1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
|
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/compiler/tf2xla/xla_compiler.h"
#include <numeric>
#include <vector>
#include "absl/memory/memory.h"
#include "absl/types/variant.h"
#include "tensorflow/compiler/jit/defs.h"
#include "tensorflow/compiler/jit/flags.h"
#include "tensorflow/compiler/jit/shape_inference.h"
#include "tensorflow/compiler/tf2xla/graph_compiler.h"
#include "tensorflow/compiler/tf2xla/rearrange_function_argument.h"
#include "tensorflow/compiler/tf2xla/shape_util.h"
#include "tensorflow/compiler/tf2xla/sharding_util.h"
#include "tensorflow/compiler/tf2xla/side_effect_util.h"
#include "tensorflow/compiler/tf2xla/tf2xla_util.h"
#include "tensorflow/compiler/tf2xla/type_util.h"
#include "tensorflow/compiler/tf2xla/xla_compilation_device.h"
#include "tensorflow/compiler/tf2xla/xla_context.h"
#include "tensorflow/compiler/xla/client/client_library.h"
#include "tensorflow/compiler/xla/client/xla_builder.h"
#include "tensorflow/compiler/xla/client/xla_computation.h"
#include "tensorflow/compiler/xla/shape_util.h"
#include "tensorflow/compiler/xla/util.h"
#include "tensorflow/core/common_runtime/device.h"
#include "tensorflow/core/common_runtime/executor.h"
#include "tensorflow/core/common_runtime/function.h"
#include "tensorflow/core/common_runtime/graph_constructor.h"
#include "tensorflow/core/common_runtime/graph_optimizer.h"
#include "tensorflow/core/framework/attr_value_util.h"
#include "tensorflow/core/framework/function.h"
#include "tensorflow/core/framework/node_def_util.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/graph/node_builder.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/gtl/cleanup.h"
#include "tensorflow/core/lib/hash/hash.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/protobuf/error_codes.pb.h"
#include "tensorflow/core/util/dump_graph.h"
namespace tensorflow {
namespace {
// Checks that arguments `args` match types `types`.
Status CheckSignature(const DataTypeVector& types,
absl::Span<const XlaCompiler::Argument> args) {
if (args.size() != types.size()) {
return errors::Internal("Compilation arguments have ", args.size(),
" elements while function has ", types.size());
}
for (int i = 0; i < types.size(); ++i) {
// Don't perform type checks on resource variables and tensor
// lists (DT_VARIANT) as we have to trick the type system in order to
// plumb them through. DT_VARIANTS are wrapped in a DT_UINT8 tensor.
if (types[i] != args[i].type && types[i] != DT_RESOURCE &&
types[i] != DT_VARIANT) {
return errors::Internal(
"Argument ", i, " has declared type ", DataTypeString(args[i].type),
" but function parameter has type ", DataTypeString(types[i]));
}
}
return Status::OK();
}
// Uses the _Arg and _Retval nodes in the graph to determine an OpSharding for
// each argument and return value.
xla::StatusOr<
std::pair<std::map<int, xla::OpSharding>, std::map<int, xla::OpSharding>>>
ComputeArgAndRetvalShardings(const Graph& graph) {
auto get_sharding_for_node =
[](const Node* n) -> xla::StatusOr<absl::optional<xla::OpSharding>> {
TF_ASSIGN_OR_RETURN(
auto sharding,
ParseShardingFromDevice(*n, std::numeric_limits<int32>::max()));
return sharding;
};
std::map<int, xla::OpSharding> arg_shardings;
std::map<int, xla::OpSharding> retval_shardings;
for (const Node* n : graph.nodes()) {
if (n->IsArg()) {
TF_ASSIGN_OR_RETURN(auto sharding, get_sharding_for_node(n));
if (!sharding.has_value()) continue;
int index;
TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "index", &index));
TF_RET_CHECK(index >= 0) << "Negative _Arg index";
arg_shardings[index] = std::move(*sharding);
} else if (n->IsRetval()) {
TF_ASSIGN_OR_RETURN(auto sharding, get_sharding_for_node(n));
if (!sharding.has_value()) continue;
int index;
TF_RETURN_IF_ERROR(GetNodeAttr(n->attrs(), "index", &index));
TF_RET_CHECK(index >= 0) << "Negative _Retval index";
retval_shardings[index] = std::move(*sharding);
}
}
return std::make_pair(std::move(arg_shardings), std::move(retval_shardings));
}
Status ExecuteGraph(XlaContext* xla_context, std::unique_ptr<Graph> graph,
XlaCompilationDevice* device, FunctionLibraryRuntime* flib,
int64 step_id) {
// Resource cleanup is a bit messy. XlaContext is a ref-countd resource; the
// resource manager takes ownership via Create, and unrefs via Cleanup. We
// explicitly add a reference to ensure the refcount at entry is maintained at
// all exit points; Create and Cleanup are always called in this function.
//
// The Executor requires us to use ScopedStepContainer. We wrap it in a
// unique_ptr so we can capture the cleanup status in the end.
xla_context->Ref();
Status status;
auto step_container = absl::make_unique<ScopedStepContainer>(
step_id, [&status, device](const string& name) {
status = device->resource_manager()->Cleanup(name);
});
TF_RETURN_IF_ERROR(step_container->Create(device->resource_manager(),
XlaContext::kXlaContextResourceName,
xla_context));
GraphCompiler graph_compiler(device, graph.get(), flib, step_container.get());
TF_RETURN_IF_ERROR(graph_compiler.Compile());
// Explicitly clean up the step container, to capture the cleanup status.
step_container.reset();
return Status::OK();
}
// Builds the XLA computation.
// - `args` is the list of input arguments
// - `retvals` is the list of retvals produced by _Retval operators, in index
// order.
// - `arg_shardings` and `retval_shardings` are mapping from arg/return indices
// to sharding.
// - If `return_updated_values_for_all_resources` is true, all resources will be
// included in `resource_updates`, regardless of whether their value changed.
// - Sets `*num_nonconst_outputs` to the number of outputs of the `computation`.
// - Sets `*resource_updates` to a description of resources whose values are
// written by the computation; the variable writes are the last
// - `resource_updates.size()` return values from the computation. Each entry in
// `resource_updates` is a ResourceUpdate, whose `index` is the index of a
// resource variable argument to the computation to be updated, and `type` is
// the type of the final output.
Status BuildComputation(
const std::vector<XlaCompiler::Argument>& args,
const std::vector<XlaExpression>& retvals,
const std::map<int, xla::OpSharding>& arg_shardings,
const std::map<int, xla::OpSharding>& retval_shardings,
const std::vector<std::unique_ptr<XlaResource>>& resources,
std::unique_ptr<xla::XlaOp> token_output,
const XlaCompiler::ShapeRepresentationFn& shape_representation_fn,
bool is_entry_computation, bool return_updated_values_for_all_resources,
bool always_return_tuple, bool use_tuple_arg, bool alias_resource_update,
xla::XlaBuilder* builder, xla::XlaComputation* computation,
int* num_computation_outputs, int* num_nonconst_outputs,
std::vector<XlaCompiler::OutputDescription>* outputs,
std::vector<XlaCompiler::ResourceUpdate>* resource_updates,
xla::Shape* output_shape) {
// Attach a common operator name as metadata. This has no semantic effect — it
// merely makes the HLO graph more readable when visualized via TensorBoard,
// since TensorBoard forms groups out of operators with similar names.
xla::OpMetadata retval_metadata;
retval_metadata.set_op_name("XLA_Retvals");
builder->SetOpMetadata(retval_metadata);
VLOG(1) << "Building new computation";
auto cleanup = gtl::MakeCleanup([builder]() { builder->ClearOpMetadata(); });
// Builds a no-op XLA computation. We need to set the sharding of outputs, but
// cannot change the sharding of the existing output op. To do this, we build
// a new identity op to which shardings can be applied.
auto identity_op = [builder](xla::XlaOp op) {
return xla::GetTupleElement(xla::Tuple(builder, {op}), 0);
};
std::vector<xla::XlaOp> elems;
elems.reserve(retvals.size());
// Keeps track of sharding of each retval. If a retval is not in this list,
// replicate sharding is used. The first element is the output index, second
// element is the sharding.
std::unordered_map<int, xla::OpSharding> retval_index_and_sharding;
for (int i = 0; i < retvals.size(); ++i) {
XlaCompiler::OutputDescription& output = (*outputs)[i];
const XlaExpression& retval = retvals[i];
output.type = retval.dtype();
switch (retval.kind()) {
case XlaExpression::Kind::kConstant:
output.is_constant = true;
output.constant_value = retval.constant_value();
output.shape = output.constant_value.shape();
break;
case XlaExpression::Kind::kTensorList: {
output.is_tensor_list = true;
xla::XlaOp value = retval.handle();
elems.push_back(value);
break;
}
case XlaExpression::Kind::kXlaOp: {
output.is_constant = false;
TF_ASSIGN_OR_RETURN(output.shape, retval.GetShape());
xla::XlaOp value = retval.handle();
auto it = retval_shardings.find(i);
absl::optional<xla::OpSharding> sharding =
it == retval_shardings.end() ? absl::optional<xla::OpSharding>()
: it->second;
if (it != retval_shardings.end()) {
retval_index_and_sharding[elems.size()] = it->second;
}
if (shape_representation_fn) {
TF_ASSIGN_OR_RETURN(auto original_shape, builder->GetShape(value));
TF_ASSIGN_OR_RETURN(value,
ReshapeWithCorrectRepresentationAndSharding(
builder, value, original_shape,
shape_representation_fn, sharding,
/*fast_mem=*/false));
}
if (it != retval_shardings.end()) {
xla::XlaScopedShardingAssignment assign_sharding(builder, sharding);
// Apply the sharding to the output, if there is a core assignment.
value = identity_op(value);
}
elems.push_back(value);
break;
}
case XlaExpression::Kind::kResource:
// Resources will be pushed into elems later when processing resource
// arguments below.
output.is_constant = false;
output.input_index = retval.resource()->arg_num();
output.shape = retval.resource()->shape();
break;
case XlaExpression::Kind::kInvalid:
return errors::InvalidArgument(
"Invalid expression returned by computation. "
"This probably means a return value was not set.");
}
}
*num_nonconst_outputs = elems.size();
// Add return values for resources whose values have changed.
std::vector<const XlaResource*> arg_resources;
arg_resources.reserve(resources.size());
for (const auto& resource : resources) {
if (resource->arg_num() >= 0) {
arg_resources.push_back(resource.get());
}
}
std::sort(arg_resources.begin(), arg_resources.end(),
[](const XlaResource* a, const XlaResource* b) {
return a->arg_num() < b->arg_num();
});
std::vector<xla::XlaBuilder::InputOutputAlias> aliases;
for (const XlaResource* resource : arg_resources) {
DCHECK_LT(resource->arg_num(), args.size());
const XlaCompiler::Argument& arg = args[resource->arg_num()];
auto it = arg_shardings.find(resource->arg_num());
bool modified = !resource->value().IsIdenticalTo(resource->initial_value());
// TensorArray gradients were modified if their values changed or there are
// any newly created gradients.
for (const auto& grad : resource->tensor_array_gradients()) {
modified =
modified ||
!grad.second->value().IsIdenticalTo(grad.second->initial_value()) ||
arg.tensor_array_gradients.count(grad.first) == 0;
}
if (return_updated_values_for_all_resources || modified) {
resource_updates->emplace_back();
XlaCompiler::ResourceUpdate& update = resource_updates->back();
update.input_index = resource->arg_num();
update.type = resource->type();
update.shape = resource->shape();
update.modified = modified;
if (is_entry_computation &&
arg.resource_kind != XlaResource::kTensorArray &&
alias_resource_update) {
// Assuming tuple arg and results are used.
xla::ShapeIndex param_index =
use_tuple_arg ? xla::ShapeIndex({update.input_index})
: xla::ShapeIndex{};
int param_number = use_tuple_arg ? 0 : update.input_index;
int64 output_index_num = elems.size();
xla::ShapeIndex output_index = xla::ShapeIndex({output_index_num});
VLOG(3) << "Storing alias: " << output_index.ToString() << ": ("
<< param_number << ", " << param_index.ToString() << ")";
aliases.push_back({output_index, param_number, param_index});
}
for (const auto& grad : resource->tensor_array_gradients()) {
update.tensor_array_gradients_accessed.insert(grad.first);
}
xla::XlaOp handle;
TF_RETURN_IF_ERROR(resource->Pack(&handle, builder));
auto sharding = it == arg_shardings.end()
? absl::optional<xla::OpSharding>()
: it->second;
// Set layout of the retval to device representation layout.
if (shape_representation_fn) {
TF_ASSIGN_OR_RETURN(auto original_shape, builder->GetShape(handle));
TF_ASSIGN_OR_RETURN(
handle, ReshapeWithCorrectRepresentationAndSharding(
builder, handle, original_shape,
shape_representation_fn, sharding, arg.fast_mem));
}
// Request that the value be returned on a specific core.
xla::XlaScopedShardingAssignment assign_sharding(builder, sharding);
if (it != arg_shardings.end()) {
retval_index_and_sharding[elems.size()] = it->second;
}
// Ensures the correct sharding is applied to the output.
handle = identity_op(handle);
elems.push_back(handle);
}
}
// If we have token output, append it as the last one.
if (token_output) {
elems.push_back(*token_output);
}
*num_computation_outputs = elems.size();
// Builds the XLA computation. We *always* form a tuple here to ensure that
// the output value is the last thing added into the XLA computation, even
// if there is only one output value.
xla::XlaOp tuple;
if (retval_index_and_sharding.empty() || !is_entry_computation) {
tuple = xla::Tuple(builder, elems);
} else {
std::vector<xla::Shape> elem_shapes;
for (const auto& elem : elems) {
TF_ASSIGN_OR_RETURN(xla::Shape elem_shape,
elem.builder()->GetShape(elem));
elem_shapes.push_back(elem_shape);
}
xla::Shape shape = xla::ShapeUtil::MakeTupleShape(elem_shapes);
// Copy specified sharding from retval_index_and_sharding.
std::vector<xla::HloSharding> sharding_elems;
for (int i = 0; i < elems.size(); i++) {
const auto& iter = retval_index_and_sharding.find(i);
TF_RET_CHECK(iter != retval_index_and_sharding.end());
const xla::OpSharding& sub_op_sharding = iter->second;
TF_ASSIGN_OR_RETURN(xla::HloSharding sub_sharding,
xla::HloSharding::FromProto(sub_op_sharding));
if (elem_shapes[i].IsTuple()) {
const std::vector<xla::HloSharding> sub_sharding_elems =
sub_sharding.tuple_elements();
TF_RET_CHECK(sub_sharding_elems.size() ==
xla::ShapeUtil::GetLeafCount(elem_shapes[i]));
for (const auto& sub_sharding_elem : sub_sharding_elems) {
sharding_elems.push_back(sub_sharding_elem);
}
} else {
sharding_elems.push_back(sub_sharding);
}
}
xla::HloSharding modified_sharding =
xla::HloSharding::Tuple(shape, sharding_elems);
xla::OpSharding op_sharding = modified_sharding.ToProto();
// Assign proper sharding to the tuple instruction.
xla::XlaScopedShardingAssignment assign_sharding(builder, op_sharding);
tuple = xla::Tuple(builder, elems);
}
bool returns_tuple = always_return_tuple || elems.size() != 1;
VLOG(3) << "Computation returns a tuple=" << returns_tuple;
if (!returns_tuple) {
xla::GetTupleElement(tuple, 0);
for (xla::XlaBuilder::InputOutputAlias& alias : aliases) {
if (alias.output_index == xla::ShapeIndex({0})) {
VLOG(3) << "For aliased parameter " << alias.param_number << ": "
<< alias.param_index.ToString()
<< " normalizing output_index from {0} to {}, as a scalar is "
"returned from the cluster";
alias.output_index = xla::ShapeIndex({});
}
}
}
for (xla::XlaBuilder::InputOutputAlias& alias : aliases) {
builder->SetUpAlias(alias.output_index, alias.param_number,
alias.param_index);
}
xla::StatusOr<xla::XlaComputation> computation_status = builder->Build();
if (!computation_status.ok()) {
return computation_status.status();
}
*computation = computation_status.ConsumeValueOrDie();
TF_ASSIGN_OR_RETURN(auto program_shape, computation->GetProgramShape());
*output_shape = program_shape.result();
return Status::OK();
}
} // namespace
bool XlaCompiler::Argument::operator==(
const XlaCompiler::Argument& other) const {
if (std::tie(kind, resource_kind, type, name, initialized, max_array_size,
tensor_array_gradients) !=
std::tie(other.kind, other.resource_kind, other.type, other.name,
other.initialized, other.max_array_size,
other.tensor_array_gradients)) {
return false;
}
if (absl::holds_alternative<xla::Shape>(shape)) {
if (!absl::holds_alternative<xla::Shape>(other.shape)) {
return false;
}
if (!xla::Shape::Equal()(absl::get<xla::Shape>(shape),
absl::get<xla::Shape>(other.shape))) {
return false;
}
} else {
if (!absl::holds_alternative<TensorShape>(other.shape)) {
return false;
}
if (absl::get<TensorShape>(shape) != absl::get<TensorShape>(other.shape)) {
return false;
}
}
if (constant_value.shape() != other.constant_value.shape()) {
return false;
}
if (is_same_data_across_replicas != other.is_same_data_across_replicas) {
return false;
}
return constant_value.tensor_data() == other.constant_value.tensor_data();
}
string XlaCompiler::Argument::HumanString() const {
string common;
if (!name.empty()) {
common = absl::StrCat(" name=", name);
}
absl::StrAppend(&common, " type=", DataTypeString(type),
" shape=", ShapeHumanString());
absl::StrAppend(
&common, " is_same_data_across_replicas=", is_same_data_across_replicas);
switch (kind) {
case kInvalid:
return "invalid";
case kConstant:
return absl::StrCat("kind=constant", common,
" value=", constant_value.DebugString());
case kResource: {
string output = absl::StrCat(
"kind=resource", common,
" resource_kind=", XlaResource::KindToString(resource_kind),
" initialized=", initialized, " is_fast_mem=", fast_mem);
if (max_array_size >= 0) {
absl::StrAppend(&output, " max_array_size=", max_array_size);
}
if (!tensor_array_gradients.empty()) {
absl::StrAppend(&output, " tensor_array_gradients=",
absl::StrJoin(tensor_array_gradients, ","));
}
return output;
}
case kParameter:
return absl::StrCat("kind=parameter", common);
case kTensorList:
return absl::StrCat("kind=tensorlist", common);
case kToken:
return absl::StrCat("token", common);
}
}
std::vector<int64> XlaCompiler::Argument::DimensionSizes() const {
if (absl::holds_alternative<TensorShape>(shape)) {
return xla::InlinedVectorToVector(
absl::get<TensorShape>(shape).dim_sizes());
} else {
return xla::SpanToVector(absl::get<xla::Shape>(shape).dimensions());
}
}
absl::InlinedVector<int64, 4>
XlaCompiler::Argument::DimensionSizesAsInlinedVector() const {
if (absl::holds_alternative<TensorShape>(shape)) {
return absl::get<TensorShape>(shape).dim_sizes();
} else {
auto v = absl::get<xla::Shape>(shape).dimensions();
return absl::InlinedVector<int64, 4>(v.begin(), v.end());
}
}
string XlaCompiler::Argument::ShapeHumanString() const {
if (absl::holds_alternative<TensorShape>(shape)) {
return absl::get<TensorShape>(shape).DebugString();
} else {
return absl::get<xla::Shape>(shape).DebugString();
}
}
XlaCompiler::XlaCompiler(XlaCompiler::Options options)
: options_(options),
initialization_status_(Status::OK()),
next_step_id_(1),
device_(new XlaCompilationDevice(SessionOptions(), options_.device_type)),
device_mgr_(absl::WrapUnique(device_)) {
CHECK(!options_.device_type.type_string().empty());
if (options_.populate_resource_manager) {
initialization_status_ =
(*options_.populate_resource_manager)(device_->resource_manager());
}
local_flib_def_.reset(new FunctionLibraryDefinition(OpRegistry::Global(),
FunctionDefLibrary{}));
local_pflr_.reset(new ProcessFunctionLibraryRuntime(
&device_mgr_, Env::Default(), /*config=*/nullptr,
options.graph_def_version, local_flib_def_.get(), OptimizerOptions()));
pflr_.reset(new ProcessFunctionLibraryRuntime(
&device_mgr_, Env::Default(), /*config=*/nullptr,
options.graph_def_version, options.flib_def, OptimizerOptions()));
local_flib_runtime_ = local_pflr_->GetFLR(device_->name());
flib_runtime_ = pflr_->GetFLR(device_->name());
// The default shape representation function is the identity.
if (!options_.shape_representation_fn) {
options_.shape_representation_fn = IdentityShapeRepresentationFn();
}
}
XlaCompiler::~XlaCompiler() = default;
int64 XlaCompiler::NextStepId() { return next_step_id_++; }
uint64 XlaCompiler::SignatureHash::operator()(
const std::pair<string, std::vector<Argument>>& signature) const {
return std::hash<string>()(signature.first);
}
static Status GetFunctionBody(const NameAttrList& function,
FunctionLibraryRuntime* flib_runtime,
const FunctionBody** fbody) {
FunctionLibraryRuntime::Handle handle;
TF_RETURN_IF_ERROR(flib_runtime->Instantiate(
function.name(), AttrSlice(&function.attr()), &handle));
*fbody = flib_runtime->GetFunctionBody(handle);
TF_RET_CHECK(*fbody);
return Status::OK();
}
Status XlaCompiler::FindFunctionBody(const NameAttrList& function,
const FunctionBody** fbody) {
// The function may be in either the local_flib_runtime_ or flib_runtime_.
// Look up the function in local first and if it is not found then look up the
// function in flib_runtime_.
auto status = GetFunctionBody(function, local_flib_runtime_, fbody);
if (!status.ok()) {
if (!errors::IsNotFound(status)) {
return status;
}
TF_RETURN_WITH_CONTEXT_IF_ERROR(
GetFunctionBody(function, flib_runtime_, fbody),
"Local lookup failed with: ", status.error_message());
VLOG(4) << "Function " << function.name() << " in flib_runtime_";
} else {
VLOG(4) << "Function " << function.name() << " in local_flib_runtime_";
}
return Status::OK();
}
std::unique_ptr<Graph> XlaCompiler::GetGraph(const FunctionBody* fbody) {
std::unique_ptr<Graph> graph(new Graph(options_.flib_def));
CopyGraph(*fbody->graph, graph.get());
bool is_inside_mustcompile = false;
TryGetNodeAttr(AttrSlice(&fbody->fdef.attr()), kXlaMustCompileAttr,
&is_inside_mustcompile);
// Performs a first function inlining pass before shape inference, since
// otherwise shape inference can't see inside functions and a comprehensive
// shape_map, including function ops, is needed to constant-propagate Shape
// Ops below.
auto flags = GetBuildXlaOpsPassFlags();
OptimizerOptions opts;
opts.set_opt_level(OptimizerOptions::L0);
opts.set_do_common_subexpression_elimination(false);
opts.set_do_function_inlining(true);
opts.set_do_constant_folding(!flags->tf_xla_disable_constant_folding);
GraphOptimizer optimizer(opts);
// Do not constant fold nodes that output DT_VARIANT type tensors.
// XLA does not support Const nodes of Variant type since it needs
// to know the original ops to be able to compile them to the relevant
// XLA form.
// TODO(srbs): This filter is a little conservative. E.g. a subgraph of
// the form:
// Const
// |
// EmptyTensorList -> TensorListPushBack -> TensorListPopBack -> Op
// |
// (Discard popped list)
//
// Would have been reduced to "Const -> Op" without this filter.
// However since we are only allowed to specify the filter at the "Node"
// level there is no good way to allow the above behavior. So we
// disallow any sort of constant folding on Variant nodes for now.
//
// Also do not consider constant folding Shape ops. When there is a dynamic
// dimension in a tensor, TF2XLA currently represent them as the static
// upperbound shape, which can be constant folded and then lose the info
// that this Shape is dynamic.
auto cf_consider_fn = [](const Node* n) {
for (const auto& output_arg : n->op_def().output_arg()) {
if (output_arg.type() == DT_VARIANT) {
return false;
}
}
const auto& ts = n->type_string();
// XLA has special logic to handle dynamic shapes, don't constant fold
// them.
if (ts == "Shape" || ts == "ShapeN" || ts == "Size") {
return false;
}
return true;
};
GraphOptimizer::Options graph_optimizer_options;
graph_optimizer_options.cf_consider_fn = cf_consider_fn;
graph_optimizer_options.inline_multi_device_functions = true;
graph_optimizer_options.inline_impl_selection_group_functions = true;
graph_optimizer_options.inline_with_single_device_body_placer = true;
graph_optimizer_options.ignore_noinline = is_inside_mustcompile;
optimizer.Optimize(flib_runtime_, flib_runtime_->env(),
/*device=*/nullptr, &graph, graph_optimizer_options);
// Run shape inference on the graph and optimize the graph again.
GraphShapeInfo shape_info;
InferShapes(graph.get(), /*arg_shapes=*/{},
flib_runtime_->GetFunctionLibraryDefinition(), &shape_info)
.IgnoreError();
auto node_name_index = graph->BuildNodeNameIndex();
std::unordered_map<string, std::vector<PartialTensorShape>> shape_map;
for (const auto& node_shape_info : shape_info) {
const string& node_name = node_shape_info.first;
const std::vector<InferredShape>& output_shapes = node_shape_info.second;
const auto& node_iter = node_name_index.find(node_name);
if (node_iter != node_name_index.end()) {
auto& partial_shapes = shape_map[node_name];
for (const auto& inferred_shape : output_shapes) {
partial_shapes.push_back(inferred_shape.shape);
}
}
}
graph_optimizer_options.shape_map = &shape_map;
optimizer.Optimize(flib_runtime_, flib_runtime_->env(),
/*device=*/nullptr, &graph, graph_optimizer_options);
return graph;
}
Status XlaCompiler::CompileFunction(
const XlaCompiler::CompileOptions& options,
const NameAttrList& fn_name_attrs,
absl::Span<const XlaCompiler::Argument> args,
XlaCompiler::CompilationResult* result) {
const string function_id =
Canonicalize(fn_name_attrs.name(), AttrSlice(&fn_name_attrs.attr()));
VLOG(1) << "XlaCompiler::CompileFunction " << function_id;
const std::vector<XlaCompiler::Argument> arg_vector(args.begin(), args.end());
auto it = cache_.find({function_id, arg_vector});
if (it != cache_.end()) {
*result = it->second;
return Status::OK();
}
const FunctionBody* fbody;
TF_RETURN_IF_ERROR(FindFunctionBody(fn_name_attrs, &fbody));
TF_RETURN_WITH_CONTEXT_IF_ERROR(
CheckSignature(fbody->arg_types, args),
"Signature check failure while compiling: ", fn_name_attrs.name());
// Set shapes for _Arg nodes. They are useful for constant folding (e.g. an
// Xla op requires a compile-time constant input, and that input is shape of
// an _Arg node.
for (int i = 0; i < args.size(); i++) {
// Skip resource variables and tensor lists.
DataType dtype;
TF_RETURN_IF_ERROR(GetNodeAttr(fbody->arg_nodes[i]->def(), "T", &dtype));
if (dtype == DT_RESOURCE || dtype == DT_VARIANT) {
continue;
}
if (absl::holds_alternative<xla::Shape>(args[i].shape)) {
xla::Shape xla_shape = absl::get<xla::Shape>(args[i].shape);
TensorShape tensor_shape;
if (XLAShapeToTensorShape(xla_shape, &tensor_shape).ok()) {
fbody->arg_nodes[i]->ClearAttr("_output_shapes");
fbody->arg_nodes[i]->AddAttr("_output_shapes",
std::vector<TensorShape>{tensor_shape});
}
} else {
TensorShape tensor_shape = absl::get<TensorShape>(args[i].shape);
fbody->arg_nodes[i]->ClearAttr("_output_shapes");
fbody->arg_nodes[i]->AddAttr("_output_shapes",
std::vector<TensorShape>{tensor_shape});
}
}
std::unique_ptr<Graph> graph = GetGraph(fbody);
// _Arg and _Retval nodes don't exist in the stored subgraph for the function;
// they are added by the function body looked up. Therefore, they don't have
// core assignments here.
// Attempt to assign a core to each _Retval and _Arg. Chooses the
// lowest-numbered core that consumes the argument. We choose the
// lowest-numbered core so the assignment is deterministic.
for (Node* n : graph->nodes()) {
if (n->IsArg()) {
TF_RETURN_IF_ERROR(SetNodeShardingFromNeighbors(n, /*out_edges=*/true));
}
}
// Do _Retval as a second loop, in case the retval's input is an _Arg (which
// may have gotten a device assignment from the first loop).
for (Node* n : graph->nodes()) {
if (n->IsRetval()) {
TF_RETURN_IF_ERROR(SetNodeShardingFromNeighbors(n, /*out_edges=*/false));
}
}
if (VLOG_IS_ON(2)) {
VLOG(2) << "XlaCompiler::CompileFunction: "
<< DumpGraphToFile(
absl::StrCat("xla_compile_function_", function_id), *graph);
}
VLOG(1) << "====================================================";
TF_RETURN_IF_ERROR(
CompileGraph(options, function_id, std::move(graph), args, result));
VLOG(1) << "====================================================";
cache_[{function_id, arg_vector}] = *result;
return Status::OK();
}
// Computes the XLA shape for argument 'arg'.
Status XlaCompiler::XLAShapeForArgument(
const XlaCompiler::Argument& arg, bool is_entry_computation,
const absl::optional<xla::HloSharding>& arg_sharding,
xla::Shape* xla_shape) const {
switch (arg.kind) {
case XlaCompiler::Argument::kConstant:
LOG(FATAL) << "Unreachable case";
case XlaCompiler::Argument::kParameter: {
if (is_entry_computation) {
TensorShape shape;
if (absl::holds_alternative<TensorShape>(arg.shape)) {
shape = absl::get<TensorShape>(arg.shape);
} else {
TF_RETURN_IF_ERROR(
XLAShapeToTensorShape(absl::get<xla::Shape>(arg.shape), &shape));
}
TF_ASSIGN_OR_RETURN(*xla_shape, options_.shape_representation_fn(
shape, arg.type,
/*use_fast_memory=*/false));
TF_RETURN_IF_ERROR(RewriteLayoutWithShardedShape(
arg_sharding, /*use_fast_memory=*/false,
options_.shape_representation_fn, xla_shape));
} else {
if (absl::holds_alternative<xla::Shape>(arg.shape)) {
*xla_shape = absl::get<xla::Shape>(arg.shape);
} else {
TF_RETURN_IF_ERROR(TensorShapeToXLAShape(
arg.type, absl::get<TensorShape>(arg.shape), xla_shape));
}
}
return Status::OK();
}
case XlaCompiler::Argument::kTensorList: {
TF_RET_CHECK(absl::holds_alternative<xla::Shape>(arg.shape));
*xla_shape = absl::get<xla::Shape>(arg.shape);
return Status::OK();
}
case XlaCompiler::Argument::kResource: {
TF_RET_CHECK(arg.initialized);
switch (arg.resource_kind) {
case XlaResource::kVariable: {
TF_RET_CHECK(absl::holds_alternative<TensorShape>(arg.shape));
TF_ASSIGN_OR_RETURN(*xla_shape,
options_.shape_representation_fn(
absl::get<TensorShape>(arg.shape), arg.type,
/*use_fast_memory=*/arg.fast_mem));
TF_RETURN_IF_ERROR(RewriteLayoutWithShardedShape(
arg_sharding, arg.fast_mem, options_.shape_representation_fn,
xla_shape));
return Status::OK();
}
case XlaResource::kTensorArray: {
if (arg.max_array_size < 0) {
return errors::InvalidArgument(
"Negative max_array_size in XLAShapeForArgument");
}
TF_RET_CHECK(absl::holds_alternative<TensorShape>(arg.shape));
TensorShape shape;
shape.AddDim(arg.max_array_size);
shape.AppendShape(absl::get<TensorShape>(arg.shape));
TF_RETURN_IF_ERROR(TensorShapeToXLAShape(arg.type, shape, xla_shape));
if (!arg.tensor_array_gradients.empty()) {
std::vector<xla::Shape> tuple_shape(
arg.tensor_array_gradients.size() + 1, *xla_shape);
*xla_shape = xla::ShapeUtil::MakeTupleShape(tuple_shape);
}
return Status::OK();
}
case XlaResource::kStack: {
if (arg.max_array_size < 0) {
return errors::InvalidArgument(
"Negative max_array_size in XLAShapeForArgument");
}
TF_RET_CHECK(absl::holds_alternative<TensorShape>(arg.shape));
TensorShape shape;
shape.AddDim(arg.max_array_size);
shape.AppendShape(absl::get<TensorShape>(arg.shape));
xla::Shape buffer_shape;
TF_RETURN_IF_ERROR(
TensorShapeToXLAShape(arg.type, shape, &buffer_shape));
*xla_shape = xla::ShapeUtil::MakeTupleShape(
{buffer_shape, xla::ShapeUtil::MakeShape(xla::S32, {})});
return Status::OK();
}
case XlaResource::kInvalid:
return errors::Internal(
"Invalid resource type in XLAShapeForArgument()");
}
}
case XlaCompiler::Argument::kToken: {
*xla_shape = xla::ShapeUtil::MakeTokenShape();
return Status::OK();
}
case XlaCompiler::Argument::kInvalid:
return errors::Internal("Invalid argument type in XLAShapeForArgument()");
}
}
/* static */
void XlaCompiler::PopulateArgumentFromResource(const XlaResource& resource,
Argument* arg) {
arg->initialized = resource.initialized();
arg->kind = XlaCompiler::Argument::kResource;
arg->resource_kind = resource.kind();
arg->type = resource.type();
arg->shape = resource.shape();
arg->max_array_size = resource.max_array_size();
for (const auto& gradient : resource.tensor_array_gradients()) {
arg->tensor_array_gradients.insert(gradient.first);
}
arg->name = resource.name();
}
// Builds XLA computations for each of the arguments to the computation.
// `args` are the arguments to the computation.
Status XlaCompiler::BuildArguments(
const Graph& graph, const std::vector<XlaCompiler::Argument>& args,
bool use_tuple_arg, xla::XlaBuilder* builder, XlaContext* context,
const std::map<int, xla::OpSharding>& arg_shardings,
std::vector<XlaExpression>* arg_expressions,
std::vector<int>* input_to_args, std::vector<xla::Shape>* input_shapes,
bool is_entry_computation) {
arg_expressions->resize(args.size());
// Argument numbers of arguments and resources that are to be passed to the
// XLA computation as runtime parameters. `input_to_args[a] = b` means that
// the a'th XLA input corresponds to the b'th original arg indexes.
input_to_args->clear();
input_to_args->reserve(args.size());
// Fills in constant arguments, and computes non-constant argument order.
for (std::vector<XlaCompiler::Argument>::size_type i = 0; i < args.size();
++i) {
const XlaCompiler::Argument& arg = args[i];
XlaExpression& arg_expression = (*arg_expressions)[i];
switch (arg.kind) {
case XlaCompiler::Argument::kResource: {
TF_RET_CHECK(arg.resource_kind != XlaResource::kInvalid);
TF_RET_CHECK(absl::holds_alternative<TensorShape>(arg.shape));
// TODO(phawkins): this code assumes that resource arguments do not
// alias.
XlaResource* resource =
context->AddResource(absl::make_unique<XlaResource>(
arg.resource_kind, i, arg.name, arg.type,
absl::get<TensorShape>(arg.shape), xla::XlaOp(),
/*max_array_size=*/arg.max_array_size,
/*tensor_array_gradients=*/arg.tensor_array_gradients,
/*tensor_array_multiple_writes_aggregate=*/true));
arg_expression = XlaExpression::Resource(resource);
if (arg.initialized) {
input_to_args->push_back(i);
}
break;
}
case XlaCompiler::Argument::kParameter:
case XlaCompiler::Argument::kTensorList:
case XlaCompiler::Argument::kToken: {
input_to_args->push_back(i);
break;
}
case XlaCompiler::Argument::kConstant:
arg_expression = XlaExpression::Constant(arg.constant_value);
break;
case XlaCompiler::Argument::kInvalid:
return errors::Internal(
"Unreachable case in BuildArguments() while filling constant args");
}
}
if (input_to_args->empty() && !use_tuple_arg) {
return Status::OK();
}
// `arg_to_inputs[c] = d` means that the c'th original arg index corresponds
// to the d'th XLA input. Note that the value -1 corresponds to constants, or
// other args that don't correspond to an input.
std::vector<int> arg_to_inputs(args.size(), -1);
for (int i = 0; i < input_to_args->size(); i++) {
arg_to_inputs[input_to_args->at(i)] = i;
}
std::vector<xla::Shape> arg_shapes(input_to_args->size());
for (std::vector<int>::size_type i = 0; i < input_to_args->size(); ++i) {
// Computes the shapes of non-constant arguments.
auto arg_sharding = arg_shardings.find((*input_to_args)[i]);
absl::optional<xla::HloSharding> sharding;
if (arg_sharding != arg_shardings.end()) {
TF_ASSIGN_OR_RETURN(auto hlo_sharding,
xla::HloSharding::FromProto(arg_sharding->second));
sharding = hlo_sharding;
}
TF_RETURN_IF_ERROR(XLAShapeForArgument(args[(*input_to_args)[i]],
is_entry_computation, sharding,
&arg_shapes[i]));
}
if (use_tuple_arg) {
input_shapes->push_back(xla::ShapeUtil::MakeTupleShape(arg_shapes));
} else {
*input_shapes = arg_shapes;
}
// Attach a common operator name as metadata. This has no semantic effect — it
// merely makes the HLO graph more readable when visualized via TensorBoard,
// since TensorBoard forms groups out of operators with similar names.
xla::OpMetadata arg_metadata;
arg_metadata.set_op_name("XLA_Args");
builder->SetOpMetadata(arg_metadata);
// Build parameter handles for non-constant arguments.
std::vector<xla::XlaOp> arg_handles(input_to_args->size());
if (use_tuple_arg) {
xla::XlaOp tuple;
if (is_entry_computation) {
xla::OpSharding tuple_sharding;
tuple_sharding.set_type(xla::OpSharding::TUPLE);
for (int64 parameter : *input_to_args) {
auto it = arg_shardings.find(parameter);
*tuple_sharding.add_tuple_shardings() =
it == arg_shardings.end() ? xla::sharding_builder::AssignDevice(0)
: it->second;
}
std::vector<bool> is_same_across_replicas;
for (int i = 0; i < input_to_args->size(); ++i) {
// Add an entry to is_same_across_replicas for every leaf buffer.
is_same_across_replicas.insert(
is_same_across_replicas.end(),
xla::ShapeUtil::GetLeafCount(arg_shapes[i]),
args[input_to_args->at(i)].is_same_data_across_replicas);
}
xla::XlaScopedShardingAssignment assign_tuple_sharding(
builder, input_to_args->empty() ? absl::optional<xla::OpSharding>()
: tuple_sharding);
tuple = xla::Parameter(builder, 0, (*input_shapes)[0], "arg_tuple",
is_same_across_replicas);
} else {
tuple = xla::Parameter(builder, 0, (*input_shapes)[0], "arg_tuple");
}
for (int i = 0; i < input_to_args->size(); ++i) {
const XlaCompiler::Argument& arg = args[input_to_args->at(i)];
for (const auto& dim_and_arg_num : arg.dynamic_dim_to_arg_num_map) {
int dynamic_size_param_index = arg_to_inputs.at(dim_and_arg_num.second);
VLOG(1) << "Setting dynamic binding " << i << " -> "
<< dynamic_size_param_index;
TF_RETURN_IF_ERROR(builder->SetDynamicBinding(
/*dynamic_size_param_num=*/0, {dynamic_size_param_index},
/*target_param_num=*/0, /*target_param_index=*/{i},
dim_and_arg_num.first));
}
}
for (std::vector<int>::size_type i = 0; i < input_to_args->size(); ++i) {
auto it = arg_shardings.find(i);
xla::XlaScopedShardingAssignment assign_sharding(
builder, it == arg_shardings.end() ? absl::optional<xla::OpSharding>()
: it->second);
arg_handles[i] = xla::GetTupleElement(tuple, i);
}
} else {
for (std::vector<int>::size_type i = 0; i < input_to_args->size(); ++i) {
auto it = arg_shardings.find(i);
xla::XlaScopedShardingAssignment assign_sharding(
builder, it == arg_shardings.end() ? absl::optional<xla::OpSharding>()
: it->second);
if (is_entry_computation) {
// Add an entry to is_same_across_replicas for every leaf buffer.
std::vector<bool> is_same_across_replicas(
xla::ShapeUtil::GetLeafCount((*input_shapes)[i]),
args[input_to_args->at(i)].is_same_data_across_replicas);
arg_handles[i] =
xla::Parameter(builder, i, (*input_shapes)[i],
absl::StrCat("arg", i), is_same_across_replicas);
} else {
arg_handles[i] = xla::Parameter(builder, i, (*input_shapes)[i],
absl::StrCat("arg", i));
}
}
for (int i = 0; i < input_to_args->size(); ++i) {
const XlaCompiler::Argument& arg = args[input_to_args->at(i)];
for (const auto& dim_and_arg_num : arg.dynamic_dim_to_arg_num_map) {
int dynamic_size_param_index = arg_to_inputs.at(dim_and_arg_num.second);
TF_RETURN_IF_ERROR(builder->SetDynamicBinding(
/*dynamic_size_param_num=*/dynamic_size_param_index, {},
/*target_param_num=*/i, /*target_param_index=*/{},
dim_and_arg_num.first));
}
}
}
builder->ClearOpMetadata();
// Fill in the handles in non-constant arguments, and reshape parameters
// back to their correct shapes.
VLOG(2) << "XLA computation inputs:";
for (std::vector<int>::size_type i = 0; i < input_to_args->size(); ++i) {
const XlaCompiler::Argument& arg = args[input_to_args->at(i)];
VLOG(2) << " XLA arg " << i
<< " shape: " << xla::ShapeUtil::HumanString(arg_shapes[i])
<< " name: " << arg.name << " TF arg " << input_to_args->at(i)
<< " node name: " << arg.node_name
<< (arg_shardings.find(i) == arg_shardings.end()
? ""
: absl::StrCat(" sharding: ",
arg_shardings.at(i).DebugString()));
XlaExpression& arg_expression = (*arg_expressions)[input_to_args->at(i)];
switch (arg.kind) {
case XlaCompiler::Argument::kResource: {
TF_RET_CHECK(arg.initialized);
XlaResource* resource = arg_expression.resource();
TF_RETURN_IF_ERROR(resource->SetFromPack(arg.tensor_array_gradients,
arg_handles[i], builder));
VLOG(2) << " resource: num_gradients: "
<< arg.tensor_array_gradients.size();
break;
}
case XlaCompiler::Argument::kParameter:
// Reshape parameters back to their correct shapes.
// TODO(b/76097077): propagate device assignments onto arguments and
// return values of functions, and then reshape unconditionally.
if (is_entry_computation) {
arg_expression = XlaExpression::XlaOp(
xla::Reshape(arg_handles[i], arg.DimensionSizes()), arg.type);
} else {
arg_expression = XlaExpression::XlaOp(arg_handles[i], arg.type);
}
break;
case XlaCompiler::Argument::kTensorList: {
arg_expression = XlaExpression::TensorList(arg_handles[i]);
break;
}
case XlaCompiler::Argument::kToken: {
arg_expression = XlaExpression::XlaOp(arg_handles[i], arg.type);
break;
}
case XlaCompiler::Argument::kConstant:
case XlaCompiler::Argument::kInvalid:
return errors::Internal(
"Unreachable case in BuildArguments() while filling handles");
}
}
return Status::OK();
}
namespace {
// Check that the ops of all non-functional nodes have been registered.
Status ValidateFunctionDef(const FunctionDef* fdef,
const FunctionLibraryDefinition& flib_def) {
for (const NodeDef& node : fdef->node_def()) {
const string& op = node.op();
if (op == FunctionLibraryDefinition::kGradientOp || flib_def.Find(op)) {
continue;
}
const OpDef* op_def;
TF_RETURN_IF_ERROR(OpRegistry::Global()->LookUpOpDef(op, &op_def));
}
return Status::OK();
}
// If node is PartitionedCall or StatefulPartitionedCall, returns the
// name from the "f" attr, else returns node.def().op().
// Returned pointer points to the internal string either in node's attributes
// or in its NodeDef. This pointer is valid as long as the node has not been
// modified.
Status GetPotentialFunctionName(const Node& node, const string** name) {
if (node.IsPartitionedCall()) {
const AttrValue* attr_value;
TF_RETURN_IF_ERROR(
node.attrs().Find(FunctionLibraryDefinition::kFuncAttr, &attr_value));
if (!attr_value->has_func()) {
return errors::InvalidArgument(
"The attribute value for attribute 'f' in node ", node.DebugString(),
" does not have 'func' field set");
}
*name = &attr_value->func().name();
return Status::OK();
}
*name = &node.type_string();
return Status::OK();
}
// Check that the graph doesn't have any invalid nodes (e.g. incompatible with
// given device_type, invalid data type, missing attributes...)
Status ValidateGraph(const Graph* graph,
const FunctionLibraryDefinition& flib_def,
const DeviceType& device_type, const string& name) {
// Make sure the XLA compilation kernels are registered. This operation is
// idempotent so it is fine if someone called it already.
XlaOpRegistry::RegisterCompilationKernels();
auto maybe_error = [&](const Node* node, const Status& s) -> Status {
if (!s.ok()) {
return errors::InvalidArgument(absl::StrCat(
"Detected unsupported operations when trying to compile graph ", name,
" on ", device_type.type_string(), ": ", node->def().op(), " (",
s.error_message(), ")", FormatNodeForError(*node)));
}
return Status::OK();
};
for (const Node* node : graph->nodes()) {
if (node->type_string() == FunctionLibraryDefinition::kGradientOp) {
continue;
}
const string* function_name;
TF_RETURN_IF_ERROR(GetPotentialFunctionName(*node, &function_name));
const FunctionDef* fdef = flib_def.Find(*function_name);
Status s;
if (fdef) {
s = ValidateFunctionDef(fdef, flib_def);
TF_RETURN_IF_ERROR(maybe_error(node, s));
continue;
}
const OpDef* op_def;
s = OpRegistry::Global()->LookUpOpDef(node->def().op(), &op_def);
TF_RETURN_IF_ERROR(maybe_error(node, s));
TF_RETURN_IF_ERROR(ValidateNodeDef(node->def(), *op_def));
s = FindKernelDef(device_type, node->def(), nullptr, nullptr);
TF_RETURN_IF_ERROR(maybe_error(node, s));
}
return Status::OK();
}
void ConvertConstantsToExpressions(xla::XlaBuilder* builder,
absl::Span<XlaExpression> expressions) {
for (XlaExpression& expression : expressions) {
if (expression.kind() == XlaExpression::Kind::kConstant) {
expression =
XlaExpression::XlaOp(expression.AsXlaOp(builder), expression.dtype());
}
}
}
} // namespace
Status XlaCompiler::CompileGraph(
const XlaCompiler::CompileOptions& options, string const& name,
std::unique_ptr<Graph> graph, absl::Span<const XlaCompiler::Argument> args,
CompilationResult* result) {
VLOG(1) << "Executing graph symbolically to populate XlaBuilder.: " << name;
TF_RETURN_IF_ERROR(PropagateConstIntoFunctionalNodes(
graph.get(), options_.flib_def, local_flib_def_.get()));
TF_RETURN_IF_ERROR(RearrangeFunctionArguments(
[this](const NameAttrList& function, const FunctionBody** fbody) {
return FindFunctionBody(function, fbody);
},
graph.get(), local_flib_def_.get()));
if (VLOG_IS_ON(2)) {
VLOG(2) << "XlaCompiler::CompileGraph: "
<< DumpGraphToFile(absl::StrCat("xla_compile_graph_", name), *graph,
flib_runtime_->GetFunctionLibraryDefinition());
}
// Report the error here if initialization failed.
TF_RETURN_IF_ERROR(initialization_status_);
// Detect invalid nodes.
// FunctionalizeControlFlow may remove some nodes from the graph.
TF_RETURN_IF_ERROR(ValidateGraph(graph.get(), *options_.flib_def,
options_.device_type, name));
xla::XlaBuilder builder(name);
XlaContext* context = new XlaContext(this, &builder);
core::ScopedUnref context_unref(context);
std::vector<XlaCompiler::Argument> real_args(args.begin(), args.end());
int token_input_index = -1;
std::unique_ptr<xla::XlaOp> token_output;
if (options.add_token_input_output) {
// Add extra token input.
token_input_index = real_args.size();
XlaCompiler::Argument token_arg;
token_arg.kind = XlaCompiler::Argument::kToken;
real_args.push_back(token_arg);
}
std::map<int, xla::OpSharding> arg_shardings;
std::map<int, xla::OpSharding> retval_shardings;
TF_ASSIGN_OR_RETURN(std::tie(arg_shardings, retval_shardings),
ComputeArgAndRetvalShardings(*graph));
std::vector<XlaExpression> arg_expressions;
TF_RETURN_IF_ERROR(BuildArguments(
*graph, real_args, options.use_tuple_arg, &builder, context,
arg_shardings, &arg_expressions, &result->input_mapping,
&result->xla_input_shapes, options.is_entry_computation));
context->set_args(std::move(arg_expressions));
PushNodeTokenMapping();
// Use std::set instead of std::unordered_set to ensure determinism.
std::set<std::string> output_node_token_inputs;
if (token_input_index != -1) {
// Original token comes from input.
auto arg_expression = context->args()[token_input_index];
TF_RETURN_IF_ERROR(
SetNodeToken(kXlaTokenArgNodeName, arg_expression.handle()));
// Calculate token inputs for output token.
output_node_token_inputs = CalculateTokenInputsForOutputToken(*graph);
// If there's no side-effecting op in the graph, use token input as token
// output.
if (output_node_token_inputs.empty()) {
output_node_token_inputs.insert(kXlaTokenArgNodeName);
}
} else if (options.is_entry_computation) {
// Original token is manually created.
if (HasSideEffectingNodes(*graph)) {
TF_RETURN_IF_ERROR(
SetNodeToken(kXlaTokenArgNodeName, xla::CreateToken(&builder)));
}
}
TF_RETURN_IF_ERROR(ExecuteGraph(context, std::move(graph), device_,
flib_runtime_, NextStepId()));
if (token_input_index != -1) {
// Add extra token output.
std::vector<xla::XlaOp> token_inputs;
for (const auto& node_name : output_node_token_inputs) {
auto token_or = GetNodeToken(node_name);
TF_RETURN_IF_ERROR(token_or.status());
token_inputs.push_back(token_or.ValueOrDie());
}
token_output.reset(new xla::XlaOp(xla::AfterAll(&builder, token_inputs)));
}
TF_RETURN_IF_ERROR(PopNodeTokenMapping());
int num_nonconst_outputs;
int num_computation_outputs;
result->computation = std::make_shared<xla::XlaComputation>();
result->outputs.resize(context->retvals().size());
std::vector<XlaExpression> retvals = context->retvals();
ConvertConstantsToExpressions(&builder, absl::Span<XlaExpression>(retvals));
TF_RETURN_IF_ERROR(BuildComputation(
real_args, retvals, arg_shardings, retval_shardings, context->resources(),
std::move(token_output),
options.is_entry_computation ? options_.shape_representation_fn
: ShapeRepresentationFn{},
options.is_entry_computation,
options.return_updated_values_for_all_resources,
options.always_return_tuple, options.use_tuple_arg,
options.alias_resource_update, &builder, result->computation.get(),
&num_computation_outputs, &num_nonconst_outputs, &result->outputs,
&result->resource_updates, &result->xla_output_shape));
VLOG(2) << "Outputs: total: " << context->retvals().size()
<< " nonconstant: " << num_nonconst_outputs;
VLOG(2) << "XLA output shape: "
<< xla::ShapeUtil::HumanStringWithLayout(result->xla_output_shape);
return Status::OK();
}
Status XlaCompiler::GetChannelHandle(const string& key,
xla::ChannelHandle* channel) {
auto result = channels_.emplace(key, xla::ChannelHandle());
if (result.second) {
TF_ASSIGN_OR_RETURN(result.first->second, client()->CreateChannelHandle());
}
*channel = result.first->second;
VLOG(1) << "Channel: " << key << " " << channel->DebugString();
return Status::OK();
}
Status XlaCompiler::GetHostToDeviceChannelHandle(const string& key,
xla::ChannelHandle* channel) {
auto result = channels_.emplace(key, xla::ChannelHandle());
if (result.second) {
TF_ASSIGN_OR_RETURN(result.first->second,
client()->CreateHostToDeviceChannelHandle());
}
*channel = result.first->second;
VLOG(1) << "Host to device channel: " << key << " " << channel->DebugString();
return Status::OK();
}
Status XlaCompiler::GetDeviceToHostChannelHandle(const string& key,
xla::ChannelHandle* channel) {
auto result = channels_.emplace(key, xla::ChannelHandle());
if (result.second) {
TF_ASSIGN_OR_RETURN(result.first->second,
client()->CreateDeviceToHostChannelHandle());
}
*channel = result.first->second;
VLOG(1) << "Device to host channel: " << key << " " << channel->DebugString();
return Status::OK();
}
namespace {
void SetTransfer(const string& key, absl::Span<const DataType> types,
absl::Span<const TensorShape> shapes,
tf2xla::HostTransferMetadata* transfer) {
transfer->set_key(key);
CHECK(types.size() == shapes.size());
for (int i = 0; i < types.size(); ++i) {
tf2xla::TensorMetadata* metadata = transfer->add_metadata();
metadata->set_type(types[i]);
shapes[i].AsProto(metadata->mutable_shape());
}
}
} // namespace
Status XlaCompiler::SetDeviceToHostMetadata(
const string& key, absl::Span<const DataType> types,
absl::Span<const TensorShape> shapes) {
if (host_compute_sends_.find(key) != host_compute_sends_.end()) {
return errors::InvalidArgument(
"Duplicate calls to SetDeviceToHostMetadata with key ", key);
}
tf2xla::HostTransferMetadata& transfer = host_compute_sends_[key];
SetTransfer(key, types, shapes, &transfer);
return Status::OK();
}
Status XlaCompiler::GetDeviceToHostShapes(
const string& key, std::vector<TensorShape>* shapes) const {
const auto iter = host_compute_sends_.find(key);
if (iter == host_compute_sends_.end()) {
return errors::InvalidArgument(
"No host compute send shapes registered for key ", key);
}
shapes->clear();
for (int i = 0; i < iter->second.metadata_size(); ++i) {
TensorShape shape(iter->second.metadata(i).shape());
shapes->push_back(shape);
}
return Status::OK();
}
Status XlaCompiler::SetHostToDeviceMetadata(
const string& key, absl::Span<const DataType> types,
absl::Span<const TensorShape> shapes) {
if (host_compute_recvs_.find(key) != host_compute_sends_.end()) {
return errors::InvalidArgument(
"Duplicate calls to SetHostToDeviceMetadata with key ", key);
}
tf2xla::HostTransferMetadata& transfer = host_compute_recvs_[key];
SetTransfer(key, types, shapes, &transfer);
return Status::OK();
}
Status XlaCompiler::GetHostComputeControlDependency(
const string& host_compute_name, xla::XlaOp* handle) {
const auto iter = host_compute_control_output_.find(host_compute_name);
if (iter == host_compute_control_output_.end()) {
return errors::InvalidArgument(
"No registered control handle for host compute Op '", host_compute_name,
"'");
} else {
*handle = iter->second;
}
return Status::OK();
}
Status XlaCompiler::SetHostComputeControlDependency(
const string& host_compute_name, const xla::XlaOp& handle) {
if (host_compute_control_output_.find(host_compute_name) !=
host_compute_control_output_.end()) {
return errors::InvalidArgument(
"Duplicate control handles registered for for host compute Op ",
host_compute_name);
}
host_compute_control_output_[host_compute_name] = handle;
return Status::OK();
}
void XlaCompiler::PushNodeTokenMapping() {
node_token_mapping_stack_.emplace(std::map<string, xla::XlaOp>{});
}
Status XlaCompiler::PopNodeTokenMapping() {
if (node_token_mapping_stack_.empty()) {
return errors::FailedPrecondition(
"Calling PopNodeTokenMapping() when node_token_mapping_stack_ is "
"empty.");
}
node_token_mapping_stack_.pop();
return Status::OK();
}
Status XlaCompiler::SetNodeToken(const string& node_name,
const xla::XlaOp& op) {
if (node_token_mapping_stack_.empty()) {
return errors::FailedPrecondition(
"Calling SetNodeToken() when node_token_mapping_stack_ is "
"empty.");
}
auto insert_result = node_token_mapping_stack_.top().insert({node_name, op});
if (!insert_result.second) {
return errors::FailedPrecondition("Token mapping already exists for node ",
node_name);
}
return Status::OK();
}
xla::StatusOr<xla::XlaOp> XlaCompiler::GetNodeToken(const string& node_name) {
if (node_token_mapping_stack_.empty()) {
return errors::FailedPrecondition(
"Calling GetNodeToken() when node_token_mapping_stack_ is "
"empty.");
}
auto iter = node_token_mapping_stack_.top().find(node_name);
if (iter == node_token_mapping_stack_.top().end()) {
return errors::FailedPrecondition("Cannot find token mapping for node ",
node_name);
}
return iter->second;
}
XlaCompiler::ShapeRepresentationFn IdentityShapeRepresentationFn() {
return [](const TensorShape& shape, DataType dtype,
bool use_fast_memory) -> xla::StatusOr<xla::Shape> {
xla::Shape xla_shape;
TF_RETURN_IF_ERROR(TensorShapeToXLAShape(dtype, shape, &xla_shape));
return xla_shape;
};
}
// Rewrites the layout of xla_shape if there is tiled sharding.
Status RewriteLayoutWithShardedShape(
const absl::optional<xla::HloSharding>& sharding, bool use_fast_memory,
XlaCompiler::ShapeRepresentationFn shape_representation_fn,
xla::Shape* xla_shape) {
if (sharding && !sharding->IsTileMaximal()) {
// After sharding, per core shape might have different layout. For example,
// before sharding, a shape [128, 128] will be assigned default
// minor-to-major {1, 0}. But after we shard this shape to [128, 64] * 2,
// the sharded shapes will have minor-to-major {0, 1}.
//
// As a result, for sharded shapes, we set their layout to per core shape's
// layout.
//
// TODO(endlessroad): for variable input & update, we might have
// different layouts which will prevent input output aliasing and
// increase memory usage. Investigate such cases.
int64 device = *sharding->tile_assignment().begin();
std::vector<int64> offset =
sharding->TileOffsetForDevice(*xla_shape, device);
std::vector<int64> limit = sharding->TileLimitForDevice(*xla_shape, device);
std::vector<int64> dimensions(xla_shape->rank());
for (int64 i = 0; i < xla_shape->rank(); ++i) {
dimensions[i] = limit[i] - offset[i];
}
xla::Shape per_device_xla_shape =
xla::ShapeUtil::MakeShape(xla_shape->element_type(), dimensions);
TensorShape per_device_tensor_shape;
TF_RETURN_IF_ERROR(
XLAShapeToTensorShape(per_device_xla_shape, &per_device_tensor_shape));
TF_ASSIGN_OR_RETURN(DataType dtype, EncodePrimitiveTypeAsDataType(
xla_shape->element_type()));
TF_ASSIGN_OR_RETURN(per_device_xla_shape,
shape_representation_fn(per_device_tensor_shape, dtype,
use_fast_memory));
*xla_shape->mutable_layout() = per_device_xla_shape.layout();
}
return Status::OK();
}
// There is a shape_representation_fn or sharding for an output, this function
// uses a reshape to fix the layout.
xla::StatusOr<xla::XlaOp> ReshapeWithCorrectRepresentationAndSharding(
xla::XlaBuilder* builder, xla::XlaOp original, xla::Shape original_shape,
XlaCompiler::ShapeRepresentationFn shape_representation_fn,
absl::optional<xla::OpSharding> sharding, bool fast_mem) {
if (original_shape.IsTuple()) {
std::vector<xla::XlaOp> elements;
for (int64 i = 0; i < original_shape.tuple_shapes_size(); ++i) {
auto subsharding = sharding ? sharding->tuple_shardings(i) : sharding;
TF_ASSIGN_OR_RETURN(auto element,
ReshapeWithCorrectRepresentationAndSharding(
builder, xla::GetTupleElement(original, i),
original_shape.tuple_shapes(i),
shape_representation_fn, subsharding, fast_mem));
elements.push_back(element);
}
return xla::Tuple(builder, elements);
}
if (!original_shape.IsArray()) return original;
TensorShape shape;
TF_RETURN_IF_ERROR(XLAShapeToTensorShape(original_shape, &shape));
TF_ASSIGN_OR_RETURN(DataType dtype, EncodePrimitiveTypeAsDataType(
original_shape.element_type()));
TF_ASSIGN_OR_RETURN(auto to_shape,
shape_representation_fn(shape, dtype, fast_mem));
if (sharding) {
TF_ASSIGN_OR_RETURN(auto hlo_sharding,
xla::HloSharding::FromProto(*sharding));
TF_RETURN_IF_ERROR(RewriteLayoutWithShardedShape(
hlo_sharding, fast_mem, shape_representation_fn, &to_shape));
}
if (xla::ShapeUtil::Compatible(original_shape, to_shape)) {
for (int64 i = 0; i < original_shape.rank(); ++i) {
to_shape.set_dynamic_dimension(i, original_shape.is_dynamic_dimension(i));
}
}
return xla::Reshape(to_shape, original);
}
} // namespace tensorflow
|