1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
|
# dpictools.pic
# General-purpose pic macros. Input this file using the Circuit_macros
# m4 macro NeedDpicTools or the pic statement copy "HOMELIB_/dpictools.pic"
# when HOMELIB_ is defined or, generically, copy "<path>dpictools.pic"
# Circuit_macros Version 10.1.4, copyright (c) 2023 J. D. Aplevich under #
# the LaTeX Project Public Licence in file Licence.txt. The files of #
# this distribution may be redistributed or modified provided that this #
# copyright notice is included and provided that modifications are clearly #
# marked to distinguish them from this distribution. There is no warranty #
# whatsoever for these files. #
# findroot(function,left bound,right bound,tolerance,var name)
# Solve function(x)=0 by the method of bisection
# e.g. define parabola { $2 = ($1)^2 - 1 }
# findroot( parabola, 0, 2, 1e-8, x )
define findroot {$5 = 0; [ x_m = $2; x_M = $3
loop( $1(x_m,f_m);, abs(x_M-x_m)>$4,,
x_c = (x_m+x_M)/2
$1(x_c,f_c)
if sign(f_c)==sign(f_m) then {x_m=x_c} else {x_M=x_c};)
$5 := (x_m+x_M)/2 ] ; }
# bisect(function,left bound,right bound, tolerance, var name)
# Like findroot but uses recursion and without a [] box
define bisect { x_m_$1 = $2; x_M_$1 = $3
x_c_$1 = (x_m_$1+x_M_$1)/2
if (abs(x_m_$1-x_M_$1) <= $4) then { $5 = x_c_$1 } else {
$1(x_m_$1,f_m_$1)
$1(x_c_$1,f_c_$1)
if (sign(f_c_$1)==sign(f_m_$1)) then { bisect($1,x_c_$1,x_M_$1,$4,$5) } \
else { bisect($1,x_m_$1,x_c_$1,$4,$5) } } }
# case(i, alt1, alt2, ... ),
# Case statement: execute alternative i
# e.g., case(2, x=5, x=10, x=15) sets x to 10
define case { exec sprintf("$%g",floor($1+0.5)+1); }
# testexpr(i, expr1, expr2, ... )
# Set i to index of the first true alternative
# in a sequence of logical expressions, e.g.,
# testexpr(i, 1>2, 1<2 ) sets i to 2; to 0
# if no test is true.
define testexpr { $1 = 0; [for i_testexpr=2 to $+ do {
exec sprintf("if $%g then {$1 := i_testexpr-1; i_testexpr=$+}",i_testexpr)
}] ; }
# loop(initial,test,loopend,statements)
# C-like loop. Commas in arg3 and arg4 must
# be in quotes or parentheses, e.g.,
# loop(i=1, i<=3, i+=1, print i) prints 1, 2, 3
define loop {ld__+=1
$1
for lx__[ld__]=0 to 1 do {
if $2 then { lx__[ld__]=0; $4; $3; } else { lx__[ld__]=1 }}
ld__-=1; }
# array(var,expr1,expr2,...)
# var[1]=expr1; var[2]=expr2,...
define array {
for i_array=2 to $+ do { exec sprintf("$1[%g] = $%g",i_array-1,i_array); }}
# array2(var,expr1,expr2,...)
# var[expr1,1]=expr2; var[expr1,2]=expr3,...
define array2 { for i_array=3 to $+ do {
exec sprintf("$1[%g,%g]=$%g",$2,i_array-2,i_array);}}
# posarray(Var,Position1,Position2,...)
# Var[1]:Position1; Var[2]:Position2,...
define posarray {
for i_array=2 to $+ do { exec sprintf("$1[%g] : $%g",i_array-1,i_array); }}
# posarray2(Var,expr,position1,position2,...)
# Var[expr,1]:position1; Var[expr,2]:Position2,...
define posarray2 { for i_array=3 to $+ do {
exec sprintf("$1[%g,%g] : $%g",$2,i_array-2,i_array); }}
# Operations on 3-d vectors (could be generalized
# except for cross):
# $3 = $1 + $2
define sum3 {
$3[1]=$1[1]+$2[1]
$3[2]=$1[2]+$2[2]
$3[3]=$1[3]+$2[3]}
# $3 = $1 - $2
define diff3 {
$3[1]=$1[1]-$2[1]
$3[2]=$1[2]-$2[2]
$3[3]=$1[3]-$2[3]}
# $3 = $1 X $2
define cross3 {
$3[1]=$1[2]*$2[3]-$1[3]*$2[2]
$3[2]=$1[3]*$2[1]-$1[1]*$2[3]
$3[3]=$1[1]*$2[2]-$1[2]*$2[1]}
# $1 . $2
define dot3 {($1[1]*$2[1]+$1[2]*$2[2]+$1[3]*$2[3])}
# $3 = $1 * $2
define sprod3 {
$3[1]=($1)*$2[1]
$3[2]=($1)*$2[2]
$3[3]=($1)*$2[3]}
# |$1|
define length3 { sqrt($1[1]^2+$1[2]^2+$1[3]^2) }
# Expand a vector
define vec3 {$1[1],$1[2],$1[3]}
# $2 = $1
define copy3 {
$2[1] = $1[1]
$2[2] = $1[2]
$2[3] = $1[3] }
# slantbox(wid,ht,xslant,yslant,attributes)
define slantbox { [
if "$1"=="" then { w = boxwid } else { w = $1 }
if "$2"=="" then { h = boxht } else { h = $2 }
if "$3"=="" then { xs = 0 } else { xs = $3 }
if "$4"=="" then { ys = 0 } else { ys = $4 }
NE: (w+xs,h+ys)/2 ; SE: (w-xs,-h+ys)/2
SW: (-w-xs,-h-ys)/2 ; NW: (-w+xs,h-ys)/2
N: 0.5 between NW and NE ; E: 0.5 between NE and SE
S: 0.5 between SE and SW ; W: 0.5 between SW and NW
C: 0.5 between SW and NE
line from N to NE then to SE then to SW then to NW then to N $5
] }
# arraymax( data array, n, index name, value)
# Find the index in array[1:n] of the first
# occurrence of the max value. The value is
# assigned if arg4 is non-blank. eg.,
# array(x,4,9,8,6); arraymax( x,4,i )
# assigns 2 to i, and arraymax( x,4,i,m )
# assigns 2 to i and 9 to m
define arraymax { { $3 = -1; if "$4" != "" then { $4 = 0 }; m_arrm = -1e25
for i_arrm=1 to $2 do { if $1[i_arrm] > m_arrm then {
$3 := i_arrm; m_arrm = $1[i_arrm] }}
if "$4" != "" then { $4 := m_arrm } } }
# arraymin( data array, n, index name, value)
# Like arraymax
define arraymin { { $3 = -1; if "$4" != "" then { $4 = 0 }; m_arrm = 1e25
for i_arrm=1 to $2 do { if $1[i_arrm] < m_arrm then {
$3 := i_arrm; m_arrm = $1[i_arrm] }}
if "$4" != "" then { $4 := m_arrm } } }
# copythru(macro_name,"datafile")
# See the GNU pic manual
# Implements "copy datafile thru macro_name"
# for data separated by comma, spaces, or tabs
define copythru {
sh "sed -e 's/^[ ]*/$1(/' -e 's/[ ]*$/)/' -e 's/[, ][ ]*/,/g' $2 \
> copythru_tmp__"
copy "copythru_tmp__"
sh "rm -f copythru_tmp__";}
# randn(array_name,n,mean,stddev)
# Assign n Gaussian random numbers
# in array_name[1] ... array_name[n]
define randn {
if "$2"=="" then { n_randn = 1 } else { n_randn = $2 }
if "$3"=="" then { m_randn = 0 } else { m_randn = $3 }
if "$4"=="" then { s_randn = 1 } else { s_randn = $4 }
for i_randn=1 to n_randn by 2 do {
for done=0 to 1 do { u_randn=2*rand()-1; v_randn=2*rand()-1
t_randn = u_randn^2+v_randn^2; done=(t_randn<1) }
t_randn = sqrt( -2*loge(t_randn)/t_randn )
$1[i_randn] = u_randn*t_randn*s_randn+m_randn
if i_randn < n_randn then {
$1[i_randn+1] = v_randn*t_randn*s_randn+m_randn }
}
}
# dfitpoints(V,n,m,P,mP)
# Compute the controls in P[mP], P[mP+1]... for
# the spline passing throught points V[m]...V[n]
define dfitpoints {
if "$3"=="" then { m_dfit=0 } else { m_dfit=$3 }
if "$5"=="" then { mP_dfit=0 } else { mP_dfit=$5 }
n_dfit = $2; np_dfit = n_dfit-m_dfit
$4[mP_dfit]: $1[m_dfit]
for i_dfit=m_dfit+1 to n_dfit-1 do {
$4[mP_dfit+i_dfit-m_dfit]: $1[i_dfit]*(4/3) }
$4[mP_dfit+np_dfit]: $1[n_dfit]
$4[mP_dfit+1]: $4[mP_dfit+1]-$4[mP_dfit+0]/6 # forward substitution
d_dfit[1] = 1
for i_dfit = 2 to np_dfit-1 do { $4[mP_dfit+i_dfit]: \
$4[mP_dfit+i_dfit]-$4[mP_dfit+i_dfit-1]/d_dfit[i_dfit-1]/6
d_dfit[i_dfit] = 1-1/d_dfit[i_dfit-1]/36 }
for i_dfit= np_dfit-1 to 1 by -1 do { # backward substitution
$4[mP_dfit+i_dfit]: \
($4[mP_dfit+i_dfit]-$4[mP_dfit+i_dfit+1]/6)/d_dfit[i_dfit] } }
# dfitcurve(V,n,linetype,m (default 0))
# Draw a spline through V[m],...V[n]
# linetype=eg dotted. Works only with dpic.
# The calculated control points P[i] satisfy
# approximately:
# P[0] = V[0]
# P[i-1]/8 + P[i]*3/4 + P[i+1]/8 = V[i]
# P[n] = V[n]
# Like m4 macro fitcurve
define dfitcurve { if "$4"=="" then { m_dfit=0 } else { m_dfit=$4 }
n_dfit = $2; np_dfit = n_dfit-m_dfit
M4P_[0]: $1[m_dfit]
case( min(max(np_dfit,-1),3)+1,
spline 0.551784 $3 from M4P_[0] to M4P_[0],
spline 0.551784 $3 from M4P_[0] to $1[n_dfit],
M4P_[3]: $1[n_dfit]; Q_dfit: (M4P_[3]-M4P_[0])/4
M4P_[1]: $1[m_dfit+1]-Q_dfit; M4P_[2]: $1[m_dfit+1]+Q_dfit
spline 0.551784 $3 from M4P_[0] to M4P_[1] then to M4P_[2] then to M4P_[3],
dfitpoints($1,$2,$4,M4P_,0) # draw using computed control points
spline 0.551784 $3 from M4P_[0] to 11/32 between M4P_[0] and M4P_[1] \
then to 5/32 between M4P_[1] and M4P_[2]
for i_dfit=2 to np_dfit-2 do { continue to M4P_[i_dfit] }
continue to 27/32 between M4P_[np_dfit-2] and M4P_[np_dfit-1] \
then to 21/32 between M4P_[np_dfit-1] and M4P_[np_dfit] \
then to M4P_[np_dfit]) }
# histbins { data array name, n, [min], [max],
# nbins, bin array name )
# Generate the distribution of n values in
# dataarray. If given, arg3 and arg4 specify
# maximum and minimum data values, otherwise they
# are calculated. Bins have index 0 to arg5-1
define histbins { # dataarray, n, [min], [max], nbins, binarray
{ if "$3" == "" then { arraymin($1,$2,mn_histb,n_histb)} else { n_histb = $3 }
if "$4" == "" then { arraymax($1,$2,mx_histb,m_histb)} else { m_histb = $4 }
f_histb = ($5-0.001)/(m_histb-n_histb)
for i_histb=0 to $5-1 do { $6[i_histb] = 0 }
for i_histb=1 to $2 do {
x_histb = floor(($1[i_histb]-n_histb)*f_histb)
if (x_histb >= 0) && (x_histb < $5) then { $6[x_histb] += 1 } }
} }
# dpquicksort(a,lo,hi,ix)
# Given array a[lo:hi] and index
# array ix[lo:hi] = lo,lo+1,lo+2,...hi,
# sort a[lo:hi] and do identical exchanges on ix
define dpquicksort { [ if $3 > $2 then {
pivot = $1[($2+($3))/2]
loop(lo = $2; hi = $3, lo <= hi,
loop(,$1[lo] < pivot, lo += 1 )
loop(,$1[hi] > pivot, hi -= 1 )
if lo < hi then {
tmp = $1[lo]; $1[lo] := $1[hi]; $1[hi] := tmp
tmp = $4[lo]; $4[lo] := $4[hi]; $4[hi] := tmp }
if lo <= hi then { lo += 1; hi -= 1 } )
if hi > $2 then { exec sprintf("dpquicksort($1,%g,%g,$4)",$2,hi) }
if lo < $3 then { exec sprintf("dpquicksort($1,%g,%g,$4)",lo,$3) }
} ] }
# dprot(radians,x,y)
# Evaluates to a rotated pair (like m4 rot_ )
define dprot { cos($1)*($2)-sin($1)*($3),sin($1)*($2)+cos($1)*($3) }
# dprtext(degrees,text)
# Rotated pstricks or pgf text in a [] box
define dprtext {[ if "$1"=="" then { a = 90 } else { a = $1 }
if dpicopt==optPSTricks then {
sprintf("\rput[c]{%g}(0,0)",a)+"{$2}"} else {
if dpicopt==optPGF then {
sprintf("\pgftext[rotate=%g]",a)+"{$2}" } else { "$2" }}
]}
# rgbtohsv(r,g,b,h,s,v)
# rgb color triple to hsv with h range 0 to 360
define rgbtohsv { $4 = 0; $5 = 0; $6 = 0
[r = $1; g = $2; b = $3
maxc = max(max(r,g),b)
minc = min(min(r,g),b)
if maxc==minc then { $4 := 0 } \
else {if maxc == r then {
$4 := pmod(60*((g-b)/(maxc-minc)),360) } \
else {if maxc == g then {
$4 := 60*((b-r)/(maxc-minc)) + 120 } \
else { $4 := 60*((r-g)/(maxc-minc)) + 240 }}}
if maxc == 0 then { $5 := 0 } else { $5 := 1 - (minc/maxc) }
$6 := maxc
] }
# hsvtorgb(h,s,v,r,g,b)
# hsv color triple to rgb, h has range 0 to 360
define hsvtorgb { $4 = 0; $5 = 0; $6 = 0
[h = pmod($1,360)/60; s = $2; v = $3
i = floor(h)
f = h-i
m = v*(1-s)
n = v*(1-s*f)
k = v*(1-s*(1-f))
case(i+1,
$4 := v; $5 := k; $6 := m,
$4 := n; $5 := v; $6 := m,
$4 := m; $5 := v; $6 := k,
$4 := m; $5 := n; $6 := v,
$4 := k; $5 := m; $6 := v,
$4 := v; $5 := m; $6 := n)
] }
# cmyktorgb(c,m,y,k,r,g,b)
# cmyk colors in percent to rgb
define cmyktorgb {
$5 = 1-min(1,($1+$4)/100)
$6 = 1-min(1,($2+$4)/100)
$7 = 1-min(1,($3+$4)/100)
}
# rgbtocmyk(r,g,b,c,m,y,k)
# rgb to cmyk colors out of 100
define rgbtocmyk {
$7 = min(1-$1,min(1-$2,1-$3))*100
$4 = (1-$7-$1)/(1-$7)*100
$5 = (1-$7-$2)/(1-$7)*100
$6 = (1-$7-$3)/(1-$7)*100 }
# DefineRGBColor(colorname,r,g,b)
# Arguments are in the range 0 to 1
# Define dpic macro colorname according to the
# postprocessor specified by dpic command-line
# option; colorname then evaluates to a string
define DefineRGBColor {
case(abs(dpicopt), # The order of the following is defined in dpic source:
# MFpic:
command sprintf("\mfpdefinecolor{_$1__}{rgb}{%g,%g,%g}",$2,$3,$4)
define $1 {"_$1__"} ,
# Mpost:
define $1 {sprintf("(%g,%g,%g)",$2,$3,$4)} ,
# PDF:
define $1 {sprintf("%g %g %g",$2,$3,$4)} ,
# PGF:
command sprintf("\definecolor{_$1__}{rgb}{%g,%g,%g}",$2,$3,$4)
define $1 {"_$1__"} ,
# Pict2e:
command sprintf("\definecolor{_$1__}{rgb}{%g,%g,%g}",$2,$3,$4)
define $1 {"_$1__"} ,
# PS:
define $1 {sprintf("%g %g %g",$2,$3,$4)} ,
# PSfrag:
define $1 {sprintf("%g %g %g",$2,$3,$4)} ,
# PSTricks:
command sprintf("\definecolor{_$1__}{rgb}{%g,%g,%g}",$2,$3,$4)
define $1 {"_$1__"} ,
# SVG:
define $1 {sprintf("rgb(%g,%g,%g)",int($2*255),int($3*255),int($4*255))} ,
# TeX:
command sprintf("\definecolor{_$1__}{rgb}{%g,%g,%g}",$2,$3,$4)
define $1 {"_$1__"} ,
# tTeX:
command sprintf("\definecolor{_$1__}{rgb}{%g,%g,%g}",$2,$3,$4)
define $1 {"_$1__"} ,
# xfig:
define $1 {"black"}
) }
# DefineHSVColor(colorname,h,s,v)
# Like DefineRGBColor but takes arguments
# h in [0,360], s in [0,1], and v in [0,1]
define DefineHSVColor { hsvtorgb($2,$3,$4,r_HSVRGB,g_HSVRGB,b_HSVRGB)
DefineRGBColor($1,r_HSVRGB,g_HSVRGB,b_HSVRGB) }
# DefineCMYKColor(colorname,c,m,y,k)
# Like DefineRGBColor but arguments in percent
define DefineCMYKColor { cmyktorgb($2,$3,$4,r_CMYKRGB,g_CMYKRGB,b_CMYKRGB)
DefineRGBColor($1,r_CMYKRGB,g_CMYKRGB,b_CMYKRGB) }
# ShadeObject(DrawRoutineName, n, colorseq)
# colorseq = 0,r0,g0,b0,
# frac1,r1,g1,b1,
# frac2,r2,g2,b2,
# ...
# 1,rn,gn,bn
# with 0 < frac1 < frac2 < ... < 1
#
# calls DrawRoutineName(frac,r,g,b)
# n+1 times for frac = 0, 1/n, 2/n, ... 1
# with rgb args interpolated (in hsv space)
# between colorseq points
#
# eg B: box; define HorizShade { line right B.wid thick B.ht/100/(1bp__) \
# from (0,-($1)*B.ht) outlined rgbstring($2,$3,$4) }
# ShadeObject(HorizShade, 100, 0,1,0,0, 1,0,0,1) at B
#
define ShadeObject { [ Origin: Here; nSteps = abs($2)
nextP = $3; nextR = $4; nextG = $5; nextB = $6
nextarg = 7
thisP = nextP
# Creates [] wid 0 ht 0 at (0,0):
if $2 < 0 then { rgbtohsv(nextR,nextG,nextB,nextH,nextS,nextV) } \
else { rgbtohsv(nextR^2,nextG^2,nextB^2,nextH,nextS,nextV) }
if nextP*nSteps >= 1 then { nextP = 0 }
$1(nextP,nextR,nextG,nextB)
for stepnum = 1 to nSteps do {
if stepnum > nextP*nSteps then {
thisP = nextP; thisH = nextH; thisS = nextS; thisV = nextV
exec sprintf("nextP = $%g; nextR = $%g; nextG = $%g; nextB = $%g",\
nextarg,nextarg+1,nextarg+2,nextarg+3);
nextarg +=4 }
if nextP != thisP then {
rgbtohsv(nextR^2,nextG^2,nextB^2,nextH,nextS,nextV)
if thisS == 0 then { thisH = nextH }
if nextS == 0 then { nextH = thisH }
if thisH-nextH > 180 then { nextH += 360 } \
else { if nextH-thisH > 180 then { thisH +=360 } } }
if nextP > thisP then {
x = (stepnum/nSteps-thisP)/(nextP-thisP)
currP = thisP*(1-x) + nextP*x
currH = thisH*(1-x) + nextH*x
currS = thisS*(1-x) + nextS*x
currV = thisV*(1-x) + nextV*x
hsvtorgb(currH,currS,currV,cRsq,cGsq,cBsq)
if $2 < 0 then { $1(currP,cRsq,cGsq,cBsq) } \
else { $1(currP,sqrt(cRsq),sqrt(cGsq),sqrt(cBsq)) } }
}
exec sprintf("$%g",nextarg)
] }
# Useful for debugging:
# Print Pos:(Pos.x,Pos.y)
define prpos { { print sprintf("$1:(%g,%g)",($1).x,($1).y) } }
define prval { print sprintf("$1=%g",$1) }
define prval2 { print sprintf("$1=%g, $2=%g",$1,$2) }
define prval3 { print sprintf("$1=%g, $2=%g, $3=%g",$1,$2,$3) }
# prow(array name,rowno,lo,hi)
# print array[rowno,lo:hi] as a row
# rowno can be omitted, e.g.,
# array(x,6,4,5); prow(x,1,3)
define prow {
sh "echo -n \"print \\"\" > $1_prow"
if ($+ < 4) || ("$2"=="") then {
for i_prow=$2 to $3-1 do {
sh sprintf("echo -n \"%g \" >> $1_prow", $1[i_prow]) }
sh sprintf("echo \"%g\\"\" >> $1_prow", $1[$3])
} \
else {
for i_prow=$2 to $3-1 do {
sh sprintf("echo -n \"%g \" >> $1_prow", $1[($4,i_prow)]) }
sh sprintf("echo \"%g\\"\" >> $1_prow", $1[($4,$3)])
}
copy "$1_prow"
sh "rm $1_prow"
}
define rnd {int($1+sign($1)/2)} # round function
# Operations on complex numbers (x,y)
define Zsum {($1+($2))}
define Zdiff{($1-($2))}
define Zprod {($1.x*$2.x-$1.y*$2.y,$1.y*$2.x+$1.x*$2.y)}
define Zinv {($1.x/($1.x^2+$1.y^2),-$1.y/($1.x^2+$1.y^2))}
define Zexp {((cos($1.y),sin($1.y))*expe($1.x))}
define Zcos {(cos($1.x)*cosh($1.y),-sin($1.x)*sinh($1.y))}
define Zsin {(sin($1.x)*cosh($1.y), cos(%1.x)*sinh($1.y))}
define zabs {sqrt($1.x^2+$1.y^2)}
define zarg {atan2($1.y,$1.x)}
# Trig functions if undefined
if "cosh"=="co"+"sh" then {
define cosh {((expe($1) + expe(-($1)))/2)}
define sinh {((expe($1) - expe(-($1)))/2)}
}
## dpic equivalents or almost equivalents to libgen.m4 routines ########
## Including them here has to be regarded as experimental for now ######
define cosd {cos(($1)*dtor_)}
define sind {sin(($1)*dtor_)}
define ceiling {(-floor(-($1)))}
define round_ {int($1+sign($1)/2)}
define bp__ {*(scale/72)} # Absolute Adobe point
define pt__ {*(scale/72.27)} # Absolute TeX point
define pc__ {*(12*scale/72.27)} # Absolute Pica
define in__ {*scale} # Absolute inch
define cm__ {*(scale/2.54)} # Absolute cm
define mm__ {*(scale/25.4)} # Absolute mm
define lthick {(linethick bp__)}
if dpicopt==optSVG then { define px__ {*(scale/dpPPI)} } \
else { define px__ {*(scale/96)} } # Absolute pixels
define assign_dpicvars {
ld__ = 0
rtod_ = 57.295779513082323
dtor_ = 0.017453292519943295
twopi_ = 6.2831853071795862
pi_ = twopi_/2
$1
}
# Polar to rectangular conversion
define Rect_ {($1)*cos(($2)*dtor_),($1)*sin(($2)*dtor_)}
# intersect_(Start1,End1,Start2,End2)
# Intersection of lines joining named positions
define intersect_ {((($3.x-$1.x)*($3.y-$4.y)-($3.y-$1.y)*($3.x-$4.x))/\
(($2.x-$1.x)*($3.y-$4.y)-($2.y-$1.y)*($3.x-$4.x)) \
between $1 and $2) }
# Intersect_(Name1,Name2)
# Intersection of named lines
define Intersect_ {intersect_($1.start,$1.end,$2.start,$2.end)}
# drawdir_(degrees)
# Nearest multiple of 90
define drawdir_ {(int(pmod($1+45,360)/90)*90)}
# vlength(x,y) 2-D vector length
define vlength {sqrt(abs(($1)^2+($2)^2))}
# distance(Pos1,Pos2) distance between positions
define distance {vlength(($1).x-($2).x,($1).y-($2).y)}
# For PGF, PSTricks, or SVG only:
define dpshade { beginshade($1); $2; endshade } # like libgen shade()
# beginshade
if dpicopt==optPGF then {
define beginshade { if "$1"!="" then { dpshade_=$1 } else { dpshade_=0.5 }
command "\global\let\dpicshdraw=\dpicdraw\global\def\dpicdraw{}"
command "\global\def\dpicstop{--}"
command sprintf("\dpicshdraw[fill=white!%g!black]",dpshade_*100) } } \
else { if dpicopt==optPSTricks then {
define beginshade { if "$1"!="" then { dpshade_=$1 } else { dpshade_=0.5 }
command sprintf("\newgray{m4fillv}{%g}",dpshade_)
command sprintf("\pscustom[fillstyle=solid,fillcolor=m4fillv]{%%") } } \
else { if dpicopt==optSVG then {
define beginshade { if "$1"!="" then { dpshade_=$1 } else { dpshade_=0.5 }
command sprintf("<g fill=\"rgb(%g,%g,%g)\">",int(dpshade_*255+0.5),\
int(dpshade_*255+0.5),int(dpshade_*255+0.5))} } }}
# endshade
if dpicopt==optPGF then {
define endshade {command "cycle; \
\global\let\dpicdraw=\dpicshdraw\global\def\dpicstop{;}"} } \
else { if dpicopt==optPSTricks then {
define endshade {command "}%"} } \
else { if dpicopt==optSVG then {
define endshade { command "</g>"} } }}
# rgbstring
if dpicopt==optPGF then {
define rgbstring \
{sprintf("{rgb,1:red,%7.5f;green,%7.5f;blue,%7.5f}",$1,$2,$3)} } \
else { if dpicopt==optPSTricks then {
define rgbstring \
{sprintf("{rgb,1:red,%7.5f;green,%7.5f;blue,%7.5f}",$1,$2,$3)} } \
else { if dpicopt==optSVG then {
define rgbstring {sprintf("rgb(%g,%g,%g)",\
int(($1)*255+0.5),int(($2)*255+0.5),int(($3)*255+0.5))} } }}
#######################################################################
assign_dpicvars()
# print " *** dpic: dpictools.pic processed"
define dpictools_ {1}
case(abs(dpicopt),
optMFpic := -abs(optMFpic),
optMpost := -abs(optMFpic),
optPDF := -abs(optPDF),
optPGF := -abs(optPGF),
optPict2e := -abs(optPict2e),
optPS := -abs(optPS),
optPSfrag := -abs(optPSfrag),
optPSTricks := -abs(optPSTricks),
optSVG := -abs(optSVG),
optTeX := -abs(optTeX),
opttTeX := -abs(opttTeX),
optxfig := -abs(optxfig) )
dpicopt := -abs(dpicopt)
# dpictools end
|