1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
|
/*
chronyd/chronyc - Programs for keeping computer clocks accurate.
**********************************************************************
* Copyright (C) Richard P. Curnow 1997-2003
* Copyright (C) Miroslav Lichvar 2011-2014
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
**********************************************************************
=======================================================================
This file contains the routines that do the statistical
analysis on the samples obtained from the sources,
to determined frequencies and error bounds. */
#include "config.h"
#include "sysincl.h"
#include "sourcestats.h"
#include "memory.h"
#include "regress.h"
#include "util.h"
#include "conf.h"
#include "logging.h"
#include "local.h"
/* ================================================== */
/* Define the maxumum number of samples that we want
to store per source */
#define MAX_SAMPLES 64
/* This is the assumed worst case bound on an unknown frequency,
2000ppm, which would be pretty bad */
#define WORST_CASE_FREQ_BOUND (2000.0/1.0e6)
/* The minimum and maximum assumed skew */
#define MIN_SKEW 1.0e-12
#define MAX_SKEW 1.0e+02
/* The minimum assumed std dev for weighting */
#define MIN_WEIGHT_SD 1.0e-9
/* The asymmetry of network jitter when all jitter is in one direction */
#define MAX_ASYMMETRY 0.5
/* The minimum estimated asymmetry that can activate the offset correction */
#define MIN_ASYMMETRY 0.45
/* The minimum number of consecutive asymmetries with the same sign needed
to activate the offset correction */
#define MIN_ASYMMETRY_RUN 10
/* The maximum value of the counter */
#define MAX_ASYMMETRY_RUN 1000
/* ================================================== */
static LOG_FileID logfileid;
/* ================================================== */
/* This data structure is used to hold the history of data from the
source */
struct SST_Stats_Record {
/* Reference ID and IP address of source, used for logging to statistics log */
uint32_t refid;
IPAddr *ip_addr;
/* User defined minimum and maximum number of samples */
int min_samples;
int max_samples;
/* Number of samples currently stored. The samples are stored in circular
buffer. */
int n_samples;
/* Number of extra samples stored in sample_times, offsets and peer_delays
arrays that are used to extend the runs test */
int runs_samples;
/* The index of the newest sample */
int last_sample;
/* Flag indicating whether last regression was successful */
int regression_ok;
/* The best individual sample that we are holding, in terms of the minimum
root distance at the present time */
int best_single_sample;
/* The index of the sample with minimum delay in peer_delays */
int min_delay_sample;
/* This is the estimated offset (+ve => local fast) at a particular time */
double estimated_offset;
double estimated_offset_sd;
struct timespec offset_time;
/* Number of runs of the same sign amongst the residuals */
int nruns;
/* Number of consecutive estimated asymmetries with the same sign.
The sign of the number encodes the sign of the asymmetry. */
int asymmetry_run;
/* This is the latest estimated asymmetry of network jitter */
double asymmetry;
/* This value contains the estimated frequency. This is the number
of seconds that the local clock gains relative to the reference
source per unit local time. (Positive => local clock fast,
negative => local clock slow) */
double estimated_frequency;
/* This is the assumed worst case bounds on the estimated frequency.
We assume that the true frequency lies within +/- half this much
about estimated_frequency */
double skew;
/* This is the estimated standard deviation of the data points */
double std_dev;
/* This array contains the sample epochs, in terms of the local
clock. */
struct timespec sample_times[MAX_SAMPLES * REGRESS_RUNS_RATIO];
/* This is an array of offsets, in seconds, corresponding to the
sample times. In this module, we use the convention that
positive means the local clock is FAST of the source and negative
means it is SLOW. This is contrary to the convention in the NTP
stuff. */
double offsets[MAX_SAMPLES * REGRESS_RUNS_RATIO];
/* This is an array of the offsets as originally measured. Local
clock fast of real time is indicated by positive values. This
array is not slewed to adjust the readings when we apply
adjustments to the local clock, as is done for the array
'offset'. */
double orig_offsets[MAX_SAMPLES];
/* This is an array of peer delays, in seconds, being the roundtrip
measurement delay to the peer */
double peer_delays[MAX_SAMPLES * REGRESS_RUNS_RATIO];
/* This is an array of peer dispersions, being the skew and local
precision dispersion terms from sampling the peer */
double peer_dispersions[MAX_SAMPLES];
/* This array contains the root delays of each sample, in seconds */
double root_delays[MAX_SAMPLES];
/* This array contains the root dispersions of each sample at the
time of the measurements */
double root_dispersions[MAX_SAMPLES];
/* This array contains the strata that were associated with the sources
at the times the samples were generated */
int strata[MAX_SAMPLES];
};
/* ================================================== */
static void find_min_delay_sample(SST_Stats inst);
static int get_buf_index(SST_Stats inst, int i);
/* ================================================== */
void
SST_Initialise(void)
{
logfileid = CNF_GetLogStatistics() ? LOG_FileOpen("statistics",
" Date (UTC) Time IP Address Std dev'n Est offset Offset sd Diff freq Est skew Stress Ns Bs Nr Asym")
: -1;
}
/* ================================================== */
void
SST_Finalise(void)
{
}
/* ================================================== */
/* This function creates a new instance of the statistics handler */
SST_Stats
SST_CreateInstance(uint32_t refid, IPAddr *addr, int min_samples, int max_samples)
{
SST_Stats inst;
inst = MallocNew(struct SST_Stats_Record);
inst->min_samples = min_samples;
inst->max_samples = max_samples;
SST_SetRefid(inst, refid, addr);
SST_ResetInstance(inst);
return inst;
}
/* ================================================== */
/* This function deletes an instance of the statistics handler. */
void
SST_DeleteInstance(SST_Stats inst)
{
Free(inst);
}
/* ================================================== */
void
SST_ResetInstance(SST_Stats inst)
{
inst->n_samples = 0;
inst->runs_samples = 0;
inst->last_sample = 0;
inst->regression_ok = 0;
inst->best_single_sample = 0;
inst->min_delay_sample = 0;
inst->estimated_frequency = 0;
inst->skew = 2000.0e-6;
inst->estimated_offset = 0.0;
inst->estimated_offset_sd = 86400.0; /* Assume it's at least within a day! */
UTI_ZeroTimespec(&inst->offset_time);
inst->std_dev = 4.0;
inst->nruns = 0;
inst->asymmetry_run = 0;
inst->asymmetry = 0.0;
}
/* ================================================== */
void
SST_SetRefid(SST_Stats inst, uint32_t refid, IPAddr *addr)
{
inst->refid = refid;
inst->ip_addr = addr;
}
/* ================================================== */
/* This function is called to prune the register down when it is full.
For now, just discard the oldest sample. */
static void
prune_register(SST_Stats inst, int new_oldest)
{
if (!new_oldest)
return;
assert(inst->n_samples >= new_oldest);
inst->n_samples -= new_oldest;
inst->runs_samples += new_oldest;
if (inst->runs_samples > inst->n_samples * (REGRESS_RUNS_RATIO - 1))
inst->runs_samples = inst->n_samples * (REGRESS_RUNS_RATIO - 1);
assert(inst->n_samples + inst->runs_samples <= MAX_SAMPLES * REGRESS_RUNS_RATIO);
find_min_delay_sample(inst);
}
/* ================================================== */
void
SST_AccumulateSample(SST_Stats inst, struct timespec *sample_time,
double offset,
double peer_delay, double peer_dispersion,
double root_delay, double root_dispersion,
int stratum)
{
int n, m;
/* Make room for the new sample */
if (inst->n_samples > 0 &&
(inst->n_samples == MAX_SAMPLES || inst->n_samples == inst->max_samples)) {
prune_register(inst, 1);
}
/* Make sure it's newer than the last sample */
if (inst->n_samples &&
UTI_CompareTimespecs(&inst->sample_times[inst->last_sample], sample_time) >= 0) {
LOG(LOGS_WARN, LOGF_SourceStats, "Out of order sample detected, discarding history for %s",
inst->ip_addr ? UTI_IPToString(inst->ip_addr) : UTI_RefidToString(inst->refid));
SST_ResetInstance(inst);
}
n = inst->last_sample = (inst->last_sample + 1) %
(MAX_SAMPLES * REGRESS_RUNS_RATIO);
m = n % MAX_SAMPLES;
inst->sample_times[n] = *sample_time;
inst->offsets[n] = offset;
inst->orig_offsets[m] = offset;
inst->peer_delays[n] = peer_delay;
inst->peer_dispersions[m] = peer_dispersion;
inst->root_delays[m] = root_delay;
inst->root_dispersions[m] = root_dispersion;
inst->strata[m] = stratum;
if (!inst->n_samples || inst->peer_delays[n] < inst->peer_delays[inst->min_delay_sample])
inst->min_delay_sample = n;
++inst->n_samples;
}
/* ================================================== */
/* Return index of the i-th sample in the sample_times and offset buffers,
i can be negative down to -runs_samples */
static int
get_runsbuf_index(SST_Stats inst, int i)
{
return (unsigned int)(inst->last_sample + 2 * MAX_SAMPLES * REGRESS_RUNS_RATIO -
inst->n_samples + i + 1) % (MAX_SAMPLES * REGRESS_RUNS_RATIO);
}
/* ================================================== */
/* Return index of the i-th sample in the other buffers */
static int
get_buf_index(SST_Stats inst, int i)
{
return (unsigned int)(inst->last_sample + MAX_SAMPLES * REGRESS_RUNS_RATIO -
inst->n_samples + i + 1) % MAX_SAMPLES;
}
/* ================================================== */
/* This function is used by both the regression routines to find the
time interval between each historical sample and the most recent
one */
static void
convert_to_intervals(SST_Stats inst, double *times_back)
{
struct timespec *ts;
int i;
ts = &inst->sample_times[inst->last_sample];
for (i = -inst->runs_samples; i < inst->n_samples; i++) {
/* The entries in times_back[] should end up negative */
times_back[i] = UTI_DiffTimespecsToDouble(&inst->sample_times[get_runsbuf_index(inst, i)], ts);
}
}
/* ================================================== */
static void
find_best_sample_index(SST_Stats inst, double *times_back)
{
/* With the value of skew that has been computed, see which of the
samples offers the tightest bound on root distance */
double root_distance, best_root_distance;
double elapsed;
int i, j, best_index;
if (!inst->n_samples)
return;
best_index = -1;
best_root_distance = DBL_MAX;
for (i = 0; i < inst->n_samples; i++) {
j = get_buf_index(inst, i);
elapsed = -times_back[i];
assert(elapsed >= 0.0);
root_distance = inst->root_dispersions[j] + elapsed * inst->skew + 0.5 * inst->root_delays[j];
if (root_distance < best_root_distance) {
best_root_distance = root_distance;
best_index = i;
}
}
assert(best_index >= 0);
inst->best_single_sample = best_index;
}
/* ================================================== */
static void
find_min_delay_sample(SST_Stats inst)
{
int i, index;
inst->min_delay_sample = get_runsbuf_index(inst, -inst->runs_samples);
for (i = -inst->runs_samples + 1; i < inst->n_samples; i++) {
index = get_runsbuf_index(inst, i);
if (inst->peer_delays[index] < inst->peer_delays[inst->min_delay_sample])
inst->min_delay_sample = index;
}
}
/* ================================================== */
/* This function estimates asymmetry of network jitter on the path to the
source as a slope of offset against network delay in multiple linear
regression. If the asymmetry is significant and its sign doesn't change
frequently, the measured offsets (which are used later to estimate the
offset and frequency of the clock) are corrected to correspond to the
minimum network delay. This can significantly improve the accuracy and
stability of the estimated offset and frequency. */
static void
correct_asymmetry(SST_Stats inst, double *times_back, double *offsets)
{
double asymmetry, delays[MAX_SAMPLES * REGRESS_RUNS_RATIO];
int i, n;
/* Don't try to estimate the asymmetry with reference clocks */
if (!inst->ip_addr)
return;
n = inst->runs_samples + inst->n_samples;
for (i = 0; i < n; i++)
delays[i] = inst->peer_delays[get_runsbuf_index(inst, i - inst->runs_samples)] -
inst->peer_delays[inst->min_delay_sample];
/* Reset the counter when the regression fails or the sign changes */
if (!RGR_MultipleRegress(times_back, delays, offsets, n, &asymmetry) ||
asymmetry * inst->asymmetry_run < 0.0) {
inst->asymmetry_run = 0;
inst->asymmetry = 0.0;
return;
}
asymmetry = CLAMP(-MAX_ASYMMETRY, asymmetry, MAX_ASYMMETRY);
if (asymmetry <= -MIN_ASYMMETRY && inst->asymmetry_run > -MAX_ASYMMETRY_RUN)
inst->asymmetry_run--;
else if (asymmetry >= MIN_ASYMMETRY && inst->asymmetry_run < MAX_ASYMMETRY_RUN)
inst->asymmetry_run++;
if (abs(inst->asymmetry_run) < MIN_ASYMMETRY_RUN)
return;
/* Correct the offsets */
for (i = 0; i < n; i++)
offsets[i] -= asymmetry * delays[i];
inst->asymmetry = asymmetry;
}
/* ================================================== */
/* This defines the assumed ratio between the standard deviation of
the samples and the peer distance as measured from the round trip
time. E.g. a value of 4 means that we think the standard deviation
is four times the fluctuation of the peer distance */
#define SD_TO_DIST_RATIO 1.0
/* ================================================== */
/* This function runs the linear regression operation on the data. It
finds the set of most recent samples that give the tightest
confidence interval for the frequency, and truncates the register
down to that number of samples */
void
SST_DoNewRegression(SST_Stats inst)
{
double times_back[MAX_SAMPLES * REGRESS_RUNS_RATIO];
double offsets[MAX_SAMPLES * REGRESS_RUNS_RATIO];
double peer_distances[MAX_SAMPLES];
double weights[MAX_SAMPLES];
int degrees_of_freedom;
int best_start, times_back_start;
double est_intercept, est_slope, est_var, est_intercept_sd, est_slope_sd;
int i, j, nruns;
double min_distance, mean_distance;
double sd_weight, sd;
double old_skew, old_freq, stress;
convert_to_intervals(inst, times_back + inst->runs_samples);
if (inst->n_samples > 0) {
for (i = -inst->runs_samples; i < inst->n_samples; i++) {
offsets[i + inst->runs_samples] = inst->offsets[get_runsbuf_index(inst, i)];
}
for (i = 0, mean_distance = 0.0, min_distance = DBL_MAX; i < inst->n_samples; i++) {
j = get_buf_index(inst, i);
peer_distances[i] = 0.5 * inst->peer_delays[get_runsbuf_index(inst, i)] +
inst->peer_dispersions[j];
mean_distance += peer_distances[i];
if (peer_distances[i] < min_distance) {
min_distance = peer_distances[i];
}
}
mean_distance /= inst->n_samples;
/* And now, work out the weight vector */
sd = mean_distance - min_distance;
sd = CLAMP(MIN_WEIGHT_SD, sd, min_distance);
for (i=0; i<inst->n_samples; i++) {
sd_weight = 1.0 + SD_TO_DIST_RATIO * (peer_distances[i] - min_distance) / sd;
weights[i] = sd_weight * sd_weight;
}
}
correct_asymmetry(inst, times_back, offsets);
inst->regression_ok = RGR_FindBestRegression(times_back + inst->runs_samples,
offsets + inst->runs_samples, weights,
inst->n_samples, inst->runs_samples,
inst->min_samples,
&est_intercept, &est_slope, &est_var,
&est_intercept_sd, &est_slope_sd,
&best_start, &nruns, °rees_of_freedom);
if (inst->regression_ok) {
old_skew = inst->skew;
old_freq = inst->estimated_frequency;
inst->estimated_frequency = est_slope;
inst->skew = est_slope_sd * RGR_GetTCoef(degrees_of_freedom);
inst->estimated_offset = est_intercept;
inst->offset_time = inst->sample_times[inst->last_sample];
inst->estimated_offset_sd = est_intercept_sd;
inst->std_dev = sqrt(est_var);
inst->nruns = nruns;
inst->skew = CLAMP(MIN_SKEW, inst->skew, MAX_SKEW);
stress = fabs(old_freq - inst->estimated_frequency) / old_skew;
DEBUG_LOG(LOGF_SourceStats, "off=%e freq=%e skew=%e n=%d bs=%d runs=%d asym=%f arun=%d",
inst->estimated_offset, inst->estimated_frequency, inst->skew,
inst->n_samples, best_start, inst->nruns,
inst->asymmetry, inst->asymmetry_run);
if (logfileid != -1) {
LOG_FileWrite(logfileid, "%s %-15s %10.3e %10.3e %10.3e %10.3e %10.3e %7.1e %3d %3d %3d %5.2f",
UTI_TimeToLogForm(inst->offset_time.tv_sec),
inst->ip_addr ? UTI_IPToString(inst->ip_addr) : UTI_RefidToString(inst->refid),
inst->std_dev,
inst->estimated_offset, inst->estimated_offset_sd,
inst->estimated_frequency, inst->skew, stress,
inst->n_samples, best_start, inst->nruns,
inst->asymmetry);
}
times_back_start = inst->runs_samples + best_start;
prune_register(inst, best_start);
} else {
inst->estimated_frequency = 0.0;
inst->skew = WORST_CASE_FREQ_BOUND;
times_back_start = 0;
}
find_best_sample_index(inst, times_back + times_back_start);
}
/* ================================================== */
/* Return the assumed worst case range of values that this source's
frequency lies within. Frequency is defined as the amount of time
the local clock gains relative to the source per unit local clock
time. */
void
SST_GetFrequencyRange(SST_Stats inst,
double *lo, double *hi)
{
double freq, skew;
freq = inst->estimated_frequency;
skew = inst->skew;
*lo = freq - skew;
*hi = freq + skew;
/* This function is currently used only to determine the values of delta
and epsilon in the ntp_core module. Limit the skew to a reasonable maximum
to avoid failing the dispersion test too easily. */
if (skew > WORST_CASE_FREQ_BOUND) {
*lo = -WORST_CASE_FREQ_BOUND;
*hi = WORST_CASE_FREQ_BOUND;
}
}
/* ================================================== */
void
SST_GetSelectionData(SST_Stats inst, struct timespec *now,
int *stratum,
double *offset_lo_limit,
double *offset_hi_limit,
double *root_distance,
double *std_dev,
double *first_sample_ago,
double *last_sample_ago,
int *select_ok)
{
double offset, sample_elapsed;
int i, j;
if (!inst->n_samples) {
*select_ok = 0;
return;
}
i = get_runsbuf_index(inst, inst->best_single_sample);
j = get_buf_index(inst, inst->best_single_sample);
*stratum = inst->strata[get_buf_index(inst, inst->n_samples - 1)];
*std_dev = inst->std_dev;
sample_elapsed = UTI_DiffTimespecsToDouble(now, &inst->sample_times[i]);
offset = inst->offsets[i] + sample_elapsed * inst->estimated_frequency;
*root_distance = 0.5 * inst->root_delays[j] +
inst->root_dispersions[j] + sample_elapsed * inst->skew;
*offset_lo_limit = offset - *root_distance;
*offset_hi_limit = offset + *root_distance;
#if 0
double average_offset, elapsed;
int average_ok;
/* average_ok ignored for now */
elapsed = UTI_DiffTimespecsToDouble(now, &inst->offset_time);
average_offset = inst->estimated_offset + inst->estimated_frequency * elapsed;
if (fabs(average_offset - offset) <=
inst->peer_dispersions[j] + 0.5 * inst->peer_delays[i]) {
average_ok = 1;
} else {
average_ok = 0;
}
#endif
i = get_runsbuf_index(inst, 0);
*first_sample_ago = UTI_DiffTimespecsToDouble(now, &inst->sample_times[i]);
i = get_runsbuf_index(inst, inst->n_samples - 1);
*last_sample_ago = UTI_DiffTimespecsToDouble(now, &inst->sample_times[i]);
*select_ok = inst->regression_ok;
DEBUG_LOG(LOGF_SourceStats, "n=%d off=%f dist=%f sd=%f first_ago=%f last_ago=%f selok=%d",
inst->n_samples, offset, *root_distance, *std_dev,
*first_sample_ago, *last_sample_ago, *select_ok);
}
/* ================================================== */
void
SST_GetTrackingData(SST_Stats inst, struct timespec *ref_time,
double *average_offset, double *offset_sd,
double *frequency, double *skew,
double *root_delay, double *root_dispersion)
{
int i, j;
double elapsed_sample;
assert(inst->n_samples > 0);
i = get_runsbuf_index(inst, inst->best_single_sample);
j = get_buf_index(inst, inst->best_single_sample);
*ref_time = inst->offset_time;
*average_offset = inst->estimated_offset;
*offset_sd = inst->estimated_offset_sd;
*frequency = inst->estimated_frequency;
*skew = inst->skew;
*root_delay = inst->root_delays[j];
elapsed_sample = UTI_DiffTimespecsToDouble(&inst->offset_time, &inst->sample_times[i]);
*root_dispersion = inst->root_dispersions[j] + inst->skew * elapsed_sample;
DEBUG_LOG(LOGF_SourceStats, "n=%d freq=%f (%.3fppm) skew=%f (%.3fppm) avoff=%f offsd=%f disp=%f",
inst->n_samples, *frequency, 1.0e6* *frequency, *skew, 1.0e6* *skew, *average_offset, *offset_sd, *root_dispersion);
}
/* ================================================== */
void
SST_SlewSamples(SST_Stats inst, struct timespec *when, double dfreq, double doffset)
{
int m, i;
double delta_time;
struct timespec *sample, prev;
double prev_offset, prev_freq;
if (!inst->n_samples)
return;
for (m = -inst->runs_samples; m < inst->n_samples; m++) {
i = get_runsbuf_index(inst, m);
sample = &inst->sample_times[i];
prev = *sample;
UTI_AdjustTimespec(sample, when, sample, &delta_time, dfreq, doffset);
inst->offsets[i] += delta_time;
}
/* Update the regression estimates */
prev = inst->offset_time;
prev_offset = inst->estimated_offset;
prev_freq = inst->estimated_frequency;
UTI_AdjustTimespec(&inst->offset_time, when, &inst->offset_time,
&delta_time, dfreq, doffset);
inst->estimated_offset += delta_time;
inst->estimated_frequency = (inst->estimated_frequency - dfreq) / (1.0 - dfreq);
DEBUG_LOG(LOGF_SourceStats, "n=%d m=%d old_off_time=%s new=%s old_off=%f new_off=%f old_freq=%.3f new_freq=%.3f",
inst->n_samples, inst->runs_samples,
UTI_TimespecToString(&prev), UTI_TimespecToString(&inst->offset_time),
prev_offset, inst->estimated_offset,
1.0e6 * prev_freq, 1.0e6 * inst->estimated_frequency);
}
/* ================================================== */
void
SST_AddDispersion(SST_Stats inst, double dispersion)
{
int m, i;
for (m = 0; m < inst->n_samples; m++) {
i = get_buf_index(inst, m);
inst->root_dispersions[i] += dispersion;
inst->peer_dispersions[i] += dispersion;
}
}
/* ================================================== */
double
SST_PredictOffset(SST_Stats inst, struct timespec *when)
{
double elapsed;
if (inst->n_samples < 3) {
/* We don't have any useful statistics, and presumably the poll
interval is minimal. We can't do any useful prediction other
than use the latest sample or zero if we don't have any samples */
if (inst->n_samples > 0) {
return inst->offsets[inst->last_sample];
} else {
return 0.0;
}
} else {
elapsed = UTI_DiffTimespecsToDouble(when, &inst->offset_time);
return inst->estimated_offset + elapsed * inst->estimated_frequency;
}
}
/* ================================================== */
double
SST_MinRoundTripDelay(SST_Stats inst)
{
if (!inst->n_samples)
return DBL_MAX;
return inst->peer_delays[inst->min_delay_sample];
}
/* ================================================== */
int
SST_IsGoodSample(SST_Stats inst, double offset, double delay,
double max_delay_dev_ratio, double clock_error, struct timespec *when)
{
double elapsed, allowed_increase, delay_increase;
if (inst->n_samples < 3)
return 1;
elapsed = UTI_DiffTimespecsToDouble(when, &inst->offset_time);
/* Require that the ratio of the increase in delay from the minimum to the
standard deviation is less than max_delay_dev_ratio. In the allowed
increase in delay include also skew and clock_error. */
allowed_increase = inst->std_dev * max_delay_dev_ratio +
elapsed * (inst->skew + clock_error);
delay_increase = (delay - SST_MinRoundTripDelay(inst)) / 2.0;
if (delay_increase < allowed_increase)
return 1;
offset -= inst->estimated_offset + elapsed * inst->estimated_frequency;
/* Before we decide to drop the sample, make sure the difference between
measured offset and predicted offset is not significantly larger than
the increase in delay */
if (fabs(offset) - delay_increase > allowed_increase)
return 1;
DEBUG_LOG(LOGF_SourceStats, "Bad sample: offset=%f delay=%f incr_delay=%f allowed=%f",
offset, delay, allowed_increase, delay_increase);
return 0;
}
/* ================================================== */
/* This is used to save the register to a file, so that we can reload
it after restarting the daemon */
void
SST_SaveToFile(SST_Stats inst, FILE *out)
{
int m, i, j;
fprintf(out, "%d\n", inst->n_samples);
for(m = 0; m < inst->n_samples; m++) {
i = get_runsbuf_index(inst, m);
j = get_buf_index(inst, m);
fprintf(out,
#ifdef HAVE_LONG_TIME_T
"%08"PRIx64" %08lx %.6e %.6e %.6e %.6e %.6e %.6e %.6e %d\n",
(uint64_t)inst->sample_times[i].tv_sec,
#else
"%08lx %08lx %.6e %.6e %.6e %.6e %.6e %.6e %.6e %d\n",
(unsigned long)inst->sample_times[i].tv_sec,
#endif
(unsigned long)inst->sample_times[i].tv_nsec / 1000,
inst->offsets[i],
inst->orig_offsets[j],
inst->peer_delays[i],
inst->peer_dispersions[j],
inst->root_delays[j],
inst->root_dispersions[j],
1.0, /* used to be inst->weights[i] */
inst->strata[j]);
}
fprintf(out, "%d\n", inst->asymmetry_run);
}
/* ================================================== */
/* This is used to reload samples from a file */
int
SST_LoadFromFile(SST_Stats inst, FILE *in)
{
#ifdef HAVE_LONG_TIME_T
uint64_t sec;
#else
unsigned long sec;
#endif
unsigned long usec;
int i;
char line[1024];
double weight;
assert(!inst->n_samples);
if (fgets(line, sizeof(line), in) &&
sscanf(line, "%d", &inst->n_samples) == 1 &&
inst->n_samples >= 0 && inst->n_samples <= MAX_SAMPLES) {
for (i=0; i<inst->n_samples; i++) {
if (!fgets(line, sizeof(line), in) ||
(sscanf(line,
#ifdef HAVE_LONG_TIME_T
"%"SCNx64"%lx%lf%lf%lf%lf%lf%lf%lf%d\n",
#else
"%lx%lx%lf%lf%lf%lf%lf%lf%lf%d\n",
#endif
&(sec), &(usec),
&(inst->offsets[i]),
&(inst->orig_offsets[i]),
&(inst->peer_delays[i]),
&(inst->peer_dispersions[i]),
&(inst->root_delays[i]),
&(inst->root_dispersions[i]),
&weight, /* not used anymore */
&(inst->strata[i])) != 10)) {
/* This is the branch taken if the read FAILED */
inst->n_samples = 0; /* Load abandoned if any sign of corruption */
return 0;
} else {
/* This is the branch taken if the read is SUCCESSFUL */
inst->sample_times[i].tv_sec = sec;
inst->sample_times[i].tv_nsec = 1000 * usec;
UTI_NormaliseTimespec(&inst->sample_times[i]);
}
}
/* This field was not saved in older versions */
if (!fgets(line, sizeof(line), in) || sscanf(line, "%d\n", &inst->asymmetry_run) != 1)
inst->asymmetry_run = 0;
} else {
inst->n_samples = 0; /* Load abandoned if any sign of corruption */
return 0;
}
if (!inst->n_samples)
return 1;
inst->last_sample = inst->n_samples - 1;
inst->runs_samples = 0;
find_min_delay_sample(inst);
SST_DoNewRegression(inst);
return 1;
}
/* ================================================== */
void
SST_DoSourceReport(SST_Stats inst, RPT_SourceReport *report, struct timespec *now)
{
int i, j;
struct timespec last_sample_time;
if (inst->n_samples > 0) {
i = get_runsbuf_index(inst, inst->n_samples - 1);
j = get_buf_index(inst, inst->n_samples - 1);
report->orig_latest_meas = inst->orig_offsets[j];
report->latest_meas = inst->offsets[i];
report->latest_meas_err = 0.5*inst->root_delays[j] + inst->root_dispersions[j];
report->stratum = inst->strata[j];
/* Align the sample time to reduce the leak of the receive timestamp */
last_sample_time = inst->sample_times[i];
last_sample_time.tv_nsec = 0;
report->latest_meas_ago = UTI_DiffTimespecsToDouble(now, &last_sample_time);
} else {
report->latest_meas_ago = (uint32_t)-1;
report->orig_latest_meas = 0;
report->latest_meas = 0;
report->latest_meas_err = 0;
report->stratum = 0;
}
}
/* ================================================== */
int
SST_Samples(SST_Stats inst)
{
return inst->n_samples;
}
/* ================================================== */
void
SST_DoSourcestatsReport(SST_Stats inst, RPT_SourcestatsReport *report, struct timespec *now)
{
double dspan;
double elapsed, sample_elapsed;
int li, lj, bi, bj;
report->n_samples = inst->n_samples;
report->n_runs = inst->nruns;
if (inst->n_samples > 1) {
li = get_runsbuf_index(inst, inst->n_samples - 1);
lj = get_buf_index(inst, inst->n_samples - 1);
dspan = UTI_DiffTimespecsToDouble(&inst->sample_times[li],
&inst->sample_times[get_runsbuf_index(inst, 0)]);
report->span_seconds = (unsigned long) (dspan + 0.5);
if (inst->n_samples > 3) {
elapsed = UTI_DiffTimespecsToDouble(now, &inst->offset_time);
bi = get_runsbuf_index(inst, inst->best_single_sample);
bj = get_buf_index(inst, inst->best_single_sample);
sample_elapsed = UTI_DiffTimespecsToDouble(now, &inst->sample_times[bi]);
report->est_offset = inst->estimated_offset + elapsed * inst->estimated_frequency;
report->est_offset_err = (inst->estimated_offset_sd +
sample_elapsed * inst->skew +
(0.5*inst->root_delays[bj] + inst->root_dispersions[bj]));
} else {
report->est_offset = inst->offsets[li];
report->est_offset_err = 0.5*inst->root_delays[lj] + inst->root_dispersions[lj];
}
} else {
report->span_seconds = 0;
report->est_offset = 0;
report->est_offset_err = 0;
}
report->resid_freq_ppm = 1.0e6 * inst->estimated_frequency;
report->skew_ppm = 1.0e6 * inst->skew;
report->sd = inst->std_dev;
}
/* ================================================== */
double
SST_GetJitterAsymmetry(SST_Stats inst)
{
return inst->asymmetry;
}
/* ================================================== */
|