File: dtmri_view3d.cpp

package info (click to toggle)
cimg 3.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 25,492 kB
  • sloc: cpp: 114,703; ansic: 81,528; javascript: 9,088; makefile: 536; sh: 146; python: 37
file content (563 lines) | stat: -rw-r--r-- 25,313 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
/*
 #
 #  File        : dtmri_view3d.cpp
 #                ( C++ source file )
 #
 #  Description : A viewer of Diffusion-Tensor MRI volumes (medical imaging).
 #                This file is a part of the CImg Library project.
 #                ( http://cimg.eu )
 #
 #  Copyright   : David Tschumperlé
 #                ( http://tschumperle.users.greyc.fr/ )
 #
 #  License     : CeCILL v2.0
 #                ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
 #
 #  This software is governed by the CeCILL  license under French law and
 #  abiding by the rules of distribution of free software.  You can  use,
 #  modify and/ or redistribute the software under the terms of the CeCILL
 #  license as circulated by CEA, CNRS and INRIA at the following URL
 #  "http://www.cecill.info".
 #
 #  As a counterpart to the access to the source code and  rights to copy,
 #  modify and redistribute granted by the license, users are provided only
 #  with a limited warranty  and the software's author,  the holder of the
 #  economic rights,  and the successive licensors  have only  limited
 #  liability.
 #
 #  In this respect, the user's attention is drawn to the risks associated
 #  with loading,  using,  modifying and/or developing or reproducing the
 #  software by the user in light of its specific status of free software,
 #  that may mean  that it is complicated to manipulate,  and  that  also
 #  therefore means  that it is reserved for developers  and  experienced
 #  professionals having in-depth computer knowledge. Users are therefore
 #  encouraged to load and test the software's suitability as regards their
 #  requirements in conditions enabling the security of their systems and/or
 #  data to be ensured and,  more generally, to use and operate it in the
 #  same conditions as regards security.
 #
 #  The fact that you are presently reading this means that you have had
 #  knowledge of the CeCILL license and that you accept its terms.
 #
*/

#include "CImg.h"
using namespace cimg_library;
#undef min
#undef max

// Compute fractional anisotropy (FA) of a tensor
//-------------------------------------------
template<typename T> float get_FA(const T& val1, const T& val2, const T& val3) {
  const float
    l1 = val1>0?val1:0, l2 = val2>0?val2:0, l3 = val3>0?val3:0,
    lm = (l1 + l2 + l3)/3,
    tr2 = 2*(l1*l1 + l2*l2 + l3*l3),
    ll1 = l1 - lm,
    ll2 = l2 - lm,
    ll3 = l3 - lm;
  if (tr2>0) return (float)std::sqrt(3*(ll1*ll1 + ll2*ll2 + ll3*ll3)/tr2);
  return 0;
}

// Insert an ellipsoid in a CImg 3D scene
//----------------------------------------
template<typename t, typename tp, typename tf, typename tc>
void insert_ellipsoid(const CImg<t>& tensor, const float X, const float Y, const float Z, const float tfact,
                      const float vx, const float vy, const float vz,
                      CImgList<tp>& points, CImgList<tf>& faces, CImgList<tc>& colors,
                      const unsigned int res1=20, const unsigned int res2=20) {

  // Compute eigen elements
  float l1 = tensor[0], l2 = tensor[1], l3 = tensor[2], fa = get_FA(l1,l2,l3);
  CImg<> vec = CImg<>::matrix(tensor[3],tensor[6],tensor[9],
			      tensor[4],tensor[7],tensor[10],
			      tensor[5],tensor[8],tensor[11]);
  const int
    r = (int)std::min(30 + 1.5f*cimg::abs(255*fa*tensor[3]),255.0f),
    g = (int)std::min(30 + 1.5f*cimg::abs(255*fa*tensor[4]),255.0f),
    b = (int)std::min(30 + 1.5f*cimg::abs(255*fa*tensor[5]),255.0f);

  // Define mesh points
  const unsigned int N0 = points.size();
  for (unsigned int v = 1; v<res2; v++)
    for (unsigned int u = 0; u<res1; u++) {
      const float
        alpha = (float)(u*2*cimg::PI/res1),
        beta = (float)(-cimg::PI/2 + v*cimg::PI/res2),
        x = (float)(tfact*l1*std::cos(beta)*std::cos(alpha)),
        y = (float)(tfact*l2*std::cos(beta)*std::sin(alpha)),
        z = (float)(tfact*l3*std::sin(beta));
      points.insert((CImg<tp>::vector(X,Y,Z) + vec*CImg<tp>::vector(x,y,z)).mul(CImg<tp>::vector(vx,vy,vz)));
    }
  const unsigned int N1 = points.size();
  points.insert((CImg<tp>::vector(X,Y,Z) - vec*CImg<tp>::vector(0,0,l3*tfact)));
  points.insert((CImg<tp>::vector(X,Y,Z) + vec*CImg<tp>::vector(0,0,l3*tfact)));
  points[points.size() - 2](0)*=vx; points[points.size() - 2](1)*=vy; points[points.size() - 2](2)*=vz;
  points[points.size() - 1](0)*=vx; points[points.size() - 1](1)*=vy; points[points.size() - 1](2)*=vz;

  // Define mesh triangles
  for (unsigned int vv = 0; vv<res2 - 2; ++vv)
    for (unsigned int uu = 0; uu<res1; ++uu) {
      const int nv = (vv + 1)%(res2 - 1), nu = (uu + 1)%res1;
      faces.insert(CImg<tf>::vector(N0 + res1*vv + nu,N0 + res1*nv + uu,N0 + res1*vv + uu));
      faces.insert(CImg<tf>::vector(N0 + res1*vv + nu,N0 + res1*nv + nu,N0 + res1*nv + uu));
      colors.insert(CImg<tc>::vector((tc)r,(tc)g,(tc)b));
      colors.insert(CImg<tc>::vector((tc)r,(tc)g,(tc)b));
    }
  for (unsigned int uu = 0; uu<res1; ++uu) {
    const int nu = (uu + 1)%res1;
    faces.insert(CImg<tf>::vector(N0 + nu,N0 + uu,N1));
    faces.insert(CImg<tf>::vector(N0 + res1*(res2 - 2) + nu, N1 + 1,N0 + res1*(res2 - 2) + uu));
    colors.insert(CImg<tc>::vector((tc)r,(tc)g,(tc)b));
    colors.insert(CImg<tc>::vector((tc)r,(tc)g,(tc)b));
  }
}

// Insert a fiber in a CImg 3D scene
//-----------------------------------
template<typename T,typename te,typename tp, typename tf, typename tc>
void insert_fiber(const CImg<T>& fiber, const CImg<te>& eigen, const CImg<tc>& palette,
                  const int xm, const int ym, const int zm,
                  const float vx, const float vy, const float vz,
                  CImgList<tp>& points, CImgList<tf>& primitives, CImgList<tc>& colors) {
  const int N0 = points.size();
  float x0 = fiber(0,0), y0 = fiber(0,1), z0 = fiber(0,2), fa0 = eigen.linear_atXYZ(x0,y0,z0,12);
  points.insert(CImg<>::vector(vx*(x0  -xm),vy*(y0 - ym),vz*(z0 - zm)));
  for (int l = 1; l<fiber.width(); ++l) {
    float x1 = fiber(l,0), y1 = fiber(l,1), z1 = fiber(l,2), fa1 = eigen.linear_atXYZ(x1,y1,z1,12);
    points.insert(CImg<tp>::vector(vx*(x1 - xm),vy*(y1 - ym),vz*(z1 - zm)));
    primitives.insert(CImg<tf>::vector(N0 + l - 1,N0 + l));
    const unsigned char
      icol = (unsigned char)(fa0*255),
      r = palette(icol,0),
      g = palette(icol,1),
      b = palette(icol,2);
    colors.insert(CImg<unsigned char>::vector(r,g,b));
    x0 = x1; y0 = y1; z0 = z1; fa0 = fa1;
  }
}

// Compute fiber tracking using 4th-order Runge Kutta integration
//-----------------------------------------------------------------
template<typename T>
CImg<> get_fibertrack(CImg<T>& eigen,
                      const int X0, const int Y0, const int Z0, const float lmax=100,
                      const float dl=0.1f, const float FAmin=0.7f, const float cmin=0.5f) {
#define align_eigen(i,j,k) \
  { T &u = eigen(i,j,k,3), &v = eigen(i,j,k,4), &w = eigen(i,j,k,5); \
    if (u*cu + v*cv + w*cw<0) { u=-u; v=-v; w=-w; }}

  CImgList<> resf;

  // Forward tracking
  float normU = 0, normpU = 0, l = 0, X = (float)X0, Y = (float)Y0, Z = (float)Z0;
  T
    pu = eigen(X0,Y0,Z0,3),
    pv = eigen(X0,Y0,Z0,4),
    pw = eigen(X0,Y0,Z0,5);
  normpU = (float)std::sqrt(pu*pu + pv*pv + pw*pw);
  bool stopflag = false;

  while (!stopflag) {
    if (X<0 || X>eigen.width() - 1 || Y<0 || Y>eigen.height() - 1 || Z<0 || Z>eigen.depth() - 1 ||
        eigen((int)X,(int)Y,(int)Z,12)<FAmin || l>lmax) stopflag = true;
    else {
      resf.insert(CImg<>::vector(X,Y,Z));

      const int
        cx = (int)X, px = (cx - 1<0)?0:cx - 1, nx = (cx + 1>=eigen.width())?eigen.width() - 1:cx + 1,
        cy = (int)Y, py = (cy - 1<0)?0:cy - 1, ny = (cy + 1>=eigen.height())?eigen.height() - 1:cy + 1,
        cz = (int)Z, pz = (cz - 1<0)?0:cz - 1, nz = (cz + 1>=eigen.depth())?eigen.depth() - 1:cz + 1;
      const T cu = eigen(cx,cy,cz,3), cv = eigen(cx,cy,cz,4), cw = eigen(cx,cy,cz,5);

      align_eigen(px,py,pz); align_eigen(cx,py,pz); align_eigen(nx,py,pz);
      align_eigen(px,cy,pz); align_eigen(cx,cy,pz); align_eigen(nx,cy,pz);
      align_eigen(px,ny,pz); align_eigen(cx,ny,pz); align_eigen(nx,ny,pz);
      align_eigen(px,py,cz); align_eigen(cx,py,cz); align_eigen(nx,py,cz);
      align_eigen(px,cy,cz);                        align_eigen(nx,cy,cz);
      align_eigen(px,ny,cz); align_eigen(cx,ny,cz); align_eigen(nx,ny,cz);
      align_eigen(px,py,nz); align_eigen(cx,py,nz); align_eigen(nx,py,nz);
      align_eigen(px,cy,nz); align_eigen(cx,cy,nz); align_eigen(nx,cy,nz);
      align_eigen(px,ny,nz); align_eigen(cx,ny,nz); align_eigen(nx,ny,nz);

      const T
        u0 = 0.5f*dl*eigen.linear_atXYZ(X,Y,Z,3),
        v0 = 0.5f*dl*eigen.linear_atXYZ(X,Y,Z,4),
        w0 = 0.5f*dl*eigen.linear_atXYZ(X,Y,Z,5),
        u1 = 0.5f*dl*eigen.linear_atXYZ(X + u0,Y + v0,Z + w0,3),
        v1 = 0.5f*dl*eigen.linear_atXYZ(X + u0,Y + v0,Z + w0,4),
        w1 = 0.5f*dl*eigen.linear_atXYZ(X + u0,Y + v0,Z + w0,5),
        u2 = 0.5f*dl*eigen.linear_atXYZ(X + u1,Y + v1,Z + w1,3),
        v2 = 0.5f*dl*eigen.linear_atXYZ(X + u1,Y + v1,Z + w1,4),
        w2 = 0.5f*dl*eigen.linear_atXYZ(X + u1,Y + v1,Z + w1,5),
        u3 = 0.5f*dl*eigen.linear_atXYZ(X + u2,Y + v2,Z + w2,3),
        v3 = 0.5f*dl*eigen.linear_atXYZ(X + u2,Y + v2,Z + w2,4),
        w3 = 0.5f*dl*eigen.linear_atXYZ(X + u2,Y + v2,Z + w2,5);
      T
        u = u0/3 + 2*u1/3 + 2*u2/3 + u3/3,
        v = v0/3 + 2*v1/3 + 2*v2/3 + v3/3,
        w = w0/3 + 2*w1/3 + 2*w2/3 + w3/3;
      if (u*pu + v*pv + w*pw<0) { u = -u; v = -v; w = -w; }
      normU = (float)std::sqrt(u*u + v*v + w*w);
      const float scal = (u*pu + v*pv + w*pw)/(normU*normpU);
      if (scal<cmin) stopflag=true;

      X+=(pu=u); Y+=(pv=v); Z+=(pw=w);
      normpU = normU;
      l+=dl;
    }
  }

  // Backward tracking
  l = dl; X = (float)X0; Y = (float)Y0; Z = (float)Z0;
  pu = eigen(X0,Y0,Z0,3);
  pv = eigen(X0,Y0,Z0,4);
  pw = eigen(X0,Y0,Z0,5);
  normpU = (float)std::sqrt(pu*pu + pv*pv + pw*pw);
  stopflag = false;

  while (!stopflag) {
    if (X<0 || X>eigen.width() - 1 || Y<0 || Y>eigen.height() - 1 || Z<0 || Z>eigen.depth() - 1 ||
        eigen((int)X,(int)Y,(int)Z,12)<FAmin || l>lmax) stopflag = true;
    else {

      const int
        cx = (int)X, px = (cx - 1<0)?0:cx - 1, nx = (cx + 1>=eigen.width())?eigen.width() - 1:cx + 1,
        cy = (int)Y, py = (cy - 1<0)?0:cy - 1, ny = (cy + 1>=eigen.height())?eigen.height() - 1:cy + 1,
        cz = (int)Z, pz = (cz - 1<0)?0:cz - 1, nz = (cz + 1>=eigen.depth())?eigen.depth() - 1:cz + 1;
      const T cu = eigen(cx,cy,cz,3), cv = eigen(cx,cy,cz,4), cw = eigen(cx,cy,cz,5);

      align_eigen(px,py,pz); align_eigen(cx,py,pz); align_eigen(nx,py,pz);
      align_eigen(px,cy,pz); align_eigen(cx,cy,pz); align_eigen(nx,cy,pz);
      align_eigen(px,ny,pz); align_eigen(cx,ny,pz); align_eigen(nx,ny,pz);
      align_eigen(px,py,cz); align_eigen(cx,py,cz); align_eigen(nx,py,cz);
      align_eigen(px,cy,cz);                        align_eigen(nx,cy,cz);
      align_eigen(px,ny,cz); align_eigen(cx,ny,cz); align_eigen(nx,ny,cz);
      align_eigen(px,py,nz); align_eigen(cx,py,nz); align_eigen(nx,py,nz);
      align_eigen(px,cy,nz); align_eigen(cx,cy,nz); align_eigen(nx,cy,nz);
      align_eigen(px,ny,nz); align_eigen(cx,ny,nz); align_eigen(nx,ny,nz);

      const T
        u0 = 0.5f*dl*eigen.linear_atXYZ(X,Y,Z,3),
        v0 = 0.5f*dl*eigen.linear_atXYZ(X,Y,Z,4),
        w0 = 0.5f*dl*eigen.linear_atXYZ(X,Y,Z,5),
        u1 = 0.5f*dl*eigen.linear_atXYZ(X + u0,Y + v0,Z + w0,3),
        v1 = 0.5f*dl*eigen.linear_atXYZ(X + u0,Y + v0,Z + w0,4),
        w1 = 0.5f*dl*eigen.linear_atXYZ(X + u0,Y + v0,Z + w0,5),
        u2 = 0.5f*dl*eigen.linear_atXYZ(X + u1,Y + v1,Z + w1,3),
        v2 = 0.5f*dl*eigen.linear_atXYZ(X + u1,Y + v1,Z + w1,4),
        w2 = 0.5f*dl*eigen.linear_atXYZ(X + u1,Y + v1,Z + w1,5),
        u3 = 0.5f*dl*eigen.linear_atXYZ(X + u2,Y + v2,Z + w2,3),
        v3 = 0.5f*dl*eigen.linear_atXYZ(X + u2,Y + v2,Z + w2,4),
        w3 = 0.5f*dl*eigen.linear_atXYZ(X + u2,Y + v2,Z + w2,5);
      T
        u = u0/3 + 2*u1/3 + 2*u2/3 + u3/3,
        v = v0/3 + 2*v1/3 + 2*v2/3 + v3/3,
        w = w0/3 + 2*w1/3 + 2*w2/3 + w3/3;
      if (u*pu + v*pv + w*pw<0) { u = -u; v = -v; w = -w; }
      normU = (float)std::sqrt(u*u + v*v + w*w);
      const float scal = (u*pu + v*pv + w*pw)/(normU*normpU);
      if (scal<cmin) stopflag=true;

      X-=(pu=u); Y-=(pv=v); Z-=(pw=w);
      normpU=normU;
      l+=dl;

      resf.insert(CImg<>::vector(X,Y,Z),0);
    }
  }

  return resf>'x';
}

// Main procedure
//----------------
int main(int argc,char **argv) {

  // Read and init data
  //--------------------
  cimg_usage("A viewer of Diffusion-Tensor MRI volumes.");
  const char *file_i   = cimg_option("-i",(char*)0,"Input : Filename of tensor field (volume wxhxdx6)");
  const char* vsize    = cimg_option("-vsize","1x1x1","Input : Voxel aspect");
  const bool normalize = cimg_option("-normalize",true,"Input : Enable tensor normalization");
  const char *file_f   = cimg_option("-f",(char*)0,"Input : Input fibers\n");
  const float dl       = cimg_option("-dl",0.5f,"Fiber computation : Integration step");
  const float famin    = cimg_option("-famin",0.3f,"Fiber computation : Fractional Anisotropy threshold");
  const float cmin     = cimg_option("-cmin",0.2f,"Fiber computation : Curvature threshold");
  const float lmin     = cimg_option("-lmin",10.0f,"Fiber computation : Minimum length\n");
  const float lmax     = cimg_option("-lmax",1000.0f,"Fiber computation : Maximum length\n");
  const float tfact    = cimg_option("-tfact",1.2f,"Display : Tensor size factor");
  const char *bgcolor  = cimg_option("-bg","0,0,0","Display : Background color");
  unsigned int bgr = 0, bgg = 0, bgb = 0;
  std::sscanf(bgcolor,"%u%*c%u%*c%u",&bgr,&bgg,&bgb);

  CImg<> tensors;
  if (file_i) {
    std::fprintf(stderr,"\n- Loading tensors '%s'",cimg::basename(file_i));
    tensors.load(file_i);
  } else {
    // Create a synthetic tensor field here
    std::fprintf(stderr,"\n- No input files : Creating a synthetic tensor field");
    tensors.assign(32,32,32,6);
    cimg_forXYZ(tensors,x,y,z) {
      const float
        u = x - tensors.width()/2.0f,
        v = y - tensors.height()/2.0f,
        w = z - tensors.depth()/2.0f,
        norm = (float)std::sqrt(1e-5f + u*u + v*v + w*w),
        nu = u/norm, nv = v/norm, nw = w/norm;
      const CImg<>
        dir1 = CImg<>::vector(nu,nv,nw),
        dir2 = CImg<>::vector(-nv,nu,nw),
        dir3 = CImg<>::vector(nw*(nv - nu),-nw*(nu + nv),nu*nu + nv*nv);
      tensors.set_tensor_at(2.0*dir1*dir1.get_transpose() +
                            1.0*dir2*dir2.get_transpose() +
                            0.7*dir3*dir3.get_transpose(),
                            x,y,z);
    }
  }
  float voxw = 1, voxh = 1, voxd = 1;
  std::sscanf(vsize,"%f%*c%f%*c%f",&voxw,&voxh,&voxd);

  std::fprintf(stderr," : %ux%ux%u image, voxsize=%gx%gx%g.",
               tensors.width(),tensors.height(),tensors.depth(),
               voxw,voxh,voxd);

  CImgList<> fibers;
  if (file_f) {
    std::fprintf(stderr,"\n- Loading fibers '%s'.",cimg::basename(file_f));
    fibers.load(file_f);
  }

  const CImg<unsigned char> fiber_palette =
    CImg<>(2,1,1,3).fill(200,255,0,255,0,200).RGBtoHSV().resize(256,1,1,3,3).HSVtoRGB();

  // Compute eigen elements
  //------------------------
  std::fprintf(stderr,"\n- Compute eigen elements.");
  CImg<unsigned char> coloredFA(tensors.width(),tensors.height(),tensors.depth(),3);
  CImg<> eigen(tensors.width(),tensors.height(),tensors.depth(),13);
  CImg<> val,vec;
  float eigmax = 0;
  cimg_forXYZ(tensors,x,y,z) {
    tensors.get_tensor_at(x,y,z).symmetric_eigen(val,vec);
    eigen(x,y,z,0) = val[0]; eigen(x,y,z,1) = val[1]; eigen(x,y,z,2) = val[2];
    if (val[0]<0) val[0] = 0;
    if (val[1]<0) val[1] = 0;
    if (val[2]<0) val[2] = 0;
    if (val[0]>eigmax) eigmax = val[0];
    eigen(x,y,z,3) = vec(0,0); eigen(x,y,z,4)  = vec(0,1); eigen(x,y,z,5)  = vec(0,2);
    eigen(x,y,z,6) = vec(1,0); eigen(x,y,z,7)  = vec(1,1); eigen(x,y,z,8)  = vec(1,2);
    eigen(x,y,z,9) = vec(2,0); eigen(x,y,z,10) = vec(2,1); eigen(x,y,z,11) = vec(2,2);
    const float fa = get_FA(val[0],val[1],val[2]);
    eigen(x,y,z,12) = fa;
    const int
      r = (int)std::min(255.0f,1.5f*cimg::abs(255*fa*vec(0,0))),
      g = (int)std::min(255.0f,1.5f*cimg::abs(255*fa*vec(0,1))),
      b = (int)std::min(255.0f,1.5f*cimg::abs(255*fa*vec(0,2)));
    coloredFA(x,y,z,0) = (unsigned char)r;
    coloredFA(x,y,z,1) = (unsigned char)g;
    coloredFA(x,y,z,2) = (unsigned char)b;
  }
  tensors.assign();
  std::fprintf(stderr,"\n- Maximum diffusivity = %g, Maximum FA = %g",eigmax,eigen.get_shared_channel(12).max());
  if (normalize) {
    std::fprintf(stderr,"\n- Normalize tensors.");
    eigen.get_shared_channels(0,2)/=eigmax;
  }

  // Init display and begin user interaction
  //-----------------------------------------
  std::fprintf(stderr,"\n- Open user window.");
  CImgDisplay disp(256,256,"DTMRI Viewer",0);
  CImgDisplay disp3d(800,600,"3D Local View",0,false,true);
  unsigned int XYZ[3];
  XYZ[0] = eigen.width()/2; XYZ[1] = eigen.height()/2; XYZ[2] = eigen.depth()/2;

  while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) {
    const CImg<int> s = coloredFA.get_select(disp,2,XYZ);
    if (!disp.is_closed()) switch (disp.key()) {

      // Open 3D visualization window
      //-----------------------------
    case cimg::keyA :
    case 0 : {
      const unsigned char white[] = { 255 };
      disp3d.display(CImg<unsigned char>(disp3d.width(),disp3d.height(),1,1,0).
                     draw_text(10,10,"Please wait...",white)).show();

      int xm, ym, zm, xM, yM, zM;
      if (!disp.key()) { xm = s[0]; ym = s[1]; zm = s[2]; xM = s[3]; yM = s[4]; zM = s[5]; }
      else { xm = ym = zm = 0; xM = eigen.width() - 1; yM = eigen.height() - 1; zM = eigen.height() - 1; }
      const CImg<> img = eigen.get_crop(xm,ym,zm,xM,yM,zM);
      CImgList<> points;
      CImgList<unsigned int> primitives;
      CImgList<unsigned char> colors;

      // Add ellipsoids to the 3D scene
      int X = img.width()/2, Y = img.height()/2, Z = img.depth()/2;
      cimg_forXY(img,x,y)
        insert_ellipsoid(img.get_vector_at(x,y,Z),(float)x,(float)y,(float)Z,
                         tfact,voxw,voxh,voxd,points,primitives,colors,10,6);
      cimg_forXZ(img,x,z)
        insert_ellipsoid(img.get_vector_at(x,Y,z),(float)x,(float)Y,(float)z,
                         tfact,voxw,voxh,voxd,points,primitives,colors,10,6);
      cimg_forYZ(img,y,z)
        insert_ellipsoid(img.get_vector_at(X,y,z),(float)X,(float)y,(float)z,
                         tfact,voxw,voxh,voxd,points,primitives,colors,10,6);

      // Add computed fibers to the 3D scene
      const CImg<> veigen = eigen.get_crop(xm,ym,zm,xM,yM,zM);
      cimglist_for(fibers,l) {
        const CImg<>& fiber = fibers[l];
        if (fiber.width()) insert_fiber(fiber,eigen,fiber_palette,
                                       xm,ym,zm,voxw,voxh,voxd,
                                       points,primitives,colors);
      }

      // Display 3D object
      CImg<unsigned char> visu = CImg<unsigned char>(3,disp3d.width(),disp3d.height(),1,0).
        fill((unsigned char)bgr,(unsigned char)bgg,(unsigned char)bgb).
        permute_axes("yzcx");
      bool stopflag = false;
      while (!disp3d.is_closed() && !stopflag) {
        const CImg<> pts = points>'x';
        visu.display_object3d(disp3d,pts,primitives,colors,true,4,-1,false,800,0.05f,1.0f);
        disp3d.close();
        switch (disp3d.key()) {
        case cimg::keyM : { // Create movie
          std::fprintf(stderr,"\n- Movie mode.\n");
          const unsigned int N = 256;
          CImg<> cpts(pts);
          const CImg<> x = pts.get_shared_row(0), y = pts.get_shared_row(1), z = pts.get_shared_row(2);
          float
            _xm, _xM = x.max_min(_xm),
            _ym, _yM = y.max_min(_ym),
            _zm, _zM = z.max_min(_zm),
            ratio = 2.0f*std::min(visu.width(),visu.height())/(3.0f*cimg::max(_xM - _xm,_yM - _ym,_zM - _zm)),
            dx = 0.5f*(_xM + _xm), dy = 0.5f*(_yM + _ym), dz = 0.5f*(_zM + _zm);
          cimg_forX(pts,l) {
            cpts(l,0) = (pts(l,0) - dx)*ratio;
            cpts(l,1) = (pts(l,1) - dy)*ratio;
            cpts(l,2) = (pts(l,2) - dz)*ratio;
          }

          for (unsigned int i=0; i<N; i++) {
            std::fprintf(stderr,"\r- Frame %u/%u.",i,N);
            const float alpha = (float)(i*360/N);
            const CImg<> rpts = CImg<>::rotation_matrix(0,1,0,alpha)*CImg<>::rotation_matrix(1,0,0,75)*cpts;
            visu.fill(0).draw_object3d(visu.width()/2.0f,visu.height()/2.0f,-500.0f,rpts,primitives,colors,
                                       4,false,800.0f,visu.width()/2.0f,visu.height()/2.0f,-800.0f,0.05f,1.0f).
              display(disp3d);
            visu.save("frame.png",i);
          }
          visu.fill(0);
        } break;
        default: stopflag = true;
        }
      }
      if (disp3d.is_fullscreen()) disp3d.toggle_fullscreen().resize(800,600).close();
    } break;

    // Compute region statistics
    //---------------------------
    case cimg::keyR : {
      std::fprintf(stderr,"\n- Statistics computation. Select region."); std::fflush(stderr);
      const CImg<int> sel = coloredFA.get_select(disp,2,XYZ);
      int xm, ym, zm, xM, yM, zM;
      if (!disp.key()) { xm = sel[0]; ym = sel[1]; zm = sel[2]; xM = sel[3]; yM = sel[4]; zM = sel[5]; }
      else { xm = ym = zm = 0; xM = eigen.width() - 1; yM = eigen.height() - 1; zM = eigen.height() - 1; }
      const CImg<> img = eigen.get_crop(xm,ym,zm,xM,yM,zM);
      std::fprintf(stderr,"\n- Mean diffusivity = %g, Mean FA = %g\n",
                   eigen.get_shared_channel(0).mean(),
                   eigen.get_shared_channel(12).mean());
    } break;

    // Track fiber bundle (single region)
    //----------------------------------
    case cimg::keyF : {
      std::fprintf(stderr,"\n- Tracking mode (single region). Select starting region.\n"); std::fflush(stderr);
      const CImg<int> sel = coloredFA.get_select(disp,2,XYZ);
      const unsigned int N = fibers.size();
      for (int z = sel[2]; z<=sel[5]; ++z)
        for (int y = sel[1]; y<=sel[4]; ++y)
          for (int x = sel[0]; x<=sel[3]; ++x) {
            const CImg<> fiber = get_fibertrack(eigen,x,y,z,lmax,dl,famin,cmin);
            if (fiber.width()>lmin) {
              std::fprintf(stderr,"\rFiber %u : Starting from (%d,%d,%d)\t\t",fibers.size(),x,y,z);
              fibers.insert(fiber);
            }
          }
      std::fprintf(stderr,"\n- %u fiber(s) added (total %u).",fibers.size() - N,fibers.size());
    } break;

    // Track fiber bundle (double regions)
    //------------------------------------
    case cimg::keyG : {
      std::fprintf(stderr,"\n- Tracking mode (double region). Select starting region."); std::fflush(stderr);
      const CImg<int> sel = coloredFA.get_select(disp,2,XYZ);
      std::fprintf(stderr," Select ending region."); std::fflush(stderr);
      const CImg<int> nsel = coloredFA.get_select(disp,2,XYZ);
      const unsigned int N = fibers.size();

      // Track from start to end
      for (int z = sel[2]; z<=sel[5]; ++z)
        for (int y = sel[1]; y<=sel[4]; ++y)
          for (int x = sel[0]; x<=sel[3]; ++x) {
            const CImg<> fiber = get_fibertrack(eigen,x,y,z,lmax,dl,famin,cmin);
            if (fiber.width()>lmin) {
              bool valid_fiber = false;
              cimg_forX(fiber,k) {
                const int fx = (int)fiber(k,0), fy = (int)fiber(k,1), fz = (int)fiber(k,2);
                if (fx>=nsel[0] && fx<=nsel[3] &&
                    fy>=nsel[1] && fy<=nsel[4] &&
                    fz>=nsel[2] && fz<=nsel[5]) valid_fiber = true;
              }
              if (valid_fiber) fibers.insert(fiber);
            }
          }

      // Track from end to start
      for (int z = nsel[2]; z<=nsel[5]; ++z)
        for (int y = nsel[1]; y<=nsel[4]; ++y)
          for (int x = nsel[0]; x<=nsel[3]; ++x) {
            const CImg<> fiber = get_fibertrack(eigen,x,y,z,lmax,dl,famin,cmin);
            if (fiber.width()>lmin) {
              bool valid_fiber = false;
              cimg_forX(fiber,k) {
                const int fx = (int)fiber(k,0), fy = (int)fiber(k,1), fz = (int)fiber(k,2);
                if (fx>=sel[0] && fx<=sel[3] &&
                    fy>=sel[1] && fy<=sel[4] &&
                    fz>=sel[2] && fz<=sel[5]) valid_fiber = true;
              }
              if (valid_fiber) {
                std::fprintf(stderr,"\rFiber %u : Starting from (%d,%d,%d)\t\t",fibers.size(),x,y,z);
                fibers.insert(fiber);
              }
            }
          }

      std::fprintf(stderr," %u fiber(s) added (total %u).",fibers.size() - N,fibers.size());
    } break;

    // Clear fiber bundle
    //-------------------
    case cimg::keyC : {
      std::fprintf(stderr,"\n- Fibers removed.");
      fibers.assign();
    } break;

    // Save fibers
    //-------------
    case cimg::keyS : {
      fibers.save("fibers.cimg");
      std::fprintf(stderr,"\n- Fibers saved.");
    } break;

    }
  }

  std::fprintf(stderr,"\n- Exit.\n\n\n");
  return 0;
}