1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
|
/*
chronyd/chronyc - Programs for keeping computer clocks accurate.
**********************************************************************
* Copyright (C) Miroslav Lichvar 2015
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
**********************************************************************
=======================================================================
Routines implementing time smoothing.
*/
#include "config.h"
#include "sysincl.h"
#include "conf.h"
#include "local.h"
#include "logging.h"
#include "reference.h"
#include "smooth.h"
#include "util.h"
/*
Time smoothing determines an offset that needs to be applied to the cooked
time to make it smooth for external observers. Observed offset and frequency
change slowly and there are no discontinuities. This can be used on an NTP
server to make it easier for the clients to track the time and keep their
clocks close together even when large offset or frequency corrections are
applied to the server's clock (e.g. after being offline for longer time).
Accumulated offset and frequency are smoothed out in three stages. In the
first stage, the frequency is changed at a constant rate (wander) up to a
maximum, in the second stage the frequency stays at the maximum for as long
as needed and in the third stage the frequency is brought back to zero.
|
max_freq +-------/--------\-------------
| /| |\
freq | / | | \
| / | | \
| / | | \
0 +--/----+--------+----\--------
| / | | | time
|/ | | |
stage 1 2 3
Integral of this function is the smoothed out offset. It's a continuous
piecewise polynomial with two quadratic parts and one linear.
*/
struct stage {
double wander;
double length;
};
#define NUM_STAGES 3
static struct stage stages[NUM_STAGES];
/* Enabled/disabled smoothing */
static int enabled;
/* Enabled/disabled mode where only leap seconds are smoothed out and normal
offset/frequency changes are ignored */
static int leap_only_mode;
/* Maximum skew/max_wander ratio to start updating offset and frequency */
#define UNLOCK_SKEW_WANDER_RATIO 10000
static int locked;
/* Maximum wander and frequency offset */
static double max_wander;
static double max_freq;
/* Frequency offset, time offset and the time of the last smoothing update */
static double smooth_freq;
static double smooth_offset;
static struct timespec last_update;
static void
get_smoothing(struct timespec *now, double *poffset, double *pfreq,
double *pwander)
{
double elapsed, length, offset, freq, wander;
int i;
elapsed = UTI_DiffTimespecsToDouble(now, &last_update);
offset = smooth_offset;
freq = smooth_freq;
wander = 0.0;
for (i = 0; i < NUM_STAGES; i++) {
if (elapsed <= 0.0)
break;
length = stages[i].length;
if (length >= elapsed)
length = elapsed;
wander = stages[i].wander;
offset -= length * (2.0 * freq + wander * length) / 2.0;
freq += wander * length;
elapsed -= length;
}
if (elapsed > 0.0) {
wander = 0.0;
offset -= elapsed * freq;
}
*poffset = offset;
*pfreq = freq;
if (pwander)
*pwander = wander;
}
static void
update_stages(void)
{
double s1, s2, s, l1, l2, l3, lc, f, f2, l1t[2], l3t[2], err[2];
int i, dir;
/* Prepare the three stages so that the integral of the frequency offset
is equal to the offset that should be smoothed out */
s1 = smooth_offset / max_wander;
s2 = SQUARE(smooth_freq) / (2.0 * SQUARE(max_wander));
/* Calculate the lengths of the 1st and 3rd stage assuming there is no
frequency limit. The direction of the 1st stage is selected so that
the lengths will not be negative. With extremely small offsets both
directions may give a negative length due to numerical errors, so select
the one which gives a smaller error. */
for (i = 0, dir = -1; i <= 1; i++, dir += 2) {
err[i] = 0.0;
s = dir * s1 + s2;
if (s < 0.0) {
err[i] += -s;
s = 0.0;
}
l3t[i] = sqrt(s);
l1t[i] = l3t[i] - dir * smooth_freq / max_wander;
if (l1t[i] < 0.0) {
err[i] += l1t[i] * l1t[i];
l1t[i] = 0.0;
}
}
if (err[0] < err[1]) {
l1 = l1t[0];
l3 = l3t[0];
dir = -1;
} else {
l1 = l1t[1];
l3 = l3t[1];
dir = 1;
}
l2 = 0.0;
/* If the limit was reached, shorten 1st+3rd stages and set a 2nd stage */
f = dir * smooth_freq + l1 * max_wander - max_freq;
if (f > 0.0) {
lc = f / max_wander;
/* No 1st stage if the frequency is already above the maximum */
if (lc > l1) {
lc = l1;
f2 = dir * smooth_freq;
} else {
f2 = max_freq;
}
l2 = lc * (2.0 + f / f2);
l1 -= lc;
l3 -= lc;
}
stages[0].wander = dir * max_wander;
stages[0].length = l1;
stages[1].wander = 0.0;
stages[1].length = l2;
stages[2].wander = -dir * max_wander;
stages[2].length = l3;
for (i = 0; i < NUM_STAGES; i++) {
DEBUG_LOG("Smooth stage %d wander %e length %f",
i + 1, stages[i].wander, stages[i].length);
}
}
static void
update_smoothing(struct timespec *now, double offset, double freq)
{
/* Don't accept offset/frequency until the clock has stabilized */
if (locked) {
if (REF_GetSkew() / max_wander < UNLOCK_SKEW_WANDER_RATIO || leap_only_mode)
SMT_Activate(now);
return;
}
get_smoothing(now, &smooth_offset, &smooth_freq, NULL);
smooth_offset += offset;
smooth_freq = (smooth_freq - freq) / (1.0 - freq);
last_update = *now;
update_stages();
DEBUG_LOG("Smooth offset %e freq %e", smooth_offset, smooth_freq);
}
static void
handle_slew(struct timespec *raw, struct timespec *cooked, double dfreq,
double doffset, LCL_ChangeType change_type, void *anything)
{
double delta;
if (change_type == LCL_ChangeAdjust) {
if (leap_only_mode)
update_smoothing(cooked, 0.0, 0.0);
else
update_smoothing(cooked, doffset, dfreq);
}
if (!UTI_IsZeroTimespec(&last_update))
UTI_AdjustTimespec(&last_update, cooked, &last_update, &delta, dfreq, doffset);
}
void SMT_Initialise(void)
{
CNF_GetSmooth(&max_freq, &max_wander, &leap_only_mode);
if (max_freq <= 0.0 || max_wander <= 0.0) {
enabled = 0;
return;
}
enabled = 1;
locked = 1;
/* Convert from ppm */
max_freq *= 1e-6;
max_wander *= 1e-6;
UTI_ZeroTimespec(&last_update);
LCL_AddParameterChangeHandler(handle_slew, NULL);
}
void SMT_Finalise(void)
{
}
int SMT_IsEnabled(void)
{
return enabled;
}
double
SMT_GetOffset(struct timespec *now)
{
double offset, freq;
if (!enabled)
return 0.0;
get_smoothing(now, &offset, &freq, NULL);
return offset;
}
void
SMT_Activate(struct timespec *now)
{
if (!enabled || !locked)
return;
LOG(LOGS_INFO, "Time smoothing activated%s", leap_only_mode ?
" (leap seconds only)" : "");
locked = 0;
last_update = *now;
}
void
SMT_Reset(struct timespec *now)
{
int i;
if (!enabled)
return;
smooth_offset = 0.0;
smooth_freq = 0.0;
last_update = *now;
for (i = 0; i < NUM_STAGES; i++)
stages[i].wander = stages[i].length = 0.0;
}
void
SMT_Leap(struct timespec *now, int leap)
{
/* When the leap-only mode is disabled, the leap second will be accumulated
in handle_slew() as a normal offset */
if (!enabled || !leap_only_mode)
return;
update_smoothing(now, leap, 0.0);
}
int
SMT_GetSmoothingReport(RPT_SmoothingReport *report, struct timespec *now)
{
double length, elapsed;
int i;
if (!enabled)
return 0;
report->active = !locked;
report->leap_only = leap_only_mode;
get_smoothing(now, &report->offset, &report->freq_ppm, &report->wander_ppm);
/* Convert to ppm and negate (positive values mean faster/speeding up) */
report->freq_ppm *= -1.0e6;
report->wander_ppm *= -1.0e6;
elapsed = UTI_DiffTimespecsToDouble(now, &last_update);
if (!locked && elapsed >= 0.0) {
for (i = 0, length = 0.0; i < NUM_STAGES; i++)
length += stages[i].length;
report->last_update_ago = elapsed;
report->remaining_time = elapsed < length ? length - elapsed : 0.0;
} else {
report->last_update_ago = 0.0;
report->remaining_time = 0.0;
}
return 1;
}
|