTotalCount(machine_learning::metrics::kServiceLaunch,
1);
histogram_tester.ExpectUniqueSample(
machine_learning::metrics::kServiceRequested,
machine_learning::metrics::MLServiceRequestStatus::
kRequestedServiceNotLaunched,
1);
service_connection->ResetServiceForTesting();
observer.WaitForTerminate();
RetryForHistogramUntilCountReached(
&histogram_tester, machine_learning::metrics::kServiceNormalTermination,
1);
EXPECT_TRUE(observer.IsTerminated());
histogram_tester.ExpectTotalCount(
machine_learning::metrics::kServiceNormalTermination, 1);
}
IN_PROC_BROWSER_TEST_F(MachineLearningServiceBrowserTest,
MultipleLaunchesReusesSharedProcess) {
base::HistogramTester histogram_tester;
ServiceProcessObserver observer;
auto* service_connection = ServiceConnection::GetInstance();
auto* service_ptr1 = service_connection->GetService();
observer.WaitForLaunch();
EXPECT_TRUE(service_connection);
EXPECT_TRUE(observer.IsLaunched());
RetryForHistogramUntilCountReached(
&histogram_tester, machine_learning::metrics::kServiceLaunch, 1);
histogram_tester.ExpectTotalCount(machine_learning::metrics::kServiceLaunch,
1);
histogram_tester.ExpectBucketCount(
machine_learning::metrics::kServiceRequested,
machine_learning::metrics::MLServiceRequestStatus::
kRequestedServiceNotLaunched,
1);
auto* service_ptr2 = service_connection->GetService();
EXPECT_EQ(service_ptr1, service_ptr2);
RetryForHistogramUntilCountReached(
&histogram_tester, machine_learning::metrics::kServiceRequested, 2);
histogram_tester.ExpectTotalCount(machine_learning::metrics::kServiceLaunch,
1);
histogram_tester.ExpectBucketCount(
machine_learning::metrics::kServiceRequested,
machine_learning::metrics::MLServiceRequestStatus::
kRequestedServiceLaunched,
1);
}
IN_PROC_BROWSER_TEST_F(MachineLearningServiceBrowserTest,
LoadInvalidDecisionTreeModel) {
base::HistogramTester histogram_tester;
ServiceProcessObserver observer;
auto run_loop = std::make_unique<base::RunLoop>();
auto* service_connection = ServiceConnection::GetInstance();
mojo::Remote<mojom::DecisionTreePredictor> predictor;
mojom::LoadModelResult result = mojom::LoadModelResult::kLoadModelError;
service_connection->LoadDecisionTreeModel(
mojom::DecisionTreeModelSpec::New("Invalid model spec"),
predictor.BindNewPipeAndPassReceiver(),
base::BindOnce(
[](mojom::LoadModelResult* p_result, base::RunLoop* run_loop,
mojom::LoadModelResult result) {
*p_result = result;
run_loop->Quit();
},
&result, run_loop.get()));
run_loop->Run();
EXPECT_TRUE(observer.IsLaunched());
EXPECT_EQ(mojom::LoadModelResult::kModelSpecError, result);
RetryForHistogramUntilCountReached(
&histogram_tester,
machine_learning::metrics::kDecisionTreeModelLoadResult, 1);
histogram_tester.ExpectTotalCount(machine_learning::metrics::kServiceLaunch,
1);
histogram_tester.ExpectUniqueSample(
machine_learning::metrics::kServiceRequested,
machine_learning::metrics::MLServiceRequestStatus::
kRequestedServiceNotLaunched,
1);
histogram_tester.ExpectUniqueSample(
machine_learning::metrics::kDecisionTreeModelLoadResult,
mojom::LoadModelResult::kModelSpecError, 1);
// Flush so that |predictor| becomes aware of potential disconnection.
predictor.FlushForTesting();
EXPECT_FALSE(predictor.is_connected());
}
IN_PROC_BROWSER_TEST_F(MachineLearningServiceBrowserTest,
LoadValidDecisionTreeModelAndPredict) {
base::HistogramTester histogram_tester;
ServiceProcessObserver observer;
auto* service_connection = ServiceConnection::GetInstance();
const mojom::DecisionTreePredictionResult expected_prediction_result =
mojom::DecisionTreePredictionResult::kTrue;
auto model_proto =
testing::GetModelProtoForPredictionResult(expected_prediction_result);
mojo::Remote<mojom::DecisionTreePredictor> predictor;
mojom::LoadModelResult load_result = mojom::LoadModelResult::kLoadModelError;
auto run_loop = std::make_unique<base::RunLoop>();
service_connection->LoadDecisionTreeModel(
mojom::DecisionTreeModelSpec::New(model_proto->SerializeAsString()),
predictor.BindNewPipeAndPassReceiver(),
base::BindOnce(
[](mojom::LoadModelResult* p_result, base::RunLoop* run_loop,
mojom::LoadModelResult result) {
*p_result = result;
run_loop->Quit();
},
&load_result, run_loop.get()));
run_loop->Run();
RetryForHistogramUntilCountReached(
&histogram_tester,
machine_learning::metrics::kDecisionTreeModelLoadResult, 1);
EXPECT_TRUE(observer.IsLaunched());
EXPECT_EQ(mojom::LoadModelResult::kOk, load_result);
histogram_tester.ExpectTotalCount(machine_learning::metrics::kServiceLaunch,
1);
histogram_tester.ExpectTotalCount(
machine_learning::metrics::kDecisionTreeModelValidationLatency, 1);
histogram_tester.ExpectUniqueSample(
machine_learning::metrics::kServiceRequested,
machine_learning::metrics::MLServiceRequestStatus::
kRequestedServiceNotLaunched,
1);
histogram_tester.ExpectUniqueSample(
machine_learning::metrics::kDecisionTreeModelLoadResult,
mojom::LoadModelResult::kOk, 1);
// Flush so that |predictor| becomes aware of potential disconnection.
predictor.FlushForTesting();
EXPECT_TRUE(predictor.is_connected());
auto prediction_result = mojom::DecisionTreePredictionResult::kUnknown;
double prediction_score = 0.0;
// Reset the RunLoop.
run_loop = std::make_unique<base::RunLoop>();
predictor->Predict(
{}, base::BindOnce(
[](mojom::DecisionTreePredictionResult* p_result, double* p_score,
base::RunLoop* runloop,
mojom::DecisionTreePredictionResult result, double score) {
*p_result = result;
*p_score = score;
runloop->Quit();
},
&prediction_result, &prediction_score, run_loop.get()));
run_loop->Run();
predictor.FlushForTesting();
RetryForHistogramUntilCountReached(
&histogram_tester,
machine_learning::metrics::kDecisionTreeModelPredictionResult, 1);
EXPECT_EQ(expected_prediction_result, prediction_result);
EXPECT_GT(prediction_score, 0.0);
histogram_tester.ExpectTotalCount(
machine_learning::metrics::kDecisionTreeModelEvaluationLatency, 1);
histogram_tester.ExpectUniqueSample(
machine_learning::metrics::kDecisionTreeModelPredictionResult,
prediction_result, 1);
}
} // namespace machine_learning
|