1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
/*
#
# File : edge_explorer2d.cpp
# ( C++ source file )
#
# Description : Real time edge detection while moving a ROI
# (rectangle of interest) over the original image.
# This file is a part of the CImg Library project.
# ( http://cimg.eu )
#
# Copyright : Orges Leka
# ( oleka(at)students.uni-mainz.de )
#
# License : CeCILL v2.0
# ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
#
*/
#include "CImg.h"
using namespace cimg_library;
#ifndef cimg_imagepath
#define cimg_imagepath "img/"
#endif
// Main procedure
//----------------
int main(int argc, char** argv) {
// Usage of the program displayed at the command line
cimg_usage("Real time edge detection with CImg. (c) Orges Leka");
// Read command line arguments
// With cimg_option we can get a new name for the image which is to be loaded from the command line.
const char* img_name = cimg_option("-i", cimg_imagepath "parrot.ppm","Input image.");
double
alpha = cimg_option("-a",1.0,"Blurring the gradient image."),
thresL = cimg_option("-tl",13.5,"Lower thresholding used in Hysteresis."),
thresH = cimg_option("-th",13.6,"Higher thresholding used in Hysteresis.");
const unsigned int
mode = cimg_option("-m",1,"Detection mode: 1 = Hysteresis, 2 = Gradient angle."),
factor = cimg_option("-s",80,"Half-size of edge-explorer window.");
cimg_help("\nAdditional notes : user can press following keys on main display window :\n"
" - Left arrow : Decrease alpha.\n"
" - Right arrow : Increase alpha.\n");
// Construct a new image called 'edge' of size (2*factor,2*factor)
// and of type 'unsigned char'.
CImg<unsigned char> edge(2*factor,2*factor);
CImgDisplay disp_edge(512,512,"Edge Explorer");
// Load the image with the name 'img_name' into the CImg 'img'.
// and create a display window 'disp' for the image 'img'.
const CImg<unsigned char> img = CImg<float>::get_load(img_name).norm().normalize(0,255);
CImgDisplay disp(img,"Original Image");
// Begin main interaction loop.
int x = 0, y = 0;
bool redraw = false;
while (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC()) {
disp.wait(100);
if (disp.button()&1) { alpha+=0.05; redraw = true; }
if (disp.button()&2) { alpha-=0.05; redraw = true; }
if (disp.wheel()) { alpha+=0.05*disp.wheel(); disp.set_wheel(); redraw = true; }
if (alpha<0) alpha = 0;
if (disp_edge.is_resized()) { disp_edge.resize(); redraw = true; }
if (disp_edge.is_closed()) disp_edge.show();
if (disp.is_resized()) disp.resize(disp);
if (disp.mouse_x()>=0) {
x = disp.mouse_x(); // Getting the current position of the mouse
y = disp.mouse_y(); //
redraw = true; // The image should be redrawn
}
if (redraw) {
disp_edge.set_title("Edge explorer (alpha=%g)",alpha);
const int
x0 = x - factor, y0 = y - factor, // These are the coordinates for the red rectangle
x1 = x + factor, y1 = y + factor; // to be drawn on the original image
const unsigned char
red[3] = { 255,0,0 }, //
black[3] = { 0,0,0 }; // Defining the colors we need for drawing
(+img).draw_rectangle(x0,y0,x1,y1,red,1.0f,0x55555555U).display(disp);
//^ We draw the red rectangle on the original window using 'draw_line'.
// Then we display the result via '.display(disp)' .
// Observe, that the color 'red' has to be of type 'const unsigned char',
// since the image 'img' is of type 'const CImg<unsigned char>'.
//'normalize' is used to get a greyscaled image.
CImg<> visu_bw = CImg<>(img).get_crop(x0,y0,x1,y1).get_norm().normalize(0,255).resize(-100,-100,1,2,2);
// get_crop(x0,y0,x1,y1) gets the rectangle we are interested in.
edge.fill(255); // Background color in the edge-detection window is white
// grad[0] is the gradient image of 'visu_bw' in x-direction.
// grad[1] is the gradient image of 'visu_bw' in y-direction.
CImgList<> grad(visu_bw.blur((float)alpha).normalize(0,255).get_gradient());
// To avoid unnecessary calculations in the image loops:
const double
pi = cimg::PI,
p8 = pi/8.0, p38 = 3.0*p8,
p58 = 5.0*p8, p78 = 7.0*p8;
cimg_forXY(visu_bw,s,t) {
// We take s,t instead of x,y, since x,y are already used.
// s corresponds to the x-ordinate of the pixel while t corresponds to the y-ordinate.
if ( 1 <= s && s <= visu_bw.width() - 1 && 1 <= t && t <=visu_bw.height() - 1) { // if - good points
double
Gs = grad[0](s,t), //
Gt = grad[1](s,t), // The actual pixel is (s,t)
Gst = cimg::abs(Gs) + cimg::abs(Gt), //
// ^-- For efficient computation we observe that |Gs|+ |Gt| ~=~ sqrt( Gs^2 + Gt^2)
Gr, Gur, Gu, Gul, Gl, Gdl, Gd, Gdr;
// ^-- right, up right, up, up left, left, down left, down, down right.
double theta = std::atan2(std::max(1e-8,Gt),Gs) + pi; // theta is from the interval [0,Pi]
switch(mode) {
case 1: // Hysterese is applied
if (Gst>=thresH) { edge.draw_point(s,t,black); }
else if (thresL <= Gst && Gst < thresH) {
// Neighbourhood of the actual pixel:
Gr = cimg::abs(grad[0](s + 1,t)) + cimg::abs(grad[1](s + 1,t)); // right
Gl = cimg::abs(grad[0](s - 1,t)) + cimg::abs(grad[1](s - 1,t)); // left
Gur = cimg::abs(grad[0](s + 1,t + 1)) + cimg::abs(grad[1](s + 1,t + 1)); // up right
Gdl = cimg::abs(grad[0](s - 1,t - 1)) + cimg::abs(grad[1](s - 1,t - 1)); // down left
Gu = cimg::abs(grad[0](s,t + 1)) + cimg::abs(grad[1](s,t + 1)); // up
Gd = cimg::abs(grad[0](s,t - 1)) + cimg::abs(grad[1](s,t - 1)); // down
Gul = cimg::abs(grad[0](s - 1,t + 1)) + cimg::abs(grad[1](s - 1,t + 1)); // up left
Gdr = cimg::abs(grad[0](s + 1,t - 1)) + cimg::abs(grad[1](s + 1,t - 1)); // down right
if (Gr>=thresH || Gur>=thresH || Gu>=thresH || Gul>=thresH
|| Gl>=thresH || Gdl >=thresH || Gu >=thresH || Gdr >=thresH) {
edge.draw_point(s,t,black);
}
};
break;
case 2: // Angle 'theta' of the gradient (Gs,Gt) at the point (s,t)
if(theta >= pi)theta-=pi;
//rounding theta:
if ((p8 < theta && theta <= p38 ) || (p78 < theta && theta <= pi)) {
// See (*) below for explanation of the vocabulary used.
// Direction-pixel is (s + 1,t) with corresponding gradient value Gr.
Gr = cimg::abs(grad[0](s + 1,t)) + cimg::abs(grad[1](s + 1,t)); // right
// Contra-direction-pixel is (s - 1,t) with corresponding gradient value Gl.
Gl = cimg::abs(grad[0](s - 1,t)) + cimg::abs(grad[1](s - 1,t)); // left
if (Gr < Gst && Gl < Gst) {
edge.draw_point(s,t,black);
}
}
else if ( p8 < theta && theta <= p38) {
// Direction-pixel is (s + 1,t + 1) with corresponding gradient value Gur.
Gur = cimg::abs(grad[0](s + 1,t + 1)) + cimg::abs(grad[1](s + 1,t + 1)); // up right
// Contra-direction-pixel is (s-1,t-1) with corresponding gradient value Gdl.
Gdl = cimg::abs(grad[0](s - 1,t - 1)) + cimg::abs(grad[1](s - 1,t - 1)); // down left
if (Gur < Gst && Gdl < Gst) {
edge.draw_point(s,t,black);
}
}
else if ( p38 < theta && theta <= p58) {
// Direction-pixel is (s,t + 1) with corresponding gradient value Gu.
Gu = cimg::abs(grad[0](s,t + 1)) + cimg::abs(grad[1](s,t + 1)); // up
// Contra-direction-pixel is (s,t - 1) with corresponding gradient value Gd.
Gd = cimg::abs(grad[0](s,t - 1)) + cimg::abs(grad[1](s,t - 1)); // down
if (Gu < Gst && Gd < Gst) {
edge.draw_point(s,t,black);
}
}
else if (p58 < theta && theta <= p78) {
// Direction-pixel is (s - 1,t + 1) with corresponding gradient value Gul.
Gul = cimg::abs(grad[0](s - 1,t + 1)) + cimg::abs(grad[1](s - 1,t + 1)); // up left
// Contra-direction-pixel is (s + 1,t - 1) with corresponding gradient value Gdr.
Gdr = cimg::abs(grad[0](s + 1,t - 1)) + cimg::abs(grad[1](s + 1,t - 1)); // down right
if (Gul < Gst && Gdr < Gst) {
edge.draw_point(s,t,black);
}
};
break;
} // switch
} // if good-points
} // cimg_forXY */
edge.display(disp_edge);
}// if redraw
} // while
return 0;
}
// (*) Comments to the vocabulary used:
// If (s,t) is the current pixel, and G=(Gs,Gt) is the gradient at (s,t),
// then the _direction_pixel_ of (s,t) shall be the one of the eight neighbour pixels
// of (s,t) in whose direction the gradient G shows.
// The _contra_direction_pixel is the pixel in the opposite direction in which the gradient G shows.
// The _corresponding_gradient_value_ of the pixel (x,y) with gradient G = (Gx,Gy)
// shall be |Gx| + |Gy| ~=~ sqrt(Gx^2 + Gy^2).
|