1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
|
/*
#
# File : radon_transform2d.cpp
# ( C++ source file )
#
# Description : An implementation of the Radon Transform.
# This file is a part of the CImg Library project.
# ( http://cimg.eu )
#
# Copyright : David G. Starkweather
# ( starkdg@sourceforge.net - starkweatherd@cox.net )
#
# License : CeCILL v2.0
# ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
#
*/
#include "CImg.h"
using namespace cimg_library;
#ifndef cimg_imagepath
#define cimg_imagepath "img/"
#endif
#define ROUNDING_FACTOR(x) (((x) >= 0) ? 0.5 : -0.5)
CImg<double> GaussianKernel(double rho);
CImg<float> ApplyGaussian(CImg<unsigned char> im,double rho);
CImg<unsigned char> RGBtoGrayScale(CImg<unsigned char> &im);
int GetAngle(int dy,int dx);
CImg<unsigned char> CannyEdges(CImg<float> im, double T1, double T2,bool doHysteresis);
CImg<> RadonTransform(CImg<unsigned char> im,int N);
// Main procedure
//----------------
int main(int argc,char **argv) {
cimg_usage("Illustration of the Radon Transform");
const char *file = cimg_option("-f",cimg_imagepath "parrot.ppm","path and file name");
const double sigma = cimg_option("-r",1.0,"blur coefficient for gaussian low pass filter (lpf)"),
thresh1 = cimg_option("-t1",0.50,"lower threshold for canny edge detector"),
thresh2 = cimg_option("-t2",1.25,"upper threshold for canny edge detector");;
const int N = cimg_option("-n",64,"number of angles to consider in the Radon transform - should be a power of 2");
//color to draw lines
const unsigned char green[] = {0,255,0};
CImg<unsigned char> src(file);
int rhomax = (int)std::sqrt((double)(src.width()*src.width() + src.height()*src.height()))/2;
if (cimg::dialog(cimg::basename(argv[0]),
"Instructions:\n"
"Click on space bar or Enter key to display Radon transform of given image\n"
"Click on anywhere in the transform window to display a \n"
"corresponding green line in the original image\n",
"Start", "Quit",0,0,0,0,
src.get_resize(100,100,1,3),true)) std::exit(0);
//retrieve a grayscale from the image
CImg<unsigned char> grayScaleIm;
if ((src.spectrum() == 3) && (src.width() > 0) && (src.height() > 0) && (src.depth() == 1))
grayScaleIm = (CImg<unsigned char>)src.get_norm(0).quantize(255,false);
else if ((src.spectrum() == 1)&&(src.width() > 0) && (src.height() > 0) && (src.depth() == 1))
grayScaleIm = src;
else { // image in wrong format
if (cimg::dialog(cimg::basename("wrong file format"),
"Incorrect file format\n","OK",0,0,0,0,0,
src.get_resize(100,100,1,3),true)) std::exit(0);
}
//blur the image with a Gaussian lpf to remove spurious edges (e.g. noise)
CImg<float> blurredIm = ApplyGaussian(grayScaleIm,sigma);
//use canny edge detection algorithm to get edge map of the image
//- the threshold values are used to perform hysteresis in the edge detection process
CImg<unsigned char> cannyEdgeMap = CannyEdges(blurredIm,thresh1,thresh2,false);
CImg<unsigned char> radonImage(500,400,1,1,0);
//display the two windows
CImgDisplay dispImage(src,"original image");
dispImage.move(CImgDisplay::screen_width()/8,CImgDisplay::screen_height()/8);
CImgDisplay dispRadon(radonImage,"Radon Transform");
dispRadon.move(CImgDisplay::screen_width()/4,CImgDisplay::screen_height()/4);
CImgDisplay dispCanny(cannyEdgeMap,"canny edges");
//start main display loop
while (!dispImage.is_closed() && !dispRadon.is_closed() &&
!dispImage.is_keyQ() && !dispRadon.is_keyQ() &&
!dispImage.is_keyESC() && !dispRadon.is_keyESC()) {
CImgDisplay::wait(dispImage,dispRadon);
if (dispImage.is_keySPACE() || dispRadon.is_keySPACE()) {
radonImage = (CImg<unsigned char>)RadonTransform(cannyEdgeMap,N).quantize(255,false).resize(500,400);
radonImage.display(dispRadon);
}
//when clicking on dispRadon window, draw line in original image window
if (dispRadon.button())
{
const double rho = dispRadon.mouse_y()*rhomax/dispRadon.height(),
theta = (dispRadon.mouse_x()*N/dispRadon.width())*2*cimg::PI/N,
x = src.width()/2 + rho*std::cos(theta),
y = src.height()/2 + rho*std::sin(theta);
const int x0 = (int)(x + 1000*std::cos(theta + cimg::PI/2)),
y0 = (int)(y + 1000*std::sin(theta + cimg::PI/2)),
x1 = (int)(x - 1000*std::cos(theta + cimg::PI/2)),
y1 = (int)(y - 1000*std::sin(theta + cimg::PI/2));
src.draw_line(x0,y0,x1,y1,green,1.0f,0xF0F0F0F0).display(dispImage);
}
}
return 0;
}
/**
* PURPOSE: create a 5x5 gaussian kernel matrix
* PARAM rho - gaussiam equation parameter (default = 1.0)
* RETURN CImg<double> the gaussian kernel
**/
CImg<double> GaussianKernel(double sigma = 1.0)
{
CImg<double> resultIm(5,5,1,1,0);
int midX = 3, midY = 3;
cimg_forXY(resultIm,X,Y) {
resultIm(X,Y) = std::ceil(256.0*(std::exp(-(midX*midX + midY*midY)/(2*sigma*sigma)))/(2*cimg::PI*sigma*sigma));
}
return resultIm;
}
/*
* PURPOSE: convolve a given image with the gaussian kernel
* PARAM CImg<unsigned char> im - image to be convolved upon
* PARAM double sigma - gaussian equation parameter
* RETURN CImg<float> image resulting from the convolution
* */
CImg<float> ApplyGaussian(CImg<unsigned char> im,double sigma)
{
CImg<float> smoothIm(im.width(),im.height(),1,1,0);
//make gaussian kernel
CImg<float> gk = GaussianKernel(sigma);
//apply gaussian
CImg_5x5(I,int);
cimg_for5x5(im,X,Y,0,0,I,int) {
float sum = 0;
sum += gk(0,0)*Ibb + gk(0,1)*Ibp + gk(0,2)*Ibc + gk(0,3)*Ibn + gk(0,4)*Iba;
sum += gk(1,0)*Ipb + gk(1,1)*Ipp + gk(1,2)*Ipc + gk(1,3)*Ipn + gk(1,4)*Ipa;
sum += gk(2,0)*Icb + gk(2,1)*Icp + gk(2,2)*Icc + gk(2,3)*Icn + gk(2,4)*Ica;
sum += gk(3,0)*Inb + gk(3,1)*Inp + gk(3,2)*Inc + gk(3,3)*Inn + gk(3,4)*Ina;
sum += gk(4,0)*Iab + gk(4,1)*Iap + gk(4,2)*Iac + gk(4,3)*Ian + gk(4,4)*Iaa;
smoothIm(X,Y) = sum/256;
}
return smoothIm;
}
/**
* PURPOSE: convert a given rgb image to a MxNX1 single vector grayscale image
* PARAM: CImg<unsigned char> im - rgb image to convert
* RETURN: CImg<unsigned char> grayscale image with MxNx1x1 dimensions
**/
CImg<unsigned char> RGBtoGrayScale(CImg<unsigned char> &im)
{
CImg<unsigned char> grayImage(im.width(),im.height(),im.depth(),1,0);
if (im.spectrum() == 3) {
cimg_forXYZ(im,X,Y,Z) {
grayImage(X,Y,Z,0) = (unsigned char)(0.299*im(X,Y,Z,0) + 0.587*im(X,Y,Z,1) + 0.114*im(X,Y,Z,2));
}
}
grayImage.quantize(255,false);
return grayImage;
}
/**
* PURPOSE: aux. function used by CannyEdges to quantize an angle theta given by gradients, dx and dy
* into 0 - 7
* PARAM: dx,dy - gradient magnitudes
* RETURN int value between 0 and 7
**/
int GetAngle(int dy,int dx)
{
double angle = cimg::abs(std::atan2((double)dy,(double)dx));
if ((angle >= -cimg::PI/8)&&(angle <= cimg::PI/8))//-pi/8 to pi/8 => 0
return 0;
else if ((angle >= cimg::PI/8)&&(angle <= 3*cimg::PI/8))//pi/8 to 3pi/8 => pi/4
return 1;
else if ((angle > 3*cimg::PI/8)&&(angle <= 5*cimg::PI/8))//3pi/8 to 5pi/8 => pi/2
return 2;
else if ((angle > 5*cimg::PI/8)&&(angle <= 7*cimg::PI/8))//5pi/8 to 7pi/8 => 3pi/4
return 3;
else if (((angle > 7*cimg::PI/8) && (angle <= cimg::PI)) ||
((angle <= -7*cimg::PI/8)&&(angle >= -cimg::PI))) //-7pi/8 to -pi OR 7pi/8 to pi => pi
return 4;
else return 0;
}
/**
* PURPOSE: create an edge map of the given image with hysteresis using thresholds T1 and T2
* PARAMS: CImg<float> im the image to perform edge detection on
* T1 lower threshold
* T2 upper threshold
* RETURN CImg<unsigned char> edge map
**/
CImg<unsigned char> CannyEdges(CImg<float> im, double T1, double T2, bool doHysteresis=false)
{
CImg<unsigned char> edges(im);
CImg<float> secDerivs(im);
secDerivs.fill(0);
edges.fill(0);
CImgList<float> gradients = im.get_gradient("xy",1);
int image_width = im.width();
int image_height = im.height();
cimg_forXY(im,X,Y) {
double Gr = std::sqrt(std::pow((double)gradients[0](X,Y),2.0) + std::pow((double)gradients[1](X,Y),2.0));
double theta = GetAngle(Y,X);
//if Gradient magnitude is positive and X,Y within the image
//take the 2nd deriv in the appropriate direction
if ((Gr > 0)&&(X < image_width - 2)&&(Y < image_height - 2)) {
if (theta == 0)
secDerivs(X,Y) = im(X + 2,Y) - 2*im(X + 1,Y) + im(X,Y);
else if (theta == 1)
secDerivs(X,Y) = im(X + 2,Y + 2) - 2*im(X + 1,Y + 1) + im(X,Y);
else if (theta == 2)
secDerivs(X,Y) = im(X,Y + 2) - 2*im(X,Y + 1) + im(X,Y);
else if (theta == 3)
secDerivs(X,Y) = im(X + 2,Y + 2) - 2*im(X + 1,Y + 1) + im(X,Y);
else if (theta == 4)
secDerivs(X,Y) = im(X + 2,Y) - 2*im(X + 1,Y) + im(X,Y);
}
}
//for each 2nd deriv that crosses a zero point and magnitude passes the upper threshold.
//Perform hysteresis in the direction of the gradient, rechecking the gradient
//angle for each pixel that meets the threshold requirement. Stop checking when
//the lower threshold is not reached.
CImg_5x5(I,float);
cimg_for5x5(secDerivs,X,Y,0,0,I,float) {
if ( (Ipp*Ibb < 0) ||
(Ipc*Ibc < 0)||
(Icp*Icb < 0) ) {
double Gr = std::sqrt(std::pow((double)gradients[0](X,Y),2.0) + std::pow((double)gradients[1](X,Y),2.0));
int dir = GetAngle(Y,X);
int Xt = X, Yt = Y, delta_x = 0, delta_y=0;
double GRt = Gr;
if (Gr >= T2)
edges(X,Y) = 255;
//work along the gradient in one direction
if (doHysteresis) {
while ((Xt > 0) && (Xt < image_width - 1) && (Yt > 0) && (Yt < image_height - 1)) {
switch (dir){
case 0 : delta_x=0;delta_y=1;break;
case 1 : delta_x=1;delta_y=1;break;
case 2 : delta_x=1;delta_y=0;break;
case 3 : delta_x=1;delta_y=-1;break;
case 4 : delta_x=0;delta_y=1;break;
}
Xt += delta_x;
Yt += delta_y;
GRt = std::sqrt(std::pow((double)gradients[0](Xt,Yt),2.0) + std::pow((double)gradients[1](Xt,Yt),2.0));
dir = GetAngle(Yt,Xt);
if (GRt >= T1)
edges(Xt,Yt) = 255;
}
//work along gradient in other direction
Xt = X; Yt = Y;
while ((Xt > 0) && (Xt < image_width - 1) && (Yt > 0) && (Yt < image_height - 1)) {
switch (dir){
case 0 : delta_x=0;delta_y=1;break;
case 1 : delta_x=1;delta_y=1;break;
case 2 : delta_x=1;delta_y=0;break;
case 3 : delta_x=1;delta_y=-1;break;
case 4 : delta_x=0;delta_y=1;break;
}
Xt -= delta_x;
Yt -= delta_y;
GRt = std::sqrt(std::pow((double)gradients[0](Xt,Yt),2.0) + std::pow((double)gradients[1](Xt,Yt),2.0));
dir = GetAngle(Yt,Xt);
if (GRt >= T1)
edges(Xt,Yt) = 255;
}
}
}
}
return edges;
}
/**
* PURPOSE: perform radon transform of given image
* PARAM: CImg<unsigned char> im - image to detect lines
* int N - number of angles to consider (should be a power of 2)
* (the values of N will be spread over 0 to 2PI)
* RETURN CImg<unsigned char> - transform of given image of size, N x D
* D = rhomax = sqrt(dimx*dimx + dimy*dimy)/2
**/
CImg<> RadonTransform(CImg<unsigned char> im,int N) {
int image_width = im.width();
int image_height = im.height();
//calc offsets to center the image
float xofftemp = image_width/2.0f - 1;
float yofftemp = image_height/2.0f - 1;
int xoffset = (int)std::floor(xofftemp + ROUNDING_FACTOR(xofftemp));
int yoffset = (int)std::floor(yofftemp + ROUNDING_FACTOR(yofftemp));
float dtemp = (float)std::sqrt((double)(xoffset*xoffset + yoffset*yoffset));
int D = (int)std::floor(dtemp + ROUNDING_FACTOR(dtemp));
CImg<> imRadon(N,D,1,1,0);
//for each angle k to consider
for (int k= 0 ; k < N; k++) {
//only consider from PI/8 to 3PI/8 and 5PI/8 to 7PI/8
//to avoid computational complexity of a steep angle
if (k == 0){k = N/8;continue;}
else if (k == (3*N/8 + 1)){ k = 5*N/8;continue;}
else if (k == 7*N/8 + 1){k = N; continue;}
//for each rho length, determine linear equation and sum the line
//sum is to sum the values along the line at angle k2pi/N
//sum2 is to sum the values along the line at angle k2pi/N + N/4
//The sum2 is performed merely by swapping the x,y axis as if the image were rotated 90 degrees.
for (int d=0; d < D; d++) {
double theta = 2*k*cimg::PI/N;//calculate actual theta
double alpha = std::tan(theta + cimg::PI/2);//calculate the slope
double beta_temp = -alpha*d*std::cos(theta) + d*std::sin(theta);//y-axis intercept for the line
int beta = (int)std::floor(beta_temp + ROUNDING_FACTOR(beta_temp));
//for each value of m along x-axis, calculate y
//if the x,y location is within the boundary for the respective image orientations, add to the sum
unsigned int sum1 = 0,
sum2 = 0;
int M = (image_width >= image_height) ? image_width : image_height;
for (int m=0;m < M; m++) {
//interpolate in-between values using nearest-neighbor approximation
//using m,n as x,y indices into image
double n_temp = alpha*(m - xoffset) + beta;
int n = (int)std::floor(n_temp + ROUNDING_FACTOR(n_temp));
if ((m < image_width) && (n + yoffset >= 0) && (n + yoffset < image_height))
{
sum1 += im(m, n + yoffset);
}
n_temp = alpha*(m - yoffset) + beta;
n = (int)std::floor(n_temp + ROUNDING_FACTOR(n_temp));
if ((m < image_height)&&(n + xoffset >= 0)&&(n + xoffset < image_width))
{
sum2 += im(-(n + xoffset) + image_width - 1, m);
}
}
//assign the sums into the result matrix
imRadon(k,d) = (float)sum1;
//assign sum2 to angle position for theta + PI/4
imRadon(((k + N/4)%N),d) = (float)sum2;
}
}
return imRadon;
}
/* references:
* 1. See Peter Toft's thesis on the Radon transform: http://petertoft.dk/PhD/index.html
* While I changed his basic algorithm, the main idea is still the same and provides an excellent explanation.
*
* */
|