1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
/*
chronyd/chronyc - Programs for keeping computer clocks accurate.
**********************************************************************
* Copyright (C) Miroslav Lichvar 2009-2011, 2014, 2016, 2018
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
**********************************************************************
=======================================================================
Routines implementing a median sample filter.
*/
#include "config.h"
#include "local.h"
#include "logging.h"
#include "memory.h"
#include "regress.h"
#include "samplefilt.h"
#include "util.h"
#define MIN_SAMPLES 1
#define MAX_SAMPLES 256
struct SPF_Instance_Record {
int min_samples;
int max_samples;
int index;
int used;
int last;
int avg_var_n;
double avg_var;
double max_var;
double combine_ratio;
NTP_Sample *samples;
int *selected;
double *x_data;
double *y_data;
double *w_data;
};
/* ================================================== */
SPF_Instance
SPF_CreateInstance(int min_samples, int max_samples, double max_dispersion, double combine_ratio)
{
SPF_Instance filter;
filter = MallocNew(struct SPF_Instance_Record);
min_samples = CLAMP(MIN_SAMPLES, min_samples, MAX_SAMPLES);
max_samples = CLAMP(MIN_SAMPLES, max_samples, MAX_SAMPLES);
max_samples = MAX(min_samples, max_samples);
combine_ratio = CLAMP(0.0, combine_ratio, 1.0);
filter->min_samples = min_samples;
filter->max_samples = max_samples;
filter->index = -1;
filter->used = 0;
filter->last = -1;
/* Set the first estimate to the system precision */
filter->avg_var_n = 0;
filter->avg_var = SQUARE(LCL_GetSysPrecisionAsQuantum());
filter->max_var = SQUARE(max_dispersion);
filter->combine_ratio = combine_ratio;
filter->samples = MallocArray(NTP_Sample, filter->max_samples);
filter->selected = MallocArray(int, filter->max_samples);
filter->x_data = MallocArray(double, filter->max_samples);
filter->y_data = MallocArray(double, filter->max_samples);
filter->w_data = MallocArray(double, filter->max_samples);
return filter;
}
/* ================================================== */
void
SPF_DestroyInstance(SPF_Instance filter)
{
Free(filter->samples);
Free(filter->selected);
Free(filter->x_data);
Free(filter->y_data);
Free(filter->w_data);
Free(filter);
}
/* ================================================== */
/* Check that samples times are strictly increasing */
static int
check_sample(SPF_Instance filter, NTP_Sample *sample)
{
if (filter->used <= 0)
return 1;
if (UTI_CompareTimespecs(&filter->samples[filter->last].time, &sample->time) >= 0) {
DEBUG_LOG("filter non-increasing sample time %s", UTI_TimespecToString(&sample->time));
return 0;
}
return 1;
}
/* ================================================== */
int
SPF_AccumulateSample(SPF_Instance filter, NTP_Sample *sample)
{
if (!check_sample(filter, sample))
return 0;
filter->index++;
filter->index %= filter->max_samples;
filter->last = filter->index;
if (filter->used < filter->max_samples)
filter->used++;
filter->samples[filter->index] = *sample;
DEBUG_LOG("filter sample %d t=%s offset=%.9f peer_disp=%.9f",
filter->index, UTI_TimespecToString(&sample->time),
sample->offset, sample->peer_dispersion);
return 1;
}
/* ================================================== */
int
SPF_GetLastSample(SPF_Instance filter, NTP_Sample *sample)
{
if (filter->last < 0)
return 0;
*sample = filter->samples[filter->last];
return 1;
}
/* ================================================== */
int
SPF_GetNumberOfSamples(SPF_Instance filter)
{
return filter->used;
}
/* ================================================== */
double
SPF_GetAvgSampleDispersion(SPF_Instance filter)
{
return sqrt(filter->avg_var);
}
/* ================================================== */
void
SPF_DropSamples(SPF_Instance filter)
{
filter->index = -1;
filter->used = 0;
}
/* ================================================== */
static const NTP_Sample *tmp_sort_samples;
static int
compare_samples(const void *a, const void *b)
{
const NTP_Sample *s1, *s2;
s1 = &tmp_sort_samples[*(int *)a];
s2 = &tmp_sort_samples[*(int *)b];
if (s1->offset < s2->offset)
return -1;
else if (s1->offset > s2->offset)
return 1;
return 0;
}
/* ================================================== */
static int
select_samples(SPF_Instance filter)
{
int i, j, k, o, from, to, *selected;
double min_dispersion;
if (filter->used < filter->min_samples)
return 0;
selected = filter->selected;
/* With 4 or more samples, select those that have peer dispersion smaller
than 1.5x of the minimum dispersion */
if (filter->used > 4) {
for (i = 1, min_dispersion = filter->samples[0].peer_dispersion; i < filter->used; i++) {
if (min_dispersion > filter->samples[i].peer_dispersion)
min_dispersion = filter->samples[i].peer_dispersion;
}
for (i = j = 0; i < filter->used; i++) {
if (filter->samples[i].peer_dispersion <= 1.5 * min_dispersion)
selected[j++] = i;
}
} else {
j = 0;
}
if (j < 4) {
/* Select all samples */
for (j = 0; j < filter->used; j++)
selected[j] = j;
}
/* And sort their indices by offset */
tmp_sort_samples = filter->samples;
qsort(selected, j, sizeof (int), compare_samples);
/* Select samples closest to the median */
if (j > 2) {
from = j * (1.0 - filter->combine_ratio) / 2.0;
from = CLAMP(1, from, (j - 1) / 2);
} else {
from = 0;
}
to = j - from;
/* Mark unused samples and sort the rest by their time */
o = filter->used - filter->index - 1;
for (i = 0; i < from; i++)
selected[i] = -1;
for (; i < to; i++)
selected[i] = (selected[i] + o) % filter->used;
for (; i < filter->used; i++)
selected[i] = -1;
for (i = from; i < to; i++) {
j = selected[i];
selected[i] = -1;
while (j != -1 && selected[j] != j) {
k = selected[j];
selected[j] = j;
j = k;
}
}
for (i = j = 0, k = -1; i < filter->used; i++) {
if (selected[i] != -1)
selected[j++] = (selected[i] + filter->used - o) % filter->used;
}
assert(j > 0 && j <= filter->max_samples);
return j;
}
/* ================================================== */
static int
combine_selected_samples(SPF_Instance filter, int n, NTP_Sample *result)
{
double mean_peer_dispersion, mean_root_dispersion, mean_peer_delay, mean_root_delay;
double mean_x, mean_y, disp, var, prev_avg_var;
NTP_Sample *sample, *last_sample;
int i, dof;
last_sample = &filter->samples[filter->selected[n - 1]];
/* Prepare data */
for (i = 0; i < n; i++) {
sample = &filter->samples[filter->selected[i]];
filter->x_data[i] = UTI_DiffTimespecsToDouble(&sample->time, &last_sample->time);
filter->y_data[i] = sample->offset;
filter->w_data[i] = sample->peer_dispersion;
}
/* Calculate mean offset and interval since the last sample */
for (i = 0, mean_x = mean_y = 0.0; i < n; i++) {
mean_x += filter->x_data[i];
mean_y += filter->y_data[i];
}
mean_x /= n;
mean_y /= n;
if (n >= 4) {
double b0, b1, s2, sb0, sb1;
/* Set y axis to the mean sample time */
for (i = 0; i < n; i++)
filter->x_data[i] -= mean_x;
/* Make a linear fit and use the estimated standard deviation of the
intercept as dispersion */
RGR_WeightedRegression(filter->x_data, filter->y_data, filter->w_data, n,
&b0, &b1, &s2, &sb0, &sb1);
var = s2;
disp = sb0;
dof = n - 2;
} else if (n >= 2) {
for (i = 0, disp = 0.0; i < n; i++)
disp += (filter->y_data[i] - mean_y) * (filter->y_data[i] - mean_y);
var = disp / (n - 1);
disp = sqrt(var);
dof = n - 1;
} else {
var = filter->avg_var;
disp = sqrt(var);
dof = 1;
}
/* Avoid working with zero dispersion */
if (var < 1e-20) {
var = 1e-20;
disp = sqrt(var);
}
/* Drop the sample if the variance is larger than the maximum */
if (filter->max_var > 0.0 && var > filter->max_var) {
DEBUG_LOG("filter dispersion too large disp=%.9f max=%.9f",
sqrt(var), sqrt(filter->max_var));
return 0;
}
prev_avg_var = filter->avg_var;
/* Update the exponential moving average of the variance */
if (filter->avg_var_n > 50) {
filter->avg_var += dof / (dof + 50.0) * (var - filter->avg_var);
} else {
filter->avg_var = (filter->avg_var * filter->avg_var_n + var * dof) /
(dof + filter->avg_var_n);
if (filter->avg_var_n == 0)
prev_avg_var = filter->avg_var;
filter->avg_var_n += dof;
}
/* Use the long-term average of variance instead of the estimated value
unless it is significantly smaller in order to reduce the noise in
sourcestats weights */
if (var * dof / RGR_GetChi2Coef(dof) < prev_avg_var)
disp = sqrt(filter->avg_var) * disp / sqrt(var);
mean_peer_dispersion = mean_root_dispersion = mean_peer_delay = mean_root_delay = 0.0;
for (i = 0; i < n; i++) {
sample = &filter->samples[filter->selected[i]];
mean_peer_dispersion += sample->peer_dispersion;
mean_root_dispersion += sample->root_dispersion;
mean_peer_delay += sample->peer_delay;
mean_root_delay += sample->root_delay;
}
mean_peer_dispersion /= n;
mean_root_dispersion /= n;
mean_peer_delay /= n;
mean_root_delay /= n;
UTI_AddDoubleToTimespec(&last_sample->time, mean_x, &result->time);
result->offset = mean_y;
result->peer_dispersion = MAX(disp, mean_peer_dispersion);
result->root_dispersion = MAX(disp, mean_root_dispersion);
result->peer_delay = mean_peer_delay;
result->root_delay = mean_root_delay;
result->stratum = last_sample->stratum;
result->leap = last_sample->leap;
return 1;
}
/* ================================================== */
int
SPF_GetFilteredSample(SPF_Instance filter, NTP_Sample *sample)
{
int n;
n = select_samples(filter);
if (n < 1)
return 0;
if (!combine_selected_samples(filter, n, sample))
return 0;
SPF_DropSamples(filter);
return 1;
}
/* ================================================== */
void
SPF_SlewSamples(SPF_Instance filter, struct timespec *when, double dfreq, double doffset)
{
int i, first, last;
double delta_time;
if (filter->last < 0)
return;
/* Always slew the last sample as it may be returned even if no new
samples were accumulated */
if (filter->used > 0) {
first = 0;
last = filter->used - 1;
} else {
first = last = filter->last;
}
for (i = first; i <= last; i++) {
UTI_AdjustTimespec(&filter->samples[i].time, when, &filter->samples[i].time,
&delta_time, dfreq, doffset);
filter->samples[i].offset -= delta_time;
}
}
/* ================================================== */
void
SPF_AddDispersion(SPF_Instance filter, double dispersion)
{
int i;
for (i = 0; i < filter->used; i++) {
filter->samples[i].peer_dispersion += dispersion;
filter->samples[i].root_dispersion += dispersion;
}
}
|