File: image_registration2d.cpp

package info (click to toggle)
cimg 2.9.4%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 23,884 kB
  • sloc: cpp: 114,703; ansic: 78,987; javascript: 9,088; makefile: 604; sh: 135; python: 37
file content (216 lines) | stat: -rw-r--r-- 9,010 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/*
 #
 #  File        : image_registration2d.cpp
 #                ( C++ source file )
 #
 #  Description : Compute a motion field between two images,
 #                with a multiscale and variational algorithm.
 #                This file is a part of the CImg Library project.
 #                ( http://cimg.eu )
 #
 #  Copyright   : David Tschumperlé
 #                ( http://tschumperle.users.greyc.fr/ )
 #
 #  License     : CeCILL v2.0
 #                ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
 #
 #  This software is governed by the CeCILL  license under French law and
 #  abiding by the rules of distribution of free software.  You can  use,
 #  modify and/ or redistribute the software under the terms of the CeCILL
 #  license as circulated by CEA, CNRS and INRIA at the following URL
 #  "http://www.cecill.info".
 #
 #  As a counterpart to the access to the source code and  rights to copy,
 #  modify and redistribute granted by the license, users are provided only
 #  with a limited warranty  and the software's author,  the holder of the
 #  economic rights,  and the successive licensors  have only  limited
 #  liability.
 #
 #  In this respect, the user's attention is drawn to the risks associated
 #  with loading,  using,  modifying and/or developing or reproducing the
 #  software by the user in light of its specific status of free software,
 #  that may mean  that it is complicated to manipulate,  and  that  also
 #  therefore means  that it is reserved for developers  and  experienced
 #  professionals having in-depth computer knowledge. Users are therefore
 #  encouraged to load and test the software's suitability as regards their
 #  requirements in conditions enabling the security of their systems and/or
 #  data to be ensured and,  more generally, to use and operate it in the
 #   same conditions as regards security.
 #
 #  The fact that you are presently reading this means that you have had
 #  knowledge of the CeCILL license and that you accept its terms.
 #
*/

#include "CImg.h"
using namespace cimg_library;
#ifndef cimg_imagepath
#define cimg_imagepath "img/"
#endif
#undef min
#undef max

// animate_warp() : Create warping animation from two images and a motion field
//----------------
void animate_warp(const CImg<unsigned char>& src, const CImg<unsigned char>& dest, const CImg<>& U,
                  const bool morph, const bool imode, const char *filename,int nb, CImgDisplay& disp) {
  CImg<unsigned char> visu = (src,dest,src)>'x', warp(src);
  float t = 0;
  for (unsigned int iteration = 0; !disp || (!disp.is_closed() && !disp.is_keyQ()); ++iteration) {
    if (morph) cimg_forXYC(warp,x,y,k) {
      const float dx = U(x,y,0), dy = U(x,y,1),
        I1 = (float)src.linear_atXY(x - t*dx, y - t*dy, k),
        I2 = (float)dest.linear_atXY(x + (1 - t)*dx,y + (1 - t)*dy,k);
      warp(x,y,k) = (unsigned char)((1 - t)*I1 + t*I2);
    } else cimg_forXYC(warp,x,y,k) {
      const float dx = U(x,y,0), dy = U(x,y,1), I1 = (float)src.linear_atXY(x - t*dx, y - t*dy, 0,k);
      warp(x,y,k) = (unsigned char)I1;
    }
    if (disp) visu.draw_image(2*src.width(),warp).display(disp.resize().wait(30));
    if (filename && *filename && (imode || (int)iteration<nb)) {
      std::fprintf(stderr,"\r  > frame %d           ",iteration);
      warp.save(filename,iteration);
    }
    t+=1.0f/nb;
    if (t<0) { t = 0; nb = -nb; }
    if (t>1) { t = 1; nb = -nb; if (filename && *filename) std::exit(0); }
  }
}

// optflow() : multiscale version of the image registration algorithm
//-----------
CImg<> optflow(const CImg<>& source, const CImg<>& target,
               const float smoothness, const float precision, const unsigned int nb_scales, CImgDisplay& disp) {
  const unsigned int iteration_max = 100000;
  const float _precision = (float)std::pow(10.0,-(double)precision);
  const CImg<>
    src  = source.get_resize(target,3).normalize(0,1),
    dest = target.get_normalize(0,1);
  CImg<> U;

  const unsigned int _nb_scales = nb_scales>0?nb_scales:
    (unsigned int)(2*std::log((double)(std::max(src.width(),src.height()))));
  for (int scale = _nb_scales - 1; scale>=0; --scale) {
    const float factor = (float)std::pow(1.5,(double)scale);
    const unsigned int
      _sw = (unsigned int)(src.width()/factor), sw = _sw?_sw:1,
      _sh = (unsigned int)(src.height()/factor), sh = _sh?_sh:1;
    const CImg<>
      I1 = src.get_resize(sw,sh,1,-100,2),
      I2 = dest.get_resize(I1,2);
    std::fprintf(stderr," * Scale %d\n",scale);
    if (U) (U*=1.5f).resize(I2.width(),I2.height(),1,-100,3);
    else U.assign(I2.width(),I2.height(),1,2,0);

    float dt = 2, energy = cimg::type<float>::max();
    const CImgList<> dI = I2.get_gradient();

    for (unsigned int iteration = 0; iteration<iteration_max; ++iteration) {
      std::fprintf(stderr,"\r- Iteration %d - E = %g",iteration,energy); std::fflush(stderr);
      float _energy = 0;
      cimg_for3XY(U,x,y) {
        const float
          X = x + U(x,y,0),
          Y = y + U(x,y,1);

        float deltaI = 0;
        cimg_forC(I2,c) deltaI+=(float)(I1(x,y,c) - I2.linear_atXY(X,Y,c));

        float _energy_regul = 0;
        cimg_forC(U,c) {
          const float
            Ux  = 0.5f*(U(_n1x,y,c) - U(_p1x,y,c)),
            Uy  = 0.5f*(U(x,_n1y,c) - U(x,_p1y,c)),
            Uxx = U(_n1x,y,c) + U(_p1x,y,c),
            Uyy = U(x,_n1y,c) + U(x,_p1y,c);
          U(x,y,c) = (float)( U(x,y,c) + dt*(deltaI*dI[c].linear_atXY(X,Y) +
                                             smoothness* ( Uxx + Uyy )))/(1 + 4*smoothness*dt);
          _energy_regul+=Ux*Ux + Uy*Uy;
        }
        _energy+=deltaI*deltaI + smoothness*_energy_regul;
      }
      const float d_energy = (_energy - energy)/(sw*sh);
      if (d_energy<=0 && -d_energy<_precision) break;
      if (d_energy>0) dt*=0.5f;
      energy = _energy;
      if (disp) disp.resize();
      if (disp && disp.is_closed()) std::exit(0);
      if (disp && !(iteration%300)) {
        const unsigned char white[] = { 255,255,255 };
        CImg<unsigned char> tmp = I1.get_warp(U,true,true,1).normalize(0,200);
        tmp.resize(disp.width(),disp.height()).draw_quiver(U,white,0.7f,15,-14,true).display(disp);
      }
    }
    std::fprintf(stderr,"\n");
  }
  return U;
}

/*------------------------

  Main function

  ------------------------*/

int main(int argc,char **argv) {

  // Read command line parameters
  cimg_usage("Compute an optical flow between two 2D images, and create a warped animation");
  const char
    *name_i1 = cimg_option("-i",cimg_imagepath "sh0r.pgm","Input Image 1 (Destination)"),
    *name_i2 = cimg_option("-i2",cimg_imagepath "sh1r.pgm","Input Image 2 (Source)"),
    *name_o = cimg_option("-o",(const char*)NULL,"Output 2D flow (inrimage)"),
    *name_seq = cimg_option("-o2",(const char*)NULL,"Output Warping Sequence");
  const float
    smoothness = cimg_option("-s",0.1f,"Flow Smoothness"),
    precision = cimg_option("-p",6.0f,"Convergence precision");
  const unsigned int
    nb = cimg_option("-n",40,"Number of warped frames"),
    nb_scales = cimg_option("-scale",0,"Number of scales (0=auto)");
  const bool
    normalize = cimg_option("-equalize",true,"Histogram normalization of the images"),
    morph = cimg_option("-m",true,"Morphing mode"),
    imode = cimg_option("-c",true,"Complete interpolation (or last frame is missing)"),
    dispflag = !cimg_option("-novisu",false,"Visualization");

  // Init images and display
  std::fprintf(stderr," - Init images.\n");
  const CImg<>
    src(name_i1),
    dest(CImg<>(name_i2).resize(src,3)),
    src_blur  = normalize?src.get_blur(0.5f).equalize(256):src.get_blur(0.5f),
    dest_blur = normalize?dest.get_blur(0.5f).equalize(256):dest.get_blur(0.5f);

  CImgDisplay disp;
  if (dispflag) {
    unsigned int w = src.width(), h = src.height();
    const unsigned int dmin = std::min(w,h), minsiz = 512;
    if (dmin<minsiz) { w=w*minsiz/dmin; h=h*minsiz/dmin; }
    const unsigned int dmax = std::max(w,h), maxsiz = 1024;
    if (dmax>maxsiz) { w=w*maxsiz/dmax; h=h*maxsiz/dmax; }
    disp.assign(w,h,"Estimated Motion",0);
  }

  // Run Motion estimation algorithm
  std::fprintf(stderr," - Compute optical flow.\n");
  const CImg<> U = optflow(src_blur,dest_blur,smoothness,precision,nb_scales,disp);
  if (name_o) U.save(name_o);
  U.print("Computed flow");

  // Do morphing animation
  std::fprintf(stderr," - Create warped animation.\n");
  CImgDisplay disp2;
  if (dispflag) {
    unsigned int w = src.width(), h = src.height();
    const unsigned int dmin = std::min(w,h), minsiz = 100;
    if (dmin<minsiz) { w = w*minsiz/dmin; h=h*minsiz/dmin; }
    const unsigned int dmax = std::max(w,h), maxsiz = 1024/3;
    if (dmax>maxsiz) { w = w*maxsiz/dmax; h=h*maxsiz/dmax; }
    disp2.assign(3*w,h,"Source/Destination images and Motion animation",0);
  }

  animate_warp(src.get_normalize(0,255),dest.get_normalize(0,255),U,morph,imode,name_seq,nb,disp2);

  std::exit(0);
  return 0;
}