1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
.PS
# Lyap.m4
threeD_init
scale = 1/1.2
viewaz = 30
viewel = 18
setview(viewaz,viewel)
Origin: Project(0,0,0)
# Components of view vector W
w1 = view3D1
w2 = view3D2
w3 = view3D3
# Shape factor of the ellipse on the xy plane
q = Cos(40)
# cost function
h = 0.5
c = 1
# The projected ellipse is (x/q)^2 + y^2 = c.
# The cost is v = c+h
define(`vs',`(`$2')*q*cos(`$1'),(`$2')*sin(`$1')')
define(`vp',`vs(`$1',`$2'),0')
define(`vx',`sum3D(vp(`$1',`$2'),0,0,h+(`$2')^2)')
# The gradient of v is (2x/q, 2y, -1) and the line
# separating front and back is W^T * grad(v) = 0
# This line intersects the projected ellipse at
# x1,y1 and x2,y2
ap = w2^2*q^2/w1^2+1
bp = -w2*w3*q^2/w1^2
cp = w3^2*q^2/4/w1^2-c
m = sqrt(bp^2-4*ap*cp)
y1 = (-bp+m)/ap/2 ; x1 = (w3-2*y1*w2)*q/2/w1
y2 = (-bp-m)/ap/2 ; x2 = (w3-2*y2*w2)*q/2/w1
t1 = atan2(y1,x1)
t2 = atan2(y2,x2)
theta1 = min(t1,t2)
theta2 = max(t1,t2)
# tangent curve
nT = 11
for i = 0 to nT do {
y = y1 + (y2-y1)/nT*i
theta = atan2(y,(w3-2*y*w2)*q/2/w1)
r = y/sin(theta)
T[i]: Project(vx(theta,r))
}
# front and back parts of the top curve
n = 12
for i = 0 to n do {
theta = theta1 + (theta2-theta1)/n*i
F[i]: Project(vx(theta,c))
Fp[i]: Project(vp(theta,c))
}
for i = 0 to n do {
theta = theta2 + (theta1+twopi_-theta2)/n*i
B[i]: Project(vx(theta,c))
Bp[i]: Project(vp(theta,c))
}
# trajectory
rotations = 1.55
nx = 7
thetas = 75*dtor_
thetaf = thetas - rotations*twopi_
rx = c*0.9
beta = exp(log(.5)/20)
define(`defX',` rx = `$5' ; np = np-1
ts = `$1' ; tf = `$2'
for i = 0 to `$3' do {
tha = ts + (tf-ts)*i/(`$3')
for thx = tha to -twopi_ by twopi_ do {}
`$4'[i]: Project(vx(thx,rx))
Xp[np]: Project(vp(thx,rx))
np = np+1
rx = beta*rx
}')
np = 1
defX(thetas,theta1,nx,X1,rx)
defX(theta1,theta2-twopi_,nx,X2,rx/beta)
defX(theta2-twopi_,theta1-twopi_,nx,X3,rx/beta)
defX(theta1-twopi_,thetaf,5,X4,rx/beta)
# First draw the inside back
# B is the back curve
# T is the outline
ifpstricks(`
\psset{gradbegin=lightgray,gradend=darkgray,gradlines=1000}
\pscustom[fillstyle=gradient,gradmidpoint=0.7]{
fitcurve(B,n)
for i = 0 to nT do {TT[i]: T[nT-i] }
fitcurve(TT,nT)
\relax} ',
` fitcurve(B,n)
for i = 0 to nT do {TT[i]: T[nT-i] }
fitcurve(TT,nT) ')
# Centre axis
thinlines_
line from Origin to Project(0,0,h)
# F[0] is the leftmost point of the front curve
line from F[0] to Fp[0]
# F[n] is the rightmost point of the front curve
line from F[n] to Fp[n]
thicklines_
# Now draw the outside front
ifpstricks(`
\newgray{gray1}{0.9}%
\newgray{gray2}{0.4}%
\psset{gradbegin=gray1,gradend=gray2,gradlines=1000}
\pscustom[linewidth=0pt,fillstyle=gradient,gradmidpoint=0.99]{
fitcurve(F,n)
fitcurve(T,nT)
\relax} ',
` shade(1,fitcurve(F,n)
fitcurve(T,nT)) ')
# T is the limit curve of visibility
fitcurve(T,nT)
# F is the top front
fitcurve(F,n)
# Front and back projections of the top on xy
fitcurve(Fp,n)
fitcurve(Bp,n)
# The trajectory in pieces, to allow dashed parts
fitcurve(X1,nx)
fitcurve(X2,nx,dotted 0.025)
fitcurve(X3,nx)
fitcurve(X4,3,dotted 0.015)
arca(from X4[4] to X4[3],ccw,0.3,<-)
# Projected trajectory
np = np-2
fitcurve(Xp,np-1)
arca(from Xp[np] to Xp[np-2],ccw,0.18,<-)
"$X(t)$" at Xp[np]-(2bp__,0) ljust
# Axes and vertical lines
thinlines_
line from X1[0] to Xp[0]
line from X4[4] to Xp[np]
arrow from Origin to Project(1.5,0,0)
"$x_1$" rjust below
arrow from Origin to Project(0,1.5,0)
"$x_2$" ljust
line dashed from Project(0,0,h) to F[n/2] chop 0 chop arrowht/4
arrow from F[n/2] to Project(0,0,2)
"$v(X)$" ljust
"`${0}$'" at Origin+(0,1 pt__) below
"$\Omega$" at Project(0,0.9*c,0)+(0,3bp__) above
"`$v(X) = c$'" at (Project(vp(100*dtor_,c)))+(2bp__,0) above ljust
.PE
|