File: curve_editor2d.cpp

package info (click to toggle)
cimg 2.9.4%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 23,884 kB
  • sloc: cpp: 114,703; ansic: 78,987; javascript: 9,088; makefile: 604; sh: 135; python: 37
file content (356 lines) | stat: -rw-r--r-- 13,699 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
/*
 #
 #  File        : curve_editor2d.cpp
 #                ( C++ source file )
 #
 #  Description : A simple user interface to construct 2D spline curves.
 #                This file is a part of the CImg Library project.
 #                ( http://cimg.eu )
 #
 #  Copyright   : David Tschumperlé
 #                ( http://tschumperle.users.greyc.fr/ )
 #                Antonio Albiol Colomer
 #                ( http://personales.upv.es/~aalbiol/index-english.html )
 #
 #  License     : CeCILL v2.0
 #                ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
 #
 #  This software is governed by the CeCILL  license under French law and
 #  abiding by the rules of distribution of free software.  You can  use,
 #  modify and/ or redistribute the software under the terms of the CeCILL
 #  license as circulated by CEA, CNRS and INRIA at the following URL
 #  "http://www.cecill.info".
 #
 #  As a counterpart to the access to the source code and  rights to copy,
 #  modify and redistribute granted by the license, users are provided only
 #  with a limited warranty  and the software's author,  the holder of the
 #  economic rights,  and the successive licensors  have only  limited
 #  liability.
 #
 #  In this respect, the user's attention is drawn to the risks associated
 #  with loading,  using,  modifying and/or developing or reproducing the
 #  software by the user in light of its specific status of free software,
 #  that may mean  that it is complicated to manipulate,  and  that  also
 #  therefore means  that it is reserved for developers  and  experienced
 #  professionals having in-depth computer knowledge. Users are therefore
 #  encouraged to load and test the software's suitability as regards their
 #  requirements in conditions enabling the security of their systems and/or
 #  data to be ensured and,  more generally, to use and operate it in the
 #  same conditions as regards security.
 #
 #  The fact that you are presently reading this means that you have had
 #  knowledge of the CeCILL license and that you accept its terms.
 #
*/

#include "CImg.h"
using namespace cimg_library;
#undef min
#undef max

// Compute distance from a point to a segment.
//---------------------------------------------
float dist_segment(const float x, const float y, const float x1, const float y1, const float x2, const float y2) {
  const float
    dx = x2 - x1,
    dy = y2 - y1,
    long_segment = (float)std::sqrt(dx*dx + dy*dy);
  if (long_segment==0) { const float ddx = x - x1, ddy = y - y1; return (float)std::sqrt(ddx*ddx + ddy*ddy); }
  const float
    unitx = dx/long_segment,
    unity = dy/long_segment,
    vx = x - x1,
    vy = y - y1,
    long_proy = vx*unitx + vy*unity,
    proyx = x1 + long_proy*unitx,
    proyy = y1 + long_proy*unity;
  if (long_proy>long_segment) { const float ddx = x - x2, ddy = y - y2; return std::sqrt(ddx*ddx + ddy*ddy); }
  else if (long_proy<0) { const float ddx = x - x1, ddy = y - y1; return std::sqrt(ddx*ddx + ddy*ddy); }
  const float ddx = x - proyx, ddy = y - proyy;
  return std::sqrt(ddx*ddx + ddy*ddy);
}

// Main procedure
//---------------
int main(int argc, char **argv) {

  // Read command line parameters
  //-----------------------------
  cimg_usage("2D Spline Curve Editor");
  const char *file_i = cimg_option("-i",(char*)0,"Input image");
  const float contrast = cimg_option("-contrast",0.6f,"Image contrast");
  const char *file_ip = cimg_option("-ip",(char*)0,"Input control points");
  const char *file_oc = cimg_option("-oc",(char*)0,"Output curve points");
  const char *file_op = cimg_option("-op",(char*)0,"Output control points");
  const char *file_od = cimg_option("-od",(char*)0,"Output distance function");
  bool interp = cimg_option("-poly",true,"Use polynomial interpolation");
  bool closed = cimg_option("-closed",true,"Closed curve");
  bool show_tangents = cimg_option("-tangents",false,"Show tangents");
  bool show_points = cimg_option("-points",true,"Show control points");
  bool show_outline = cimg_option("-outline",true,"Show polygon outline");
  bool show_indices = cimg_option("-indices",true,"Show points indices");
  bool show_coordinates = cimg_option("-coords",false,"Show points coordinates");
  const float precision = cimg_option("-prec",0.05f,"Precision of curve discretization");

  // Init image data
  //-----------------
  const unsigned char yellow[] = { 255,255,0 }, white[] = { 255,255,255 }, green[] = { 0,255,0 },
                      blue[] = { 120,200,255 }, purple[] = { 255,100,255 }, black[] = { 0,0,0 };
  CImg<unsigned char> img0, img, help_img;
  if (file_i) {
    std::fprintf(stderr,"\n - Load input image '%s' : ",cimg::basename(file_i));
    img0 = CImg<>(file_i).normalize(0,255.0f*contrast);
    std::fprintf(stderr,"Size = %dx%dx%dx%d \n",img0.width(),img0.height(),img0.depth(),img0.spectrum());
    img0.resize(-100,-100,1,3);
  }
  else {
    std::fprintf(stderr,"\n - No input image specified, use default 512x512 image.\n");
    img0.assign(512,512,1,3,0).draw_grid(32,32,0,0,false,false,green,0.4f,0xCCCCCCCC,0xCCCCCCCC);
  }

  help_img.assign(220,210,1,3,0).
    draw_text(5,5,
              "------------------------------------------\n"
              "2D Curve Editor\n"
              "------------------------------------------\n"
              "Left button : Create or move control point\n"
              "Right button : Delete control point\n"
              "Spacebar : Switch interpolation\n"
              "Key 'C' : Switch open/closed mode\n"
              "Key 'T' : Show/hide tangents\n"
              "Key 'P' : Show/hide control points\n"
              "Key 'O' : Show/hide polygon outline\n"
              "Key 'N' : Show/hide points indices\n"
              "Key 'X' : Show/hide points coordinates\n"
              "Key 'H' : Show/hide this help\n"
              "Key 'S' : Save control points\n"
              "Key 'R' : Reset curve\n",
              green);
  CImgDisplay disp(img0,"2D Curve Editor",0);
  CImgList<float> points, curve;
  bool moving = false, help = !file_i;

  if (file_ip) {
    std::fprintf(stderr," - Load input control points '%s' : ",cimg::basename(file_ip));
    points = CImg<>(file_ip).transpose()<'x';
    std::fprintf(stderr," %u points\n",points.size());
  }

  // Enter interactive loop
  //------------------------
  while (!disp.is_closed() && !disp.is_keyESC() && !disp.is_keyQ()) {

    // Handle mouse manipulation
    //---------------------------
    const unsigned int button = disp.button();
    const float
      mx = disp.mouse_x()*(float)img0.width()/disp.width(),
      my = disp.mouse_y()*(float)img0.height()/disp.height();

    if (points && button && mx>=0 && my>=0) {

      // Find nearest point and nearest segment
      float dmin_pt = cimg::type<float>::max(), dmin_seg = dmin_pt;
      unsigned int p_pt = 0, p_seg = 0;
      cimglist_for(points,p) {
        const unsigned int
          pnext = closed?(p + 1)%points.size():(p + 1<(int)points.size()?p + 1:p);
        const float
          xp = points(p,0),
          yp = points(p,1);
        const float
          d_pt  = (xp - mx)*(xp - mx) + (yp - my)*(yp - my),
	  d_seg = dist_segment(mx,my,xp,yp,points(pnext,0),points(pnext,1));
        if (d_pt<dmin_pt)   { dmin_pt = d_pt; p_pt = p; }
        if (d_seg<dmin_seg) { dmin_seg = d_seg; p_seg = p; }
      }

      // Handle button
      if (button&1) {
        if (dmin_pt<100 || moving) { points(p_pt,0) = mx; points(p_pt,1) = my; }
        else points.insert(CImg<>::vector(mx,my),p_seg + 1);
        moving = true;
      }
      if (button&2 && dmin_pt<100) {
        if (points.size()>3) points.remove(p_pt);
        disp.set_button();
      }
    }
    if (!button) moving = false;

    if (disp.key()) {
      switch (disp.key()) {
      case cimg::keySPACE : interp = !interp; break;
      case cimg::keyC : closed = !closed; break;
      case cimg::keyT : show_tangents = !show_tangents; break;
      case cimg::keyP : show_points = !show_points; break;
      case cimg::keyO : show_outline = !show_outline; break;
      case cimg::keyN : show_indices = !show_indices; break;
      case cimg::keyX : show_coordinates = !show_coordinates; break;
      case cimg::keyR : points.assign(); break;
      case cimg::keyH : help = !help; break;
      case cimg::keyS : {
        const char *filename = file_op?file_op:"curve_points.dlm";
        std::fprintf(stderr," - Save control points in '%s'\n",filename);
        (points>'x').transpose().save(filename);
      } break;
      }
      disp.set_key();
    }

    // Init list of points if empty
    //------------------------------
    if (!points) {
      const float
        x0 = img0.width()/4.0f,
        y0 = img0.height()/4.0f,
        x1 = img0.width() - x0,
        y1 = img0.height() - y0;
      points.insert(CImg<>::vector(x0,y0)).
        insert(CImg<>::vector(x1,y0)).
        insert(CImg<>::vector(x1,y1)).
        insert(CImg<>::vector(x0,y1));
    }

    // Estimate curve tangents
    //-------------------------
    CImg<> tangents(points.size(),2);
    cimglist_for(points,p) {
      const unsigned int
        p0 = closed?(p + points.size() - 1)%points.size():(p?p - 1:0),
        p1 = closed?(p + 1)%points.size():(p + 1<(int)points.size()?p + 1:p);
      const float
        x  = points(p,0),
        y  = points(p,1),
        x0 = points(p0,0),
        y0 = points(p0,1),
        x1 = points(p1,0),
        y1 = points(p1,1),
        u0 = x - x0,
        v0 = y - y0,
        n0 = 1e-8f + (float)std::sqrt(u0*u0 + v0*v0),
        u1 = x1 - x,
        v1 = y1 - y,
        n1 = 1e-8f + (float)std::sqrt(u1*u1 + v1*v1),
        u = u0/n0 + u1/n1,
        v = v0/n0 + v1/n1,
        n = 1e-8f + (float)std::sqrt(u*u + v*v),
        fact = 0.5f*(n0 + n1);
      tangents(p,0) = fact*u/n;
      tangents(p,1) = fact*v/n;
    }

    // Estimate 3th-order polynomial interpolation
    //---------------------------------------------
    curve.assign();
    const unsigned int pmax = points.size() - (closed?0:1);
    for (unsigned int p0 = 0; p0<pmax; p0++) {
      const unsigned int
        p1 = closed?(p0 + 1)%points.size():(p0 + 1<points.size()?p0 + 1:p0);
      const float
        x0 = points(p0,0),
        y0 = points(p0,1),
        x1 = points(p1,0),
        y1 = points(p1,1);
      float ax = 0, bx = 0, cx = 0, dx = 0, ay = 0, by = 0, cy = 0, dy = 0;
      if (interp) {
        const float
          u0 = tangents(p0,0),
          v0 = tangents(p0,1),
          u1 = tangents(p1,0),
          v1 = tangents(p1,1);
        ax = 2*(x0 - x1) + u0 + u1;
        bx = 3*(x1 - x0) - 2*u0 - u1;
        cx = u0;
        dx = x0;
        ay = 2*(y0 - y1) + v0 + v1;
        by = 3*(y1 - y0) - 2*v0 - v1;
        cy = v0;
        dy = y0;
      } else {
        ax = ay = bx = by = 0;
        dx = x0;
        dy = y0;
        cx = x1 - x0;
        cy = y1 - y0;
      }
      const float tmax = 1 + precision;
      for (float t = 0; t<tmax; t+=precision) {
        const float
          xt = ax*t*t*t + bx*t*t + cx*t + dx,
          yt = ay*t*t*t + by*t*t + cy*t + dy;
        curve.insert(CImg<>::vector(xt,yt));
      }
    }

    // Draw curve and display image
    //-------------------------------
    const float
      factx = (float)disp.width()/img0.width(),
      facty = (float)disp.height()/img0.height();
    img = img0.get_resize(disp.width(),disp.height());
    if (help) img.draw_image(help_img,0.6f);
    if (interp && show_outline) {
      CImg<> npoints = points>'x';
      npoints.get_shared_row(0)*=factx;
      npoints.get_shared_row(1)*=facty;
      img.draw_polygon(npoints,blue,0.4f);
      if (closed) img.draw_polygon(npoints,yellow,0.8f,0x11111111);
      else img.draw_line(npoints,yellow,0.8f,0x11111111);
    }
    CImg<> ncurve = curve>'x';
    ncurve.get_shared_row(0)*=factx;
    ncurve.get_shared_row(1)*=facty;
    if (closed) img.draw_polygon(ncurve,white,1.0f,~0U);
    else img.draw_line(ncurve,white);

    if (show_points) cimglist_for(points,p) {
      const float
        x = points(p,0)*factx,
        y = points(p,1)*facty;
      if (show_tangents) {
        const float
          u = tangents(p,0),
          v = tangents(p,1),
          n = 1e-8f + (float)std::sqrt(u*u + v*v),
          nu = u/n,
          nv = v/n;
        img.draw_arrow((int)(x - 15*nu),(int)(y - 15*nv),(int)(x + 15*nu),(int)(y + 15*nv),green);
      }
      if (show_indices) img.draw_text((int)x,(int)(y - 16),"%d",purple,black,1,13,p);
      if (show_coordinates)
        img.draw_text((int)(x - 24),(int)(y + 8),"(%d,%d)",yellow,black,0.5f,13,(int)points(p,0),(int)points(p,1));
      img.draw_circle((int)x,(int)y,3,blue,0.7f);
    }

    img.display(disp);
    disp.wait();

    if (disp.is_resized()) disp.resize(false);
  }

  // Save output result and exit
  //-----------------------------
  if (file_op) {
    std::fprintf(stderr," - Save control points in '%s'\n",cimg::basename(file_op));
    (points>'x').transpose().save(file_op);
  }
  if (file_oc) {
    std::fprintf(stderr," - Save curve points in '%s'\n",cimg::basename(file_oc));
    (curve>'x').transpose().save(file_oc);
  }
  if (file_od) {
    std::fprintf(stderr," - Computing distance function, please wait...."); std::fflush(stderr);
    CImg<> ncurve = (closed?(+curve).insert(curve[0]):curve)>'x';
    const float zero = 0.0f, one = 1.0f;
    CImg<> distance =
      CImg<>(img0.width(),img0.height(),1,1,-1.0f).draw_line(ncurve,&zero).draw_fill(0,0,&one).
      distance(0);
    std::fprintf(stderr,"\n - Save distance function in '%s'\n",cimg::basename(file_od));
    distance.save(file_od);
  }

  std::fprintf(stderr," - Exit.\n");
  std::exit(0);
  return 0;
}