1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
|
/*
chronyd/chronyc - Programs for keeping computer clocks accurate.
**********************************************************************
* Copyright (C) Richard P. Curnow 1997-2003
* Copyright (C) Miroslav Lichvar 2012-2014
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
**********************************************************************
=======================================================================
Real-time clock driver for linux. This interfaces the program with
the clock that keeps time when the machine is turned off.
*/
#include "config.h"
#include "sysincl.h"
#include <linux/rtc.h>
#include "logging.h"
#include "sched.h"
#include "local.h"
#include "util.h"
#include "sys_linux.h"
#include "reference.h"
#include "regress.h"
#include "rtc.h"
#include "rtc_linux.h"
#include "conf.h"
#include "memory.h"
/* ================================================== */
/* Forward prototypes */
static void measurement_timeout(void *any);
static void read_from_device(int fd_, int event, void *any);
/* ================================================== */
typedef enum {
OM_NORMAL,
OM_INITIAL,
OM_AFTERTRIM
} OperatingMode;
static OperatingMode operating_mode = OM_NORMAL;
/* ================================================== */
static int fd = -1;
#define LOWEST_MEASUREMENT_PERIOD 15
#define HIGHEST_MEASUREMENT_PERIOD 480
#define N_SAMPLES_PER_REGRESSION 1
static int measurement_period = LOWEST_MEASUREMENT_PERIOD;
static SCH_TimeoutID timeout_id = 0;
static int skip_interrupts;
/* ================================================== */
/* Maximum number of samples held */
#define MAX_SAMPLES 64
/* Real time clock samples. We store the seconds count as originally
measured, together with a 'trim' that compensates these values for
any steps made to the RTC to bring it back into line
occasionally. The trim is in seconds. */
static time_t *rtc_sec = NULL;
static double *rtc_trim = NULL;
/* Reference time, against which delta times on the RTC scale are measured */
static time_t rtc_ref;
/* System clock samples associated with the above samples. */
static struct timespec *system_times = NULL;
/* Number of samples currently stored. */
static int n_samples;
/* Number of new samples since last regression */
static int n_samples_since_regression;
/* Number of runs of residuals in last regression (for logging) */
static int n_runs;
/* Coefficients */
/* Whether they are valid */
static int coefs_valid;
/* Reference time */
static time_t coef_ref_time;
/* Number of seconds by which RTC was fast of the system time at coef_ref_time */
static double coef_seconds_fast;
/* Estimated number of seconds that RTC gains relative to system time
for each second of ITS OWN time */
static double coef_gain_rate;
/* Gain rate saved just before we step the RTC to correct it to the
nearest second, so that we can write a useful set of coefs to the
RTC data file once we have reacquired its offset after the step */
static double saved_coef_gain_rate;
/* Threshold for automatic RTC trimming in seconds, zero when disabled */
static double autotrim_threshold;
/* Filename supplied by config file where RTC coefficients are
stored. */
static char *coefs_file_name;
/* ================================================== */
/* Coefficients read from file at start of run. */
/* Whether we have tried to load the coefficients */
static int tried_to_load_coefs = 0;
/* Whether valid coefficients were read */
static int valid_coefs_from_file = 0;
/* Coefs read in */
static time_t file_ref_time;
static double file_ref_offset, file_rate_ppm;
/* ================================================== */
/* Flag to remember whether to assume the RTC is running on UTC */
static int rtc_on_utc = 1;
/* ================================================== */
static LOG_FileID logfileid;
/* ================================================== */
static void (*after_init_hook)(void *) = NULL;
static void *after_init_hook_arg = NULL;
/* ================================================== */
static void
discard_samples(int new_first)
{
int n_to_save;
assert(new_first >= 0 && new_first < n_samples);
n_to_save = n_samples - new_first;
memmove(rtc_sec, rtc_sec + new_first, n_to_save * sizeof(time_t));
memmove(rtc_trim, rtc_trim + new_first, n_to_save * sizeof(double));
memmove(system_times, system_times + new_first, n_to_save * sizeof(struct timespec));
n_samples = n_to_save;
}
/* ================================================== */
#define NEW_FIRST_WHEN_FULL 4
static void
accumulate_sample(time_t rtc, struct timespec *sys)
{
if (n_samples == MAX_SAMPLES) {
/* Discard oldest samples */
discard_samples(NEW_FIRST_WHEN_FULL);
}
/* Discard all samples if the RTC was stepped back (not our trim) */
if (n_samples > 0 && rtc_sec[n_samples - 1] - rtc >= rtc_trim[n_samples - 1]) {
DEBUG_LOG(LOGF_RtcLinux, "RTC samples discarded");
n_samples = 0;
}
/* Always use most recent sample as reference */
/* use sample only if n_sample is not negative*/
if(n_samples >=0)
{
rtc_ref = rtc;
rtc_sec[n_samples] = rtc;
rtc_trim[n_samples] = 0.0;
system_times[n_samples] = *sys;
++n_samples_since_regression;
}
++n_samples;
}
/* ================================================== */
/* The new_sample flag is to indicate whether to adjust the
measurement period depending on the behaviour of the standard
deviation. */
static void
run_regression(int new_sample,
int *valid,
time_t *ref,
double *fast,
double *slope)
{
double rtc_rel[MAX_SAMPLES]; /* Relative times on RTC axis */
double offsets[MAX_SAMPLES]; /* How much the RTC is fast of the system clock */
int i;
double est_intercept, est_slope;
int best_new_start;
if (n_samples > 0) {
for (i=0; i<n_samples; i++) {
rtc_rel[i] = rtc_trim[i] + (double)(rtc_sec[i] - rtc_ref);
offsets[i] = ((double) (rtc_ref - system_times[i].tv_sec) -
(1.0e-9 * system_times[i].tv_nsec) +
rtc_rel[i]);
}
if (RGR_FindBestRobustRegression
(rtc_rel, offsets,
n_samples, 1.0e-9,
&est_intercept, &est_slope,
&n_runs,
&best_new_start)) {
/* Calculate and store coefficients. We don't do any error
bounds processing on any of these. */
*valid = 1;
*ref = rtc_ref;
*fast = est_intercept;
*slope = est_slope;
if (best_new_start > 0) {
discard_samples(best_new_start);
}
} else {
/* Keep existing coefficients. */
}
} else {
/* Keep existing coefficients. */
}
}
/* ================================================== */
static void
slew_samples
(struct timespec *raw, struct timespec *cooked,
double dfreq,
double doffset,
LCL_ChangeType change_type,
void *anything)
{
int i;
double delta_time;
double old_seconds_fast, old_gain_rate;
if (change_type == LCL_ChangeUnknownStep) {
/* Drop all samples. */
n_samples = 0;
}
for (i=0; i<n_samples; i++) {
UTI_AdjustTimespec(system_times + i, cooked, system_times + i, &delta_time,
dfreq, doffset);
}
old_seconds_fast = coef_seconds_fast;
old_gain_rate = coef_gain_rate;
if (coefs_valid) {
coef_seconds_fast += doffset;
coef_gain_rate += dfreq * (1.0 - coef_gain_rate);
}
DEBUG_LOG(LOGF_RtcLinux, "dfreq=%.8f doffset=%.6f old_fast=%.6f old_rate=%.3f new_fast=%.6f new_rate=%.3f",
dfreq, doffset,
old_seconds_fast, 1.0e6 * old_gain_rate,
coef_seconds_fast, 1.0e6 * coef_gain_rate);
}
/* ================================================== */
/* Function to convert from a time_t value represenging UTC to the
corresponding real time clock 'DMY HMS' form, taking account of
whether the user runs his RTC on the local time zone or UTC */
static struct tm *
rtc_from_t(const time_t *t)
{
if (rtc_on_utc) {
return gmtime(t);
} else {
return localtime(t);
}
}
/* ================================================== */
/* Inverse function to get back from RTC 'DMY HMS' form to time_t UTC
form. This essentially uses mktime(), but involves some awful
complexity to cope with timezones. The problem is that mktime's
behaviour with regard to the daylight saving flag in the 'struct
tm' does not seem to be reliable across all systems, unless that
flag is set to zero.
tm_isdst = -1 does not seem to work with all libc's - it is treated
as meaning there is DST, or fails completely. (It is supposed to
use the timezone info to work out whether summer time is active at
the specified epoch).
tm_isdst = 1 fails if the local timezone has no summer time defined.
The approach taken is as follows. Suppose the RTC is on localtime.
We perform all mktime calls with the tm_isdst field set to zero.
Let y be the RTC reading in 'DMY HMS' form. Let M be the mktime
function with tm_isdst=0 and L be the localtime function.
We seek x such that y = L(x). Now there will exist a value Z(t)
such that M(L(t)) = t + Z(t) for all t, where Z(t) depends on
whether daylight saving is active at time t.
We want L(x) = y. Therefore M(L(x)) = x + Z = M(y). But
M(L(M(y))) = M(y) + Z. Therefore x = M(y) - Z = M(y) - (M(L(M(y)))
- M(y)).
The case for the RTC running on UTC is identical but without the
potential complication that Z depends on t.
*/
static time_t
t_from_rtc(struct tm *stm) {
struct tm temp1, temp2;
long diff;
time_t t1, t2;
temp1 = *stm;
temp1.tm_isdst = 0;
t1 = mktime(&temp1);
if (rtc_on_utc) {
temp2 = *gmtime(&t1);
} else {
temp2 = *localtime(&t1);
}
temp2.tm_isdst = 0;
t2 = mktime(&temp2);
diff = t2 - t1;
if (t1 - diff == -1)
DEBUG_LOG(LOGF_RtcLinux, "Could not convert RTC time");
return t1 - diff;
}
/* ================================================== */
static void
read_hwclock_file(const char *hwclock_file)
{
FILE *in;
char line[256];
int i;
if (!hwclock_file || !hwclock_file[0])
return;
in = fopen(hwclock_file, "r");
if (!in) {
LOG(LOGS_WARN, LOGF_RtcLinux, "Could not open %s : %s",
hwclock_file, strerror(errno));
return;
}
/* Read third line from the file. */
for (i = 0; i < 3; i++) {
if (!fgets(line, sizeof(line), in))
break;
}
fclose(in);
if (i == 3 && !strncmp(line, "LOCAL", 5)) {
rtc_on_utc = 0;
} else if (i == 3 && !strncmp(line, "UTC", 3)) {
rtc_on_utc = 1;
} else {
LOG(LOGS_WARN, LOGF_RtcLinux, "Could not read RTC LOCAL/UTC setting from %s",
hwclock_file);
}
}
/* ================================================== */
static void
setup_config(void)
{
if (CNF_GetRtcOnUtc()) {
rtc_on_utc = 1;
} else {
rtc_on_utc = 0;
}
read_hwclock_file(CNF_GetHwclockFile());
autotrim_threshold = CNF_GetRtcAutotrim();
}
/* ================================================== */
/* Read the coefficients from the file where they were saved
the last time the program was run. */
static void
read_coefs_from_file(void)
{
FILE *in;
if (!tried_to_load_coefs) {
valid_coefs_from_file = 0; /* only gets set true if we succeed */
tried_to_load_coefs = 1;
if (coefs_file_name && (in = fopen(coefs_file_name, "r"))) {
if (fscanf(in, "%d%ld%lf%lf",
&valid_coefs_from_file,
&file_ref_time,
&file_ref_offset,
&file_rate_ppm) == 4) {
} else {
LOG(LOGS_WARN, LOGF_RtcLinux, "Could not read coefficients from %s",
coefs_file_name);
}
fclose(in);
}
}
}
/* ================================================== */
/* Write the coefficients to the file where they will be read
the next time the program is run. */
static int
write_coefs_to_file(int valid,time_t ref_time,double offset,double rate)
{
struct stat buf;
char *temp_coefs_file_name;
FILE *out;
int r1, r2;
/* Create a temporary file with a '.tmp' extension. */
temp_coefs_file_name = (char*) Malloc(strlen(coefs_file_name)+8);
if(!temp_coefs_file_name) {
return RTC_ST_BADFILE;
}
strcpy(temp_coefs_file_name,coefs_file_name);
strcat(temp_coefs_file_name,".tmp");
out = fopen(temp_coefs_file_name, "w");
if (!out) {
Free(temp_coefs_file_name);
LOG(LOGS_WARN, LOGF_RtcLinux, "Could not open temporary RTC file %s.tmp for writing",
coefs_file_name);
return RTC_ST_BADFILE;
}
/* Gain rate is written out in ppm */
r1 = fprintf(out, "%1d %ld %.6f %.3f\n",
valid, ref_time, offset, 1.0e6 * rate);
r2 = fclose(out);
if (r1 < 0 || r2) {
Free(temp_coefs_file_name);
LOG(LOGS_WARN, LOGF_RtcLinux, "Could not write to temporary RTC file %s.tmp",
coefs_file_name);
return RTC_ST_BADFILE;
}
/* Clone the file attributes from the existing file if there is one. */
if (!stat(coefs_file_name,&buf)) {
if (chown(temp_coefs_file_name,buf.st_uid,buf.st_gid) ||
chmod(temp_coefs_file_name,buf.st_mode & 0777)) {
LOG(LOGS_WARN, LOGF_RtcLinux,
"Could not change ownership or permissions of temporary RTC file %s.tmp",
coefs_file_name);
}
}
/* Rename the temporary file to the correct location (see rename(2) for details). */
if (rename(temp_coefs_file_name,coefs_file_name)) {
unlink(temp_coefs_file_name);
Free(temp_coefs_file_name);
LOG(LOGS_WARN, LOGF_RtcLinux, "Could not replace old RTC file %s.tmp with new one %s",
coefs_file_name, coefs_file_name);
return RTC_ST_BADFILE;
}
Free(temp_coefs_file_name);
return RTC_ST_OK;
}
/* ================================================== */
/* file_name is the name of the file where we save the RTC params
between executions. Return status is whether we could initialise
on this version of the system. */
int
RTC_Linux_Initialise(void)
{
rtc_sec = MallocArray(time_t, MAX_SAMPLES);
rtc_trim = MallocArray(double, MAX_SAMPLES);
system_times = MallocArray(struct timespec, MAX_SAMPLES);
/* Setup details depending on configuration options */
setup_config();
/* In case it didn't get done by pre-init */
coefs_file_name = CNF_GetRtcFile();
/* Try to open device */
fd = open (CNF_GetRtcDevice(), O_RDWR);
if (fd < 0) {
LOG(LOGS_ERR, LOGF_RtcLinux, "Could not open RTC device %s : %s",
CNF_GetRtcDevice(), strerror(errno));
return 0;
}
/* Close on exec */
UTI_FdSetCloexec(fd);
n_samples = 0;
n_samples_since_regression = 0;
n_runs = 0;
coefs_valid = 0;
measurement_period = LOWEST_MEASUREMENT_PERIOD;
operating_mode = OM_NORMAL;
/* Register file handler */
SCH_AddFileHandler(fd, SCH_FILE_INPUT, read_from_device, NULL);
/* Register slew handler */
LCL_AddParameterChangeHandler(slew_samples, NULL);
logfileid = CNF_GetLogRtc() ? LOG_FileOpen("rtc",
" Date (UTC) Time RTC fast (s) Val Est fast (s) Slope (ppm) Ns Nr Meas")
: -1;
return 1;
}
/* ================================================== */
void
RTC_Linux_Finalise(void)
{
SCH_RemoveTimeout(timeout_id);
timeout_id = 0;
/* Remove input file handler */
if (fd >= 0) {
SCH_RemoveFileHandler(fd);
close(fd);
/* Save the RTC data */
(void) RTC_Linux_WriteParameters();
}
Free(rtc_sec);
Free(rtc_trim);
Free(system_times);
}
/* ================================================== */
static void
switch_interrupts(int onoff)
{
int status;
if (onoff) {
status = ioctl(fd, RTC_UIE_ON, 0);
if (status < 0) {
LOG(LOGS_ERR, LOGF_RtcLinux, "Could not %s RTC interrupt : %s",
"enable", strerror(errno));
return;
}
skip_interrupts = 1;
} else {
status = ioctl(fd, RTC_UIE_OFF, 0);
if (status < 0) {
LOG(LOGS_ERR, LOGF_RtcLinux, "Could not %s RTC interrupt : %s",
"disable", strerror(errno));
return;
}
}
}
/* ================================================== */
static void
measurement_timeout(void *any)
{
timeout_id = 0;
switch_interrupts(1);
}
/* ================================================== */
static void
set_rtc(time_t new_rtc_time)
{
struct tm rtc_tm;
struct rtc_time rtc_raw;
int status;
rtc_tm = *rtc_from_t(&new_rtc_time);
rtc_raw.tm_sec = rtc_tm.tm_sec;
rtc_raw.tm_min = rtc_tm.tm_min;
rtc_raw.tm_hour = rtc_tm.tm_hour;
rtc_raw.tm_mday = rtc_tm.tm_mday;
rtc_raw.tm_mon = rtc_tm.tm_mon;
rtc_raw.tm_year = rtc_tm.tm_year;
rtc_raw.tm_wday = rtc_tm.tm_wday;
rtc_raw.tm_yday = rtc_tm.tm_yday;
rtc_raw.tm_isdst = rtc_tm.tm_isdst;
status = ioctl(fd, RTC_SET_TIME, &rtc_raw);
if (status < 0) {
LOG(LOGS_ERR, LOGF_RtcLinux, "Could not set RTC time");
}
}
/* ================================================== */
static void
handle_initial_trim(void)
{
double rate;
long delta_time;
double rtc_error_now, sys_error_now;
/* The idea is to accumulate some number of samples at 1 second
intervals, then do a robust regression fit to this. This
should give a good fix on the intercept (=system clock error
rel to RTC) at a particular time, removing risk of any
particular sample being an outlier. We can then look at the
elapsed interval since the epoch recorded in the RTC file,
and correct the system time accordingly. */
run_regression(1, &coefs_valid, &coef_ref_time, &coef_seconds_fast, &coef_gain_rate);
n_samples_since_regression = 0;
/* Set sample number to -1 so the next sample is not used, as it will not yet be corrected for System Trim*/
n_samples = -1;
read_coefs_from_file();
if (valid_coefs_from_file) {
/* Can process data */
delta_time = coef_ref_time - file_ref_time;
rate = 1.0e-6 * file_rate_ppm;
rtc_error_now = file_ref_offset + rate * (double) delta_time;
/* sys_error_now is positive if the system clock is fast */
sys_error_now = rtc_error_now - coef_seconds_fast;
LCL_AccumulateOffset(sys_error_now, 0.0);
LOG(LOGS_INFO, LOGF_RtcLinux, "System clock off from RTC by %f seconds (slew)",
sys_error_now);
} else {
LOG(LOGS_WARN, LOGF_RtcLinux, "No valid rtcfile coefficients");
}
coefs_valid = 0;
(after_init_hook)(after_init_hook_arg);
operating_mode = OM_NORMAL;
}
/* ================================================== */
static void
handle_relock_after_trim(void)
{
int valid;
time_t ref;
double fast, slope;
valid = 0;
run_regression(1, &valid, &ref, &fast, &slope);
if (valid) {
write_coefs_to_file(1,ref,fast,saved_coef_gain_rate);
} else {
DEBUG_LOG(LOGF_RtcLinux, "Could not do regression after trim");
}
coefs_valid = 0;
n_samples = 0;
n_samples_since_regression = 0;
operating_mode = OM_NORMAL;
measurement_period = LOWEST_MEASUREMENT_PERIOD;
}
/* ================================================== */
static void
maybe_autotrim(void)
{
/* Trim only when in normal mode, the coefficients are fresh, the current
offset is above the threshold and the system clock is synchronized */
if (operating_mode != OM_NORMAL || !coefs_valid || n_samples_since_regression)
return;
if (autotrim_threshold <= 0.0 || fabs(coef_seconds_fast) < autotrim_threshold)
return;
if (REF_GetOurStratum() >= 16)
return;
RTC_Linux_Trim();
}
/* ================================================== */
static void
process_reading(time_t rtc_time, struct timespec *system_time)
{
double rtc_fast;
accumulate_sample(rtc_time, system_time);
switch (operating_mode) {
case OM_NORMAL:
if (n_samples_since_regression >= N_SAMPLES_PER_REGRESSION) {
run_regression(1, &coefs_valid, &coef_ref_time, &coef_seconds_fast, &coef_gain_rate);
n_samples_since_regression = 0;
maybe_autotrim();
}
break;
case OM_INITIAL:
if (n_samples_since_regression >= 8) {
handle_initial_trim();
}
break;
case OM_AFTERTRIM:
if (n_samples_since_regression >= 8) {
handle_relock_after_trim();
}
break;
default:
assert(0);
break;
}
if (logfileid != -1) {
rtc_fast = (rtc_time - system_time->tv_sec) - 1.0e-9 * system_time->tv_nsec;
LOG_FileWrite(logfileid, "%s %14.6f %1d %14.6f %12.3f %2d %2d %4d",
UTI_TimeToLogForm(system_time->tv_sec),
rtc_fast,
coefs_valid,
coef_seconds_fast, coef_gain_rate * 1.0e6, n_samples, n_runs, measurement_period);
}
}
/* ================================================== */
static void
read_from_device(int fd_, int event, void *any)
{
int status;
unsigned long data;
struct timespec sys_time;
struct rtc_time rtc_raw;
struct tm rtc_tm;
time_t rtc_t;
int error = 0;
status = read(fd, &data, sizeof(data));
if (status < 0) {
/* This looks like a bad error : the file descriptor was indicating it was
* ready to read but we couldn't read anything. Give up. */
LOG(LOGS_ERR, LOGF_RtcLinux, "Could not read flags %s : %s", CNF_GetRtcDevice(), strerror(errno));
SCH_RemoveFileHandler(fd);
switch_interrupts(0); /* Likely to raise error too, but just to be sure... */
close(fd);
fd = -1;
return;
}
if (skip_interrupts > 0) {
/* Wait for the next interrupt, this one may be bogus */
skip_interrupts--;
return;
}
if ((data & RTC_UF) == RTC_UF) {
/* Update interrupt detected */
/* Read RTC time, sandwiched between two polls of the system clock
so we can bound any error. */
SCH_GetLastEventTime(&sys_time, NULL, NULL);
status = ioctl(fd, RTC_RD_TIME, &rtc_raw);
if (status < 0) {
LOG(LOGS_ERR, LOGF_RtcLinux, "Could not read time from %s : %s", CNF_GetRtcDevice(), strerror(errno));
error = 1;
goto turn_off_interrupt;
}
/* Convert RTC time into a struct timespec */
rtc_tm.tm_sec = rtc_raw.tm_sec;
rtc_tm.tm_min = rtc_raw.tm_min;
rtc_tm.tm_hour = rtc_raw.tm_hour;
rtc_tm.tm_mday = rtc_raw.tm_mday;
rtc_tm.tm_mon = rtc_raw.tm_mon;
rtc_tm.tm_year = rtc_raw.tm_year;
rtc_t = t_from_rtc(&rtc_tm);
if (rtc_t == (time_t)(-1)) {
error = 1;
goto turn_off_interrupt;
}
process_reading(rtc_t, &sys_time);
if (n_samples < 4) {
measurement_period = LOWEST_MEASUREMENT_PERIOD;
} else if (n_samples < 6) {
measurement_period = LOWEST_MEASUREMENT_PERIOD << 1;
} else if (n_samples < 10) {
measurement_period = LOWEST_MEASUREMENT_PERIOD << 2;
} else if (n_samples < 14) {
measurement_period = LOWEST_MEASUREMENT_PERIOD << 3;
} else {
measurement_period = LOWEST_MEASUREMENT_PERIOD << 4;
}
}
turn_off_interrupt:
switch (operating_mode) {
case OM_INITIAL:
if (error) {
DEBUG_LOG(LOGF_RtcLinux, "Could not complete initial step due to errors");
operating_mode = OM_NORMAL;
(after_init_hook)(after_init_hook_arg);
switch_interrupts(0);
timeout_id = SCH_AddTimeoutByDelay((double) measurement_period, measurement_timeout, NULL);
}
break;
case OM_AFTERTRIM:
if (error) {
DEBUG_LOG(LOGF_RtcLinux, "Could not complete after trim relock due to errors");
operating_mode = OM_NORMAL;
switch_interrupts(0);
timeout_id = SCH_AddTimeoutByDelay((double) measurement_period, measurement_timeout, NULL);
}
break;
case OM_NORMAL:
switch_interrupts(0);
timeout_id = SCH_AddTimeoutByDelay((double) measurement_period, measurement_timeout, NULL);
break;
default:
assert(0);
break;
}
}
/* ================================================== */
void
RTC_Linux_TimeInit(void (*after_hook)(void *), void *anything)
{
after_init_hook = after_hook;
after_init_hook_arg = anything;
operating_mode = OM_INITIAL;
timeout_id = 0;
switch_interrupts(1);
}
/* ================================================== */
void
RTC_Linux_StartMeasurements(void)
{
measurement_timeout(NULL);
}
/* ================================================== */
int
RTC_Linux_WriteParameters(void)
{
int retval;
if (fd < 0) {
return RTC_ST_NODRV;
}
if (coefs_valid) {
retval = write_coefs_to_file(1,coef_ref_time, coef_seconds_fast, coef_gain_rate);
} else {
/* Don't change the existing file, it may not be 100% valid but is our
current best guess. */
retval = RTC_ST_OK; /*write_coefs_to_file(0,0,0.0,0.0); */
}
return(retval);
}
/* ================================================== */
/* Try to set the system clock from the RTC, in the same manner as
/sbin/hwclock -s would do. We're not as picky about OS version
etc in this case, since we have fewer requirements regarding the
RTC behaviour than we do for the rest of the module. */
int
RTC_Linux_TimePreInit(time_t driftfile_time)
{
int fd, status;
struct rtc_time rtc_raw, rtc_raw_retry;
struct tm rtc_tm;
time_t rtc_t;
double accumulated_error, sys_offset;
struct timespec new_sys_time, old_sys_time;
coefs_file_name = CNF_GetRtcFile();
setup_config();
read_coefs_from_file();
fd = open(CNF_GetRtcDevice(), O_RDONLY);
if (fd < 0) {
return 0; /* Can't open it, and won't be able to later */
}
/* Retry reading the rtc until both read attempts give the same sec value.
This way the race condition is prevented that the RTC has updated itself
during the first read operation. */
do {
status = ioctl(fd, RTC_RD_TIME, &rtc_raw);
if (status >= 0) {
status = ioctl(fd, RTC_RD_TIME, &rtc_raw_retry);
}
} while (status >= 0 && rtc_raw.tm_sec != rtc_raw_retry.tm_sec);
/* Read system clock */
LCL_ReadCookedTime(&old_sys_time, NULL);
close(fd);
if (status >= 0) {
/* Convert to seconds since 1970 */
rtc_tm.tm_sec = rtc_raw.tm_sec;
rtc_tm.tm_min = rtc_raw.tm_min;
rtc_tm.tm_hour = rtc_raw.tm_hour;
rtc_tm.tm_mday = rtc_raw.tm_mday;
rtc_tm.tm_mon = rtc_raw.tm_mon;
rtc_tm.tm_year = rtc_raw.tm_year;
rtc_t = t_from_rtc(&rtc_tm);
if (rtc_t != (time_t)(-1)) {
/* Work out approximatation to correct time (to about the
nearest second) */
if (valid_coefs_from_file) {
accumulated_error = file_ref_offset +
(rtc_t - file_ref_time) * 1.0e-6 * file_rate_ppm;
} else {
accumulated_error = 0.0;
}
/* Correct time */
new_sys_time.tv_sec = rtc_t;
/* Average error in the RTC reading */
new_sys_time.tv_nsec = 500000000;
UTI_AddDoubleToTimespec(&new_sys_time, -accumulated_error, &new_sys_time);
if (new_sys_time.tv_sec < driftfile_time) {
LOG(LOGS_WARN, LOGF_RtcLinux, "RTC time before last driftfile modification (ignored)");
return 0;
}
sys_offset = UTI_DiffTimespecsToDouble(&old_sys_time, &new_sys_time);
/* Set system time only if the step is larger than 1 second */
if (fabs(sys_offset) >= 1.0) {
if (LCL_ApplyStepOffset(sys_offset))
LOG(LOGS_INFO, LOGF_RtcLinux, "System time set from RTC");
}
} else {
return 0;
}
} else {
return 0;
}
return 1;
}
/* ================================================== */
int
RTC_Linux_GetReport(RPT_RTC_Report *report)
{
report->ref_time.tv_sec = coef_ref_time;
report->ref_time.tv_nsec = 0;
report->n_samples = n_samples;
report->n_runs = n_runs;
if (n_samples > 1) {
report->span_seconds = ((rtc_sec[n_samples-1] - rtc_sec[0]) +
(long)(rtc_trim[n_samples-1] - rtc_trim[0]));
} else {
report->span_seconds = 0;
}
report->rtc_seconds_fast = coef_seconds_fast;
report->rtc_gain_rate_ppm = 1.0e6 * coef_gain_rate;
return 1;
}
/* ================================================== */
int
RTC_Linux_Trim(void)
{
struct timespec now;
/* Remember the slope coefficient - we won't be able to determine a
good one in a few seconds when we determine the new offset! */
saved_coef_gain_rate = coef_gain_rate;
if (fabs(coef_seconds_fast) > 1.0) {
LOG(LOGS_INFO, LOGF_RtcLinux, "RTC wrong by %.3f seconds (step)",
coef_seconds_fast);
/* Do processing to set clock. Let R be the value we set the
RTC to, then in 500ms the RTC ticks (R+1) (see comments in
arch/i386/kernel/time.c about the behaviour of the real time
clock chip). If S is the system time now, the error at the
next RTC tick is given by E = (R+1) - (S+0.5). Ideally we
want |E| <= 0.5, which implies R <= S <= R+1, i.e. R is just
the rounded down part of S, i.e. the seconds part. */
LCL_ReadCookedTime(&now, NULL);
set_rtc(now.tv_sec);
/* All old samples will now look bogus under the new
regime. */
n_samples = 0;
operating_mode = OM_AFTERTRIM;
/* Estimate the offset in case writertc is called or chronyd
is terminated during rapid sampling */
coef_seconds_fast = -now.tv_nsec / 1.0e9 + 0.5;
coef_ref_time = now.tv_sec;
/* And start rapid sampling, interrupts on now */
SCH_RemoveTimeout(timeout_id);
timeout_id = 0;
switch_interrupts(1);
}
return 1;
}
|