1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
/*
#
# File : pde_TschumperleDeriche2d.cpp
# ( C++ source file )
#
# Description : Implementation of the Tschumperlé-Deriche's Regularization
# PDE, for 2D multivalued images, as described in the articles below.
# This file is a part of the CImg Library project.
# ( http://cimg.eu )
#
# (1) PDE-Based Regularization of Multivalued Images and Applications.
# (D. Tschumperlé). PhD Thesis. University of Nice-Sophia Antipolis, December 2002.
# (2) Diffusion PDE's on Vector-valued Images : Local Approach and Geometric Viewpoint.
# (D. Tschumperlé and R. Deriche). IEEE Signal Processing Magazine, October 2002.
# (3) Vector-Valued Image Regularization with PDE's : A Common Framework for Different Applications.
# (D. Tschumperlé and R. Deriche). CVPR'2003, Computer Vision and Pattern Recognition,
# Madison, United States, June 2003.
#
# This code can be used to perform image restoration, inpainting, magnification or flow visualization.
#
# Copyright : David Tschumperlé
# ( http://tschumperle.users.greyc.fr/ )
#
# License : CeCILL v2.0
# ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
#
*/
#include "CImg.h"
using namespace cimg_library;
#ifndef cimg_imagepath
#define cimg_imagepath "img/"
#endif
#undef min
#undef max
// Main procedure
//----------------
int main(int argc,char **argv) {
// Read command line arguments
//-----------------------------
cimg_usage("Tschumperlé-Deriche's flow for 2D Image Restoration, Inpainting, Magnification or Flow visualization");
const char *file_i = cimg_option("-i",cimg_imagepath "milla.bmp","Input image");
const char *file_m = cimg_option("-m",(char*)NULL,"Mask image (if Inpainting)");
const char *file_f = cimg_option("-f",(char*)NULL,"Flow image (if Flow visualization)");
const char *file_o = cimg_option("-o",(char*)NULL,"Output file");
const double zoom = cimg_option("-zoom",1.0,"Image magnification");
const unsigned int nb_iter = cimg_option("-iter",100000,"Number of iterations");
const double dt = cimg_option("-dt",20.0,"Adapting time step");
const double alpha = cimg_option("-alpha",0.0,"Gradient smoothing");
const double sigma = cimg_option("-sigma",0.5,"Structure tensor smoothing");
const float a1 = cimg_option("-a1",0.5f,"Diffusion limiter along minimal variations");
const float a2 = cimg_option("-a2",0.9f,"Diffusion limiter along maximal variations");
const double noiseg = cimg_option("-ng",0.0,"Add gauss noise before aplying the algorithm");
const double noiseu = cimg_option("-nu",0.0,"Add uniform noise before applying the algorithm");
const double noises = cimg_option("-ns",0.0,"Add salt&pepper noise before applying the algorithm");
const bool stflag = cimg_option("-stats",false,"Display image statistics at each iteration");
const unsigned int save = cimg_option("-save",0,"Iteration saving step");
const unsigned int visu = cimg_option("-visu",10,"Visualization step (0=no visualization)");
const unsigned int init = cimg_option("-init",3,"Inpainting initialization (0=black, 1=white, 2=noise, 3=unchanged)");
const unsigned int skip = cimg_option("-skip",1,"Step of image geometry computation");
bool view_t = cimg_option("-d",false,"View tensor directions (useful for debug)");
double xdt = 0;
// Variable initialization
//-------------------------
CImg<> img, flow;
CImg<int> mask;
if (file_i) {
img = CImg<>(file_i).resize(-100,-100,1,-100);
if (file_m) mask = CImg<unsigned char>(file_m).resize(img.width(),img.height(),1,1);
else if (zoom>1) {
mask = CImg<int>(img.width(),img.height(),1,1,-1).
resize((int)(img.width()*zoom),(int)(img.height()*zoom),1,1,4) + 1;
img.resize((int)(img.width()*zoom),(int)(img.height()*zoom),1,-100,3);
}
} else {
if (file_f) {
flow = CImg<>(file_f);
img = CImg<>((int)(flow.width()*zoom),(int)(flow.height()*zoom),1,1,0).noise(100,2);
flow.resize(img.width(),img.height(),1,2,3);
} else
throw CImgException("You need to specify at least one input image (option -i), or one flow image (option -f)");
}
img.noise(noiseg,0).noise(noiseu,1).noise(noises,2);
float initial_min, initial_max = img.max_min(initial_min);
if (mask && init!=3)
cimg_forXYC(img,x,y,k) if (mask(x,y))
img(x,y,k) = (float)((init?
(init==1?initial_max:((initial_max - initial_min)*cimg::rand())):
initial_min));
CImgDisplay disp;
if (visu) disp.assign(img,"Iterated Image");
CImg<> G(img.width(),img.height(),1,3,0), T(G), veloc(img), val(2), vec(2,2);
// PDE main iteration loop
//-------------------------
for (unsigned int iter = 0; iter<nb_iter &&
(!disp || (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC())); ++iter) {
std::printf("\riter %u , xdt = %g ",iter,xdt); std::fflush(stdout);
if (stflag) img.print();
if (disp && disp.is_keySPACE()) { view_t = !view_t; disp.set_key(); }
if (!(iter%skip)) {
// Compute the tensor field T, used to drive the diffusion
//---------------------------------------------------------
// When using PDE for flow visualization
if (flow) cimg_forXY(flow,x,y) {
const float
u = flow(x,y,0,0),
v = flow(x,y,0,1),
n = (float)std::sqrt((double)(u*u + v*v)),
nn = (n!=0)?n:1;
T(x,y,0) = u*u/nn;
T(x,y,1) = u*v/nn;
T(x,y,2) = v*v/nn;
} else {
// Compute structure tensor field G
CImgList<> grad = img.get_gradient();
if (alpha!=0) cimglist_for(grad,l) grad[l].blur((float)alpha);
G.fill(0);
cimg_forXYC(img,x,y,k) {
const float ix = grad[0](x,y,k), iy = grad[1](x,y,k);
G(x,y,0) += ix*ix;
G(x,y,1) += ix*iy;
G(x,y,2) += iy*iy;
}
if (sigma!=0) G.blur((float)sigma);
// When using PDE for image restoration, inpainting or zooming
T.fill(0);
if (!mask) cimg_forXY(G,x,y) {
G.get_tensor_at(x,y).symmetric_eigen(val,vec);
const float
l1 = (float)std::pow(1.0f + val[0] + val[1],-a1),
l2 = (float)std::pow(1.0f + val[0] + val[1],-a2),
ux = vec(1,0),
uy = vec(1,1);
T(x,y,0) = l1*ux*ux + l2*uy*uy;
T(x,y,1) = l1*ux*uy - l2*ux*uy;
T(x,y,2) = l1*uy*uy + l2*ux*ux;
}
else cimg_forXY(G,x,y) if (mask(x,y)) {
G.get_tensor_at(x,y).symmetric_eigen(val,vec);
const float
ux = vec(1,0),
uy = vec(1,1);
T(x,y,0) = ux*ux;
T(x,y,1) = ux*uy;
T(x,y,2) = uy*uy;
}
}
}
// Compute the PDE velocity and update the iterated image
//--------------------------------------------------------
CImg_3x3(I,float);
veloc.fill(0);
cimg_forC(img,k) cimg_for3x3(img,x,y,0,k,I,float) {
const float
a = T(x,y,0),
b = T(x,y,1),
c = T(x,y,2),
ixx = Inc + Ipc - 2*Icc,
iyy = Icn + Icp - 2*Icc,
ixy = 0.25f*(Ipp + Inn - Ipn - Inp);
veloc(x,y,k) = a*ixx + 2*b*ixy + c*iyy;
}
if (dt>0) {
float m, M = veloc.max_min(m);
xdt = dt/std::max(cimg::abs(m),cimg::abs(M));
} else xdt=-dt;
img+=veloc*xdt;
img.cut((float)initial_min,(float)initial_max);
// Display and save iterations
if (disp && !(iter%visu)) {
if (!view_t) img.display(disp);
else {
const unsigned char white[3] = {255,255,255};
CImg<unsigned char> nvisu = img.get_resize(disp.width(),disp.height()).normalize(0,255);
CImg<> isophotes(img.width(),img.height(),1,2,0);
cimg_forXY(img,x,y) if (!mask || mask(x,y)) {
T.get_tensor_at(x,y).symmetric_eigen(val,vec);
isophotes(x,y,0) = vec(0,0);
isophotes(x,y,1) = vec(0,1);
}
nvisu.draw_quiver(isophotes,white,0.5f,10,9,0).display(disp);
}
}
if (save && file_o && !(iter%save)) img.save(file_o,iter);
if (disp) disp.resize().display(img);
}
// Save result and exit.
if (file_o) img.save(file_o);
return 0;
}
|