1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
|
/*
#
# File : dtmri_view3d.cpp
# ( C++ source file )
#
# Description : A viewer of Diffusion-Tensor MRI volumes (medical imaging).
# This file is a part of the CImg Library project.
# ( http://cimg.eu )
#
# Copyright : David Tschumperlé
# ( http://tschumperle.users.greyc.fr/ )
#
# License : CeCILL v2.0
# ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
#
*/
#include "CImg.h"
using namespace cimg_library;
#undef min
#undef max
// Compute fractional anisotropy (FA) of a tensor
//-------------------------------------------
template<typename T> float get_FA(const T& val1, const T& val2, const T& val3) {
const float
l1 = val1>0?val1:0, l2 = val2>0?val2:0, l3 = val3>0?val3:0,
lm = (l1 + l2 + l3)/3,
tr2 = 2*(l1*l1 + l2*l2 + l3*l3),
ll1 = l1 - lm,
ll2 = l2 - lm,
ll3 = l3 - lm;
if (tr2>0) return (float)std::sqrt(3*(ll1*ll1 + ll2*ll2 + ll3*ll3)/tr2);
return 0;
}
// Insert an ellipsoid in a CImg 3D scene
//----------------------------------------
template<typename t, typename tp, typename tf, typename tc>
void insert_ellipsoid(const CImg<t>& tensor, const float X, const float Y, const float Z, const float tfact,
const float vx, const float vy, const float vz,
CImgList<tp>& points, CImgList<tf>& faces, CImgList<tc>& colors,
const unsigned int res1=20, const unsigned int res2=20) {
// Compute eigen elements
float l1 = tensor[0], l2 = tensor[1], l3 = tensor[2], fa = get_FA(l1,l2,l3);
CImg<> vec = CImg<>::matrix(tensor[3],tensor[6],tensor[9],
tensor[4],tensor[7],tensor[10],
tensor[5],tensor[8],tensor[11]);
const int
r = (int)std::min(30 + 1.5f*cimg::abs(255*fa*tensor[3]),255.0f),
g = (int)std::min(30 + 1.5f*cimg::abs(255*fa*tensor[4]),255.0f),
b = (int)std::min(30 + 1.5f*cimg::abs(255*fa*tensor[5]),255.0f);
// Define mesh points
const unsigned int N0 = points.size();
for (unsigned int v = 1; v<res2; v++)
for (unsigned int u = 0; u<res1; u++) {
const float
alpha = (float)(u*2*cimg::PI/res1),
beta = (float)(-cimg::PI/2 + v*cimg::PI/res2),
x = (float)(tfact*l1*std::cos(beta)*std::cos(alpha)),
y = (float)(tfact*l2*std::cos(beta)*std::sin(alpha)),
z = (float)(tfact*l3*std::sin(beta));
points.insert((CImg<tp>::vector(X,Y,Z) + vec*CImg<tp>::vector(x,y,z)).mul(CImg<tp>::vector(vx,vy,vz)));
}
const unsigned int N1 = points.size();
points.insert((CImg<tp>::vector(X,Y,Z) - vec*CImg<tp>::vector(0,0,l3*tfact)));
points.insert((CImg<tp>::vector(X,Y,Z) + vec*CImg<tp>::vector(0,0,l3*tfact)));
points[points.size() - 2](0)*=vx; points[points.size() - 2](1)*=vy; points[points.size() - 2](2)*=vz;
points[points.size() - 1](0)*=vx; points[points.size() - 1](1)*=vy; points[points.size() - 1](2)*=vz;
// Define mesh triangles
for (unsigned int vv = 0; vv<res2 - 2; ++vv)
for (unsigned int uu = 0; uu<res1; ++uu) {
const int nv = (vv + 1)%(res2 - 1), nu = (uu + 1)%res1;
faces.insert(CImg<tf>::vector(N0 + res1*vv + nu,N0 + res1*nv + uu,N0 + res1*vv + uu));
faces.insert(CImg<tf>::vector(N0 + res1*vv + nu,N0 + res1*nv + nu,N0 + res1*nv + uu));
colors.insert(CImg<tc>::vector((tc)r,(tc)g,(tc)b));
colors.insert(CImg<tc>::vector((tc)r,(tc)g,(tc)b));
}
for (unsigned int uu = 0; uu<res1; ++uu) {
const int nu = (uu + 1)%res1;
faces.insert(CImg<tf>::vector(N0 + nu,N0 + uu,N1));
faces.insert(CImg<tf>::vector(N0 + res1*(res2 - 2) + nu, N1 + 1,N0 + res1*(res2 - 2) + uu));
colors.insert(CImg<tc>::vector((tc)r,(tc)g,(tc)b));
colors.insert(CImg<tc>::vector((tc)r,(tc)g,(tc)b));
}
}
// Insert a fiber in a CImg 3D scene
//-----------------------------------
template<typename T,typename te,typename tp, typename tf, typename tc>
void insert_fiber(const CImg<T>& fiber, const CImg<te>& eigen, const CImg<tc>& palette,
const int xm, const int ym, const int zm,
const float vx, const float vy, const float vz,
CImgList<tp>& points, CImgList<tf>& primitives, CImgList<tc>& colors) {
const int N0 = points.size();
float x0 = fiber(0,0), y0 = fiber(0,1), z0 = fiber(0,2), fa0 = eigen.linear_atXYZ(x0,y0,z0,12);
points.insert(CImg<>::vector(vx*(x0 -xm),vy*(y0 - ym),vz*(z0 - zm)));
for (int l = 1; l<fiber.width(); ++l) {
float x1 = fiber(l,0), y1 = fiber(l,1), z1 = fiber(l,2), fa1 = eigen.linear_atXYZ(x1,y1,z1,12);
points.insert(CImg<tp>::vector(vx*(x1 - xm),vy*(y1 - ym),vz*(z1 - zm)));
primitives.insert(CImg<tf>::vector(N0 + l - 1,N0 + l));
const unsigned char
icol = (unsigned char)(fa0*255),
r = palette(icol,0),
g = palette(icol,1),
b = palette(icol,2);
colors.insert(CImg<unsigned char>::vector(r,g,b));
x0 = x1; y0 = y1; z0 = z1; fa0 = fa1;
}
}
// Compute fiber tracking using 4th-order Runge Kutta integration
//-----------------------------------------------------------------
template<typename T>
CImg<> get_fibertrack(CImg<T>& eigen,
const int X0, const int Y0, const int Z0, const float lmax=100,
const float dl=0.1f, const float FAmin=0.7f, const float cmin=0.5f) {
#define align_eigen(i,j,k) \
{ T &u = eigen(i,j,k,3), &v = eigen(i,j,k,4), &w = eigen(i,j,k,5); \
if (u*cu + v*cv + w*cw<0) { u=-u; v=-v; w=-w; }}
CImgList<> resf;
// Forward tracking
float normU = 0, normpU = 0, l = 0, X = (float)X0, Y = (float)Y0, Z = (float)Z0;
T
pu = eigen(X0,Y0,Z0,3),
pv = eigen(X0,Y0,Z0,4),
pw = eigen(X0,Y0,Z0,5);
normpU = (float)std::sqrt(pu*pu + pv*pv + pw*pw);
bool stopflag = false;
while (!stopflag) {
if (X<0 || X>eigen.width() - 1 || Y<0 || Y>eigen.height() - 1 || Z<0 || Z>eigen.depth() - 1 ||
eigen((int)X,(int)Y,(int)Z,12)<FAmin || l>lmax) stopflag = true;
else {
resf.insert(CImg<>::vector(X,Y,Z));
const int
cx = (int)X, px = (cx - 1<0)?0:cx - 1, nx = (cx + 1>=eigen.width())?eigen.width() - 1:cx + 1,
cy = (int)Y, py = (cy - 1<0)?0:cy - 1, ny = (cy + 1>=eigen.height())?eigen.height() - 1:cy + 1,
cz = (int)Z, pz = (cz - 1<0)?0:cz - 1, nz = (cz + 1>=eigen.depth())?eigen.depth() - 1:cz + 1;
const T cu = eigen(cx,cy,cz,3), cv = eigen(cx,cy,cz,4), cw = eigen(cx,cy,cz,5);
align_eigen(px,py,pz); align_eigen(cx,py,pz); align_eigen(nx,py,pz);
align_eigen(px,cy,pz); align_eigen(cx,cy,pz); align_eigen(nx,cy,pz);
align_eigen(px,ny,pz); align_eigen(cx,ny,pz); align_eigen(nx,ny,pz);
align_eigen(px,py,cz); align_eigen(cx,py,cz); align_eigen(nx,py,cz);
align_eigen(px,cy,cz); align_eigen(nx,cy,cz);
align_eigen(px,ny,cz); align_eigen(cx,ny,cz); align_eigen(nx,ny,cz);
align_eigen(px,py,nz); align_eigen(cx,py,nz); align_eigen(nx,py,nz);
align_eigen(px,cy,nz); align_eigen(cx,cy,nz); align_eigen(nx,cy,nz);
align_eigen(px,ny,nz); align_eigen(cx,ny,nz); align_eigen(nx,ny,nz);
const T
u0 = 0.5f*dl*eigen.linear_atXYZ(X,Y,Z,3),
v0 = 0.5f*dl*eigen.linear_atXYZ(X,Y,Z,4),
w0 = 0.5f*dl*eigen.linear_atXYZ(X,Y,Z,5),
u1 = 0.5f*dl*eigen.linear_atXYZ(X + u0,Y + v0,Z + w0,3),
v1 = 0.5f*dl*eigen.linear_atXYZ(X + u0,Y + v0,Z + w0,4),
w1 = 0.5f*dl*eigen.linear_atXYZ(X + u0,Y + v0,Z + w0,5),
u2 = 0.5f*dl*eigen.linear_atXYZ(X + u1,Y + v1,Z + w1,3),
v2 = 0.5f*dl*eigen.linear_atXYZ(X + u1,Y + v1,Z + w1,4),
w2 = 0.5f*dl*eigen.linear_atXYZ(X + u1,Y + v1,Z + w1,5),
u3 = 0.5f*dl*eigen.linear_atXYZ(X + u2,Y + v2,Z + w2,3),
v3 = 0.5f*dl*eigen.linear_atXYZ(X + u2,Y + v2,Z + w2,4),
w3 = 0.5f*dl*eigen.linear_atXYZ(X + u2,Y + v2,Z + w2,5);
T
u = u0/3 + 2*u1/3 + 2*u2/3 + u3/3,
v = v0/3 + 2*v1/3 + 2*v2/3 + v3/3,
w = w0/3 + 2*w1/3 + 2*w2/3 + w3/3;
if (u*pu + v*pv + w*pw<0) { u = -u; v = -v; w = -w; }
normU = (float)std::sqrt(u*u + v*v + w*w);
const float scal = (u*pu + v*pv + w*pw)/(normU*normpU);
if (scal<cmin) stopflag=true;
X+=(pu=u); Y+=(pv=v); Z+=(pw=w);
normpU = normU;
l+=dl;
}
}
// Backward tracking
l = dl; X = (float)X0; Y = (float)Y0; Z = (float)Z0;
pu = eigen(X0,Y0,Z0,3);
pv = eigen(X0,Y0,Z0,4);
pw = eigen(X0,Y0,Z0,5);
normpU = (float)std::sqrt(pu*pu + pv*pv + pw*pw);
stopflag = false;
while (!stopflag) {
if (X<0 || X>eigen.width() - 1 || Y<0 || Y>eigen.height() - 1 || Z<0 || Z>eigen.depth() - 1 ||
eigen((int)X,(int)Y,(int)Z,12)<FAmin || l>lmax) stopflag = true;
else {
const int
cx = (int)X, px = (cx - 1<0)?0:cx - 1, nx = (cx + 1>=eigen.width())?eigen.width() - 1:cx + 1,
cy = (int)Y, py = (cy - 1<0)?0:cy - 1, ny = (cy + 1>=eigen.height())?eigen.height() - 1:cy + 1,
cz = (int)Z, pz = (cz - 1<0)?0:cz - 1, nz = (cz + 1>=eigen.depth())?eigen.depth() - 1:cz + 1;
const T cu = eigen(cx,cy,cz,3), cv = eigen(cx,cy,cz,4), cw = eigen(cx,cy,cz,5);
align_eigen(px,py,pz); align_eigen(cx,py,pz); align_eigen(nx,py,pz);
align_eigen(px,cy,pz); align_eigen(cx,cy,pz); align_eigen(nx,cy,pz);
align_eigen(px,ny,pz); align_eigen(cx,ny,pz); align_eigen(nx,ny,pz);
align_eigen(px,py,cz); align_eigen(cx,py,cz); align_eigen(nx,py,cz);
align_eigen(px,cy,cz); align_eigen(nx,cy,cz);
align_eigen(px,ny,cz); align_eigen(cx,ny,cz); align_eigen(nx,ny,cz);
align_eigen(px,py,nz); align_eigen(cx,py,nz); align_eigen(nx,py,nz);
align_eigen(px,cy,nz); align_eigen(cx,cy,nz); align_eigen(nx,cy,nz);
align_eigen(px,ny,nz); align_eigen(cx,ny,nz); align_eigen(nx,ny,nz);
const T
u0 = 0.5f*dl*eigen.linear_atXYZ(X,Y,Z,3),
v0 = 0.5f*dl*eigen.linear_atXYZ(X,Y,Z,4),
w0 = 0.5f*dl*eigen.linear_atXYZ(X,Y,Z,5),
u1 = 0.5f*dl*eigen.linear_atXYZ(X + u0,Y + v0,Z + w0,3),
v1 = 0.5f*dl*eigen.linear_atXYZ(X + u0,Y + v0,Z + w0,4),
w1 = 0.5f*dl*eigen.linear_atXYZ(X + u0,Y + v0,Z + w0,5),
u2 = 0.5f*dl*eigen.linear_atXYZ(X + u1,Y + v1,Z + w1,3),
v2 = 0.5f*dl*eigen.linear_atXYZ(X + u1,Y + v1,Z + w1,4),
w2 = 0.5f*dl*eigen.linear_atXYZ(X + u1,Y + v1,Z + w1,5),
u3 = 0.5f*dl*eigen.linear_atXYZ(X + u2,Y + v2,Z + w2,3),
v3 = 0.5f*dl*eigen.linear_atXYZ(X + u2,Y + v2,Z + w2,4),
w3 = 0.5f*dl*eigen.linear_atXYZ(X + u2,Y + v2,Z + w2,5);
T
u = u0/3 + 2*u1/3 + 2*u2/3 + u3/3,
v = v0/3 + 2*v1/3 + 2*v2/3 + v3/3,
w = w0/3 + 2*w1/3 + 2*w2/3 + w3/3;
if (u*pu + v*pv + w*pw<0) { u = -u; v = -v; w = -w; }
normU = (float)std::sqrt(u*u + v*v + w*w);
const float scal = (u*pu + v*pv + w*pw)/(normU*normpU);
if (scal<cmin) stopflag=true;
X-=(pu=u); Y-=(pv=v); Z-=(pw=w);
normpU=normU;
l+=dl;
resf.insert(CImg<>::vector(X,Y,Z),0);
}
}
return resf>'x';
}
// Main procedure
//----------------
int main(int argc,char **argv) {
// Read and init data
//--------------------
cimg_usage("A viewer of Diffusion-Tensor MRI volumes.");
const char *file_i = cimg_option("-i",(char*)0,"Input : Filename of tensor field (volume wxhxdx6)");
const char* vsize = cimg_option("-vsize","1x1x1","Input : Voxel aspect");
const bool normalize = cimg_option("-normalize",true,"Input : Enable tensor normalization");
const char *file_f = cimg_option("-f",(char*)0,"Input : Input fibers\n");
const float dl = cimg_option("-dl",0.5f,"Fiber computation : Integration step");
const float famin = cimg_option("-famin",0.3f,"Fiber computation : Fractional Anisotropy threshold");
const float cmin = cimg_option("-cmin",0.2f,"Fiber computation : Curvature threshold");
const float lmin = cimg_option("-lmin",10.0f,"Fiber computation : Minimum length\n");
const float lmax = cimg_option("-lmax",1000.0f,"Fiber computation : Maximum length\n");
const float tfact = cimg_option("-tfact",1.2f,"Display : Tensor size factor");
const char *bgcolor = cimg_option("-bg","0,0,0","Display : Background color");
unsigned int bgr = 0, bgg = 0, bgb = 0;
std::sscanf(bgcolor,"%u%*c%u%*c%u",&bgr,&bgg,&bgb);
CImg<> tensors;
if (file_i) {
std::fprintf(stderr,"\n- Loading tensors '%s'",cimg::basename(file_i));
tensors.load(file_i);
} else {
// Create a synthetic tensor field here
std::fprintf(stderr,"\n- No input files : Creating a synthetic tensor field");
tensors.assign(32,32,32,6);
cimg_forXYZ(tensors,x,y,z) {
const float
u = x - tensors.width()/2.0f,
v = y - tensors.height()/2.0f,
w = z - tensors.depth()/2.0f,
norm = (float)std::sqrt(1e-5f + u*u + v*v + w*w),
nu = u/norm, nv = v/norm, nw = w/norm;
const CImg<>
dir1 = CImg<>::vector(nu,nv,nw),
dir2 = CImg<>::vector(-nv,nu,nw),
dir3 = CImg<>::vector(nw*(nv - nu),-nw*(nu + nv),nu*nu + nv*nv);
tensors.set_tensor_at(2.0*dir1*dir1.get_transpose() +
1.0*dir2*dir2.get_transpose() +
0.7*dir3*dir3.get_transpose(),
x,y,z);
}
}
float voxw = 1, voxh = 1, voxd = 1;
std::sscanf(vsize,"%f%*c%f%*c%f",&voxw,&voxh,&voxd);
std::fprintf(stderr," : %ux%ux%u image, voxsize=%gx%gx%g.",
tensors.width(),tensors.height(),tensors.depth(),
voxw,voxh,voxd);
CImgList<> fibers;
if (file_f) {
std::fprintf(stderr,"\n- Loading fibers '%s'.",cimg::basename(file_f));
fibers.load(file_f);
}
const CImg<unsigned char> fiber_palette =
CImg<>(2,1,1,3).fill(200,255,0,255,0,200).RGBtoHSV().resize(256,1,1,3,3).HSVtoRGB();
// Compute eigen elements
//------------------------
std::fprintf(stderr,"\n- Compute eigen elements.");
CImg<unsigned char> coloredFA(tensors.width(),tensors.height(),tensors.depth(),3);
CImg<> eigen(tensors.width(),tensors.height(),tensors.depth(),13);
CImg<> val,vec;
float eigmax = 0;
cimg_forXYZ(tensors,x,y,z) {
tensors.get_tensor_at(x,y,z).symmetric_eigen(val,vec);
eigen(x,y,z,0) = val[0]; eigen(x,y,z,1) = val[1]; eigen(x,y,z,2) = val[2];
if (val[0]<0) val[0] = 0;
if (val[1]<0) val[1] = 0;
if (val[2]<0) val[2] = 0;
if (val[0]>eigmax) eigmax = val[0];
eigen(x,y,z,3) = vec(0,0); eigen(x,y,z,4) = vec(0,1); eigen(x,y,z,5) = vec(0,2);
eigen(x,y,z,6) = vec(1,0); eigen(x,y,z,7) = vec(1,1); eigen(x,y,z,8) = vec(1,2);
eigen(x,y,z,9) = vec(2,0); eigen(x,y,z,10) = vec(2,1); eigen(x,y,z,11) = vec(2,2);
const float fa = get_FA(val[0],val[1],val[2]);
eigen(x,y,z,12) = fa;
const int
r = (int)std::min(255.0f,1.5f*cimg::abs(255*fa*vec(0,0))),
g = (int)std::min(255.0f,1.5f*cimg::abs(255*fa*vec(0,1))),
b = (int)std::min(255.0f,1.5f*cimg::abs(255*fa*vec(0,2)));
coloredFA(x,y,z,0) = (unsigned char)r;
coloredFA(x,y,z,1) = (unsigned char)g;
coloredFA(x,y,z,2) = (unsigned char)b;
}
tensors.assign();
std::fprintf(stderr,"\n- Maximum diffusivity = %g, Maximum FA = %g",eigmax,eigen.get_shared_channel(12).max());
if (normalize) {
std::fprintf(stderr,"\n- Normalize tensors.");
eigen.get_shared_channels(0,2)/=eigmax;
}
// Init display and begin user interaction
//-----------------------------------------
std::fprintf(stderr,"\n- Open user window.");
CImgDisplay disp(256,256,"DTMRI Viewer",0);
CImgDisplay disp3d(800,600,"3D Local View",0,false,true);
unsigned int XYZ[3];
XYZ[0] = eigen.width()/2; XYZ[1] = eigen.height()/2; XYZ[2] = eigen.depth()/2;
while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) {
const CImg<int> s = coloredFA.get_select(disp,2,XYZ);
if (!disp.is_closed()) switch (disp.key()) {
// Open 3D visualization window
//-----------------------------
case cimg::keyA :
case 0 : {
const unsigned char white[] = { 255 };
disp3d.display(CImg<unsigned char>(disp3d.width(),disp3d.height(),1,1,0).
draw_text(10,10,"Please wait...",white)).show();
int xm, ym, zm, xM, yM, zM;
if (!disp.key()) { xm = s[0]; ym = s[1]; zm = s[2]; xM = s[3]; yM = s[4]; zM = s[5]; }
else { xm = ym = zm = 0; xM = eigen.width() - 1; yM = eigen.height() - 1; zM = eigen.height() - 1; }
const CImg<> img = eigen.get_crop(xm,ym,zm,xM,yM,zM);
CImgList<> points;
CImgList<unsigned int> primitives;
CImgList<unsigned char> colors;
// Add ellipsoids to the 3D scene
int X = img.width()/2, Y = img.height()/2, Z = img.depth()/2;
cimg_forXY(img,x,y)
insert_ellipsoid(img.get_vector_at(x,y,Z),(float)x,(float)y,(float)Z,
tfact,voxw,voxh,voxd,points,primitives,colors,10,6);
cimg_forXZ(img,x,z)
insert_ellipsoid(img.get_vector_at(x,Y,z),(float)x,(float)Y,(float)z,
tfact,voxw,voxh,voxd,points,primitives,colors,10,6);
cimg_forYZ(img,y,z)
insert_ellipsoid(img.get_vector_at(X,y,z),(float)X,(float)y,(float)z,
tfact,voxw,voxh,voxd,points,primitives,colors,10,6);
// Add computed fibers to the 3D scene
const CImg<> veigen = eigen.get_crop(xm,ym,zm,xM,yM,zM);
cimglist_for(fibers,l) {
const CImg<>& fiber = fibers[l];
if (fiber.width()) insert_fiber(fiber,eigen,fiber_palette,
xm,ym,zm,voxw,voxh,voxd,
points,primitives,colors);
}
// Display 3D object
CImg<unsigned char> visu = CImg<unsigned char>(3,disp3d.width(),disp3d.height(),1,0).
fill((unsigned char)bgr,(unsigned char)bgg,(unsigned char)bgb).
permute_axes("yzcx");
bool stopflag = false;
while (!disp3d.is_closed() && !stopflag) {
const CImg<> pts = points>'x';
visu.display_object3d(disp3d,pts,primitives,colors,true,4,-1,false,800,0.05f,1.0f);
disp3d.close();
switch (disp3d.key()) {
case cimg::keyM : { // Create movie
std::fprintf(stderr,"\n- Movie mode.\n");
const unsigned int N = 256;
CImg<> cpts(pts);
const CImg<> x = pts.get_shared_row(0), y = pts.get_shared_row(1), z = pts.get_shared_row(2);
float
_xm, _xM = x.max_min(_xm),
_ym, _yM = y.max_min(_ym),
_zm, _zM = z.max_min(_zm),
ratio = 2.0f*std::min(visu.width(),visu.height())/(3.0f*cimg::max(_xM - _xm,_yM - _ym,_zM - _zm)),
dx = 0.5f*(_xM + _xm), dy = 0.5f*(_yM + _ym), dz = 0.5f*(_zM + _zm);
cimg_forX(pts,l) {
cpts(l,0) = (pts(l,0) - dx)*ratio;
cpts(l,1) = (pts(l,1) - dy)*ratio;
cpts(l,2) = (pts(l,2) - dz)*ratio;
}
for (unsigned int i=0; i<N; i++) {
std::fprintf(stderr,"\r- Frame %u/%u.",i,N);
const float alpha = (float)(i*360/N);
const CImg<> rpts = CImg<>::rotation_matrix(0,1,0,alpha)*CImg<>::rotation_matrix(1,0,0,75)*cpts;
visu.fill(0).draw_object3d(visu.width()/2.0f,visu.height()/2.0f,-500.0f,rpts,primitives,colors,
4,false,800.0f,visu.width()/2.0f,visu.height()/2.0f,-800.0f,0.05f,1.0f).
display(disp3d);
visu.save("frame.png",i);
}
visu.fill(0);
} break;
default: stopflag = true;
}
}
if (disp3d.is_fullscreen()) disp3d.toggle_fullscreen().resize(800,600).close();
} break;
// Compute region statistics
//---------------------------
case cimg::keyR : {
std::fprintf(stderr,"\n- Statistics computation. Select region."); std::fflush(stderr);
const CImg<int> sel = coloredFA.get_select(disp,2,XYZ);
int xm, ym, zm, xM, yM, zM;
if (!disp.key()) { xm = sel[0]; ym = sel[1]; zm = sel[2]; xM = sel[3]; yM = sel[4]; zM = sel[5]; }
else { xm = ym = zm = 0; xM = eigen.width() - 1; yM = eigen.height() - 1; zM = eigen.height() - 1; }
const CImg<> img = eigen.get_crop(xm,ym,zm,xM,yM,zM);
std::fprintf(stderr,"\n- Mean diffusivity = %g, Mean FA = %g\n",
eigen.get_shared_channel(0).mean(),
eigen.get_shared_channel(12).mean());
} break;
// Track fiber bundle (single region)
//----------------------------------
case cimg::keyF : {
std::fprintf(stderr,"\n- Tracking mode (single region). Select starting region.\n"); std::fflush(stderr);
const CImg<int> sel = coloredFA.get_select(disp,2,XYZ);
const unsigned int N = fibers.size();
for (int z = sel[2]; z<=sel[5]; ++z)
for (int y = sel[1]; y<=sel[4]; ++y)
for (int x = sel[0]; x<=sel[3]; ++x) {
const CImg<> fiber = get_fibertrack(eigen,x,y,z,lmax,dl,famin,cmin);
if (fiber.width()>lmin) {
std::fprintf(stderr,"\rFiber %u : Starting from (%d,%d,%d)\t\t",fibers.size(),x,y,z);
fibers.insert(fiber);
}
}
std::fprintf(stderr,"\n- %u fiber(s) added (total %u).",fibers.size() - N,fibers.size());
} break;
// Track fiber bundle (double regions)
//------------------------------------
case cimg::keyG : {
std::fprintf(stderr,"\n- Tracking mode (double region). Select starting region."); std::fflush(stderr);
const CImg<int> sel = coloredFA.get_select(disp,2,XYZ);
std::fprintf(stderr," Select ending region."); std::fflush(stderr);
const CImg<int> nsel = coloredFA.get_select(disp,2,XYZ);
const unsigned int N = fibers.size();
// Track from start to end
for (int z = sel[2]; z<=sel[5]; ++z)
for (int y = sel[1]; y<=sel[4]; ++y)
for (int x = sel[0]; x<=sel[3]; ++x) {
const CImg<> fiber = get_fibertrack(eigen,x,y,z,lmax,dl,famin,cmin);
if (fiber.width()>lmin) {
bool valid_fiber = false;
cimg_forX(fiber,k) {
const int fx = (int)fiber(k,0), fy = (int)fiber(k,1), fz = (int)fiber(k,2);
if (fx>=nsel[0] && fx<=nsel[3] &&
fy>=nsel[1] && fy<=nsel[4] &&
fz>=nsel[2] && fz<=nsel[5]) valid_fiber = true;
}
if (valid_fiber) fibers.insert(fiber);
}
}
// Track from end to start
for (int z = nsel[2]; z<=nsel[5]; ++z)
for (int y = nsel[1]; y<=nsel[4]; ++y)
for (int x = nsel[0]; x<=nsel[3]; ++x) {
const CImg<> fiber = get_fibertrack(eigen,x,y,z,lmax,dl,famin,cmin);
if (fiber.width()>lmin) {
bool valid_fiber = false;
cimg_forX(fiber,k) {
const int fx = (int)fiber(k,0), fy = (int)fiber(k,1), fz = (int)fiber(k,2);
if (fx>=sel[0] && fx<=sel[3] &&
fy>=sel[1] && fy<=sel[4] &&
fz>=sel[2] && fz<=sel[5]) valid_fiber = true;
}
if (valid_fiber) {
std::fprintf(stderr,"\rFiber %u : Starting from (%d,%d,%d)\t\t",fibers.size(),x,y,z);
fibers.insert(fiber);
}
}
}
std::fprintf(stderr," %u fiber(s) added (total %u).",fibers.size() - N,fibers.size());
} break;
// Clear fiber bundle
//-------------------
case cimg::keyC : {
std::fprintf(stderr,"\n- Fibers removed.");
fibers.assign();
} break;
// Save fibers
//-------------
case cimg::keyS : {
fibers.save("fibers.cimg");
std::fprintf(stderr,"\n- Fibers saved.");
} break;
}
}
std::fprintf(stderr,"\n- Exit.\n\n\n");
return 0;
}
|