1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
|
/*
* Copyright 2018 Paul Khuong, Google LLC.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Overview
* ========
*
* ck_ec implements 32- and 64- bit event counts. Event counts let us
* easily integrate OS-level blocking (e.g., futexes) in lock-free
* protocols. Waiters block conditionally, if the event count's value
* is still equal to some old value.
*
* Event counts come in four variants: 32 and 64 bit (with one bit
* stolen for internal signaling, so 31 and 63 bit counters), and
* single or multiple producers (wakers). Waiters are always multiple
* consumers. The 32 bit variants are smaller, and more efficient,
* especially in single producer mode. The 64 bit variants are larger,
* but practically invulnerable to ABA.
*
* The 32 bit variant is always available. The 64 bit variant is only
* available if CK supports 64-bit atomic operations. Currently,
* specialization for single producer is only implemented for x86 and
* x86-64, on compilers that support GCC extended inline assembly;
* other platforms fall back to the multiple producer code path.
*
* A typical usage pattern is:
*
* 1. On the producer side:
*
* - Make changes to some shared data structure, without involving
* the event count at all.
* - After each change, call ck_ec_inc on the event count. The call
* acts as a write-write barrier, and wakes up any consumer blocked
* on the event count (waiting for new changes).
*
* 2. On the consumer side:
*
* - Snapshot ck_ec_value of the event count. The call acts as a
* read barrier.
* - Read and process the shared data structure.
* - Wait for new changes by calling ck_ec_wait with the snapshot value.
*
* Some data structures may opt for tighter integration with their
* event count. For example, an SPMC ring buffer or disruptor might
* use the event count's value as the write pointer. If the buffer is
* regularly full, it might also make sense to store the read pointer
* in an MP event count.
*
* This event count implementation supports tighter integration in two
* ways.
*
* Producers may opt to increment by an arbitrary value (less than
* INT32_MAX / INT64_MAX), in order to encode, e.g., byte
* offsets. Larger increment values make wraparound more likely, so
* the increments should still be relatively small.
*
* Consumers may pass a predicate to ck_ec_wait_pred. This predicate
* can make `ck_ec_wait_pred` return early, before the event count's
* value changes, and can override the deadline passed to futex_wait.
* This lets consumer block on one eventcount, while optimistically
* looking at other waking conditions.
*
* API Reference
* =============
*
* When compiled as C11 or later, this header defines type-generic
* macros for ck_ec32 and ck_ec64; the reference describes this
* type-generic API.
*
* ck_ec needs additional OS primitives to determine the current time,
* to wait on an address, and to wake all threads waiting on a given
* address. These are defined with fields in a struct ck_ec_ops. Each
* ck_ec_ops may additionally define the number of spin loop
* iterations in the slow path, as well as the initial wait time in
* the internal exponential backoff, the exponential scale factor, and
* the right shift count (< 32).
*
* The ops, in addition to the single/multiple producer flag, are
* encapsulated in a struct ck_ec_mode, passed to most ck_ec
* operations.
*
* ec is a struct ck_ec32 *, or a struct ck_ec64 *.
*
* value is an uint32_t for ck_ec32, and an uint64_t for ck_ec64. It
* never exceeds INT32_MAX and INT64_MAX respectively.
*
* mode is a struct ck_ec_mode *.
*
* deadline is either NULL, or a `const struct timespec *` that will
* be treated as an absolute deadline.
*
* `void ck_ec_init(ec, value)`: initializes the event count to value.
*
* `value ck_ec_value(ec)`: returns the current value of the event
* counter. This read acts as a read (acquire) barrier.
*
* `bool ck_ec_has_waiters(ec)`: returns whether some thread has
* marked the event count as requiring an OS wakeup.
*
* `void ck_ec_inc(ec, mode)`: increments the value of the event
* counter by one. This writes acts as a write barrier. Wakes up
* any waiting thread.
*
* `value ck_ec_add(ec, mode, value)`: increments the event counter by
* `value`, and returns the event counter's previous value. This
* write acts as a write barrier. Wakes up any waiting thread.
*
* `int ck_ec_deadline(struct timespec *new_deadline,
* mode,
* const struct timespec *timeout)`:
* computes a deadline `timeout` away from the current time. If
* timeout is NULL, computes a deadline in the infinite future. The
* resulting deadline is written to `new_deadline`. Returns 0 on
* success, and -1 if ops->gettime failed (without touching errno).
*
* `int ck_ec_wait(ec, mode, value, deadline)`: waits until the event
* counter's value differs from `value`, or, if `deadline` is
* provided and non-NULL, until the current time is after that
* deadline. Use a deadline with tv_sec = 0 for a non-blocking
* execution. Returns 0 if the event counter has changed, and -1 on
* timeout. This function acts as a read (acquire) barrier.
*
* `int ck_ec_wait_pred(ec, mode, value, pred, data, deadline)`: waits
* until the event counter's value differs from `value`, or until
* `pred` returns non-zero, or, if `deadline` is provided and
* non-NULL, until the current time is after that deadline. Use a
* deadline with tv_sec = 0 for a non-blocking execution. Returns 0 if
* the event counter has changed, `pred`'s return value if non-zero,
* and -1 on timeout. This function acts as a read (acquire) barrier.
*
* `pred` is always called as `pred(data, iteration_deadline, now)`,
* where `iteration_deadline` is a timespec of the deadline for this
* exponential backoff iteration, and `now` is the current time. If
* `pred` returns a non-zero value, that value is immediately returned
* to the waiter. Otherwise, `pred` is free to modify
* `iteration_deadline` (moving it further in the future is a bad
* idea).
*
* Implementation notes
* ====================
*
* The multiple producer implementation is a regular locked event
* count, with a single flag bit to denote the need to wake up waiting
* threads.
*
* The single producer specialization is heavily tied to
* [x86-TSO](https://www.cl.cam.ac.uk/~pes20/weakmemory/cacm.pdf), and
* to non-atomic read-modify-write instructions (e.g., `inc mem`);
* these non-atomic RMW let us write to the same memory locations with
* atomic and non-atomic instructions, without suffering from process
* scheduling stalls.
*
* The reason we can mix atomic and non-atomic writes to the `counter`
* word is that every non-atomic write obviates the need for the
* atomically flipped flag bit: we only use non-atomic writes to
* update the event count, and the atomic flag only informs the
* producer that we would like a futex_wake, because of the update.
* We only require the non-atomic RMW counter update to prevent
* preemption from introducing arbitrarily long worst case delays.
*
* Correctness does not rely on the usual ordering argument: in the
* absence of fences, there is no strict ordering between atomic and
* non-atomic writes. The key is instead x86-TSO's guarantee that a
* read is satisfied from the most recent buffered write in the local
* store queue if there is one, or from memory if there is no write to
* that address in the store queue.
*
* x86-TSO's constraint on reads suffices to guarantee that the
* producer will never forget about a counter update. If the last
* update is still queued, the new update will be based on the queued
* value. Otherwise, the new update will be based on the value in
* memory, which may or may not have had its flag flipped. In either
* case, the value of the counter (modulo flag) is correct.
*
* When the producer forwards the counter's value from its store
* queue, the new update might not preserve a flag flip. Any waiter
* thus has to check from time to time to determine if it wasn't
* woken up because the flag bit was silently cleared.
*
* In reality, the store queue in x86-TSO stands for in-flight
* instructions in the chip's out-of-order backend. In the vast
* majority of cases, instructions will only remain in flight for a
* few hundred or thousand of cycles. That's why ck_ec_wait spins on
* the `counter` word for ~100 iterations after flipping its flag bit:
* if the counter hasn't changed after that many iterations, it is
* very likely that the producer's next counter update will observe
* the flag flip.
*
* That's still not a hard guarantee of correctness. Conservatively,
* we can expect that no instruction will remain in flight for more
* than 1 second... if only because some interrupt will have forced
* the chip to store its architectural state in memory, at which point
* an instruction is either fully retired or rolled back. Interrupts,
* particularly the pre-emption timer, are why single-producer updates
* must happen in a single non-atomic read-modify-write instruction.
* Having a single instruction as the critical section means we only
* have to consider the worst-case execution time for that
* instruction. That's easier than doing the same for a pair of
* instructions, which an unlucky pre-emption could delay for
* arbitrarily long.
*
* Thus, after a short spin loop, ck_ec_wait enters an exponential
* backoff loop, where each "sleep" is instead a futex_wait. The
* backoff is only necessary to handle rare cases where the flag flip
* was overwritten after the spin loop. Eventually, more than one
* second will have elapsed since the flag flip, and the sleep timeout
* becomes infinite: since the flag bit has been set for much longer
* than the time for which an instruction may remain in flight, the
* flag will definitely be observed at the next counter update.
*
* The 64 bit ck_ec_wait pulls another trick: futexes only handle 32
* bit ints, so we must treat the 64 bit counter's low 32 bits as an
* int in futex_wait. That's a bit dodgy, but fine in practice, given
* that the OS's futex code will always read whatever value is
* currently in memory: even if the producer thread were to wait on
* its own event count, the syscall and ring transition would empty
* the store queue (the out-of-order execution backend).
*
* Finally, what happens when the producer is migrated to another core
* or otherwise pre-empted? Migration must already incur a barrier, so
* that thread always sees its own writes, so that's safe. As for
* pre-emption, that requires storing the architectural state, which
* means every instruction must either be executed fully or not at
* all when pre-emption happens.
*/
#ifndef CK_EC_H
#define CK_EC_H
#include <ck_cc.h>
#include <ck_pr.h>
#include <ck_stdbool.h>
#include <ck_stdint.h>
#include <ck_stddef.h>
#include <sys/time.h>
/*
* If we have ck_pr_faa_64 (and, presumably, ck_pr_load_64), we
* support 63 bit counters.
*/
#ifdef CK_F_PR_FAA_64
#define CK_F_EC64
#endif /* CK_F_PR_FAA_64 */
/*
* GCC inline assembly lets us exploit non-atomic read-modify-write
* instructions on x86/x86_64 for a fast single-producer mode.
*
* If we CK_F_EC_SP is not defined, CK_EC always uses the slower
* multiple producer code.
*/
#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
#define CK_F_EC_SP
#endif /* GNUC && (__i386__ || __x86_64__) */
struct ck_ec_ops;
struct ck_ec_wait_state {
struct timespec start; /* Time when we entered ck_ec_wait. */
struct timespec now; /* Time now. */
const struct ck_ec_ops *ops;
void *data; /* Opaque pointer for the predicate's internal state. */
};
/*
* ck_ec_ops define system-specific functions to get the current time,
* atomically wait on an address if it still has some expected value,
* and to wake all threads waiting on an address.
*
* Each platform is expected to have few (one) opaque pointer to a
* const ops struct, and reuse it for all ck_ec_mode structs.
*/
struct ck_ec_ops {
/* Populates out with the current time. Returns non-zero on failure. */
int (*gettime)(const struct ck_ec_ops *, struct timespec *out);
/*
* Waits on address if its value is still `expected`. If
* deadline is non-NULL, stops waiting once that deadline is
* reached. May return early for any reason.
*/
void (*wait32)(const struct ck_ec_wait_state *, const uint32_t *,
uint32_t expected, const struct timespec *deadline);
/*
* Same as wait32, but for a 64 bit counter. Only used if
* CK_F_EC64 is defined.
*
* If underlying blocking primitive only supports 32 bit
* control words, it should be safe to block on the least
* significant half of the 64 bit address.
*/
void (*wait64)(const struct ck_ec_wait_state *, const uint64_t *,
uint64_t expected, const struct timespec *deadline);
/* Wakes up all threads waiting on address. */
void (*wake32)(const struct ck_ec_ops *, const uint32_t *address);
/*
* Same as wake32, but for a 64 bit counter. Only used if
* CK_F_EC64 is defined.
*
* When wait64 truncates the control word at address to `only`
* consider its least significant half, wake64 should perform
* any necessary fixup (e.g., on big endian platforms).
*/
void (*wake64)(const struct ck_ec_ops *, const uint64_t *address);
/*
* Number of iterations for the initial busy wait. 0 defaults
* to 100 (not ABI stable).
*/
uint32_t busy_loop_iter;
/*
* Delay in nanoseconds for the first iteration of the
* exponential backoff. 0 defaults to 2 ms (not ABI stable).
*/
uint32_t initial_wait_ns;
/*
* Scale factor for the exponential backoff. 0 defaults to 8x
* (not ABI stable).
*/
uint32_t wait_scale_factor;
/*
* Right shift count for the exponential backoff. The update
* after each iteration is
* wait_ns = (wait_ns * wait_scale_factor) >> wait_shift_count,
* until one second has elapsed. After that, the deadline goes
* to infinity.
*/
uint32_t wait_shift_count;
};
/*
* ck_ec_mode wraps the ops table, and informs the fast path whether
* it should attempt to specialize for single producer mode.
*
* mode structs are expected to be exposed by value, e.g.,
*
* extern const struct ck_ec_ops system_ec_ops;
*
* static const struct ck_ec_mode ec_sp = {
* .ops = &system_ec_ops,
* .single_producer = true
* };
*
* static const struct ck_ec_mode ec_mp = {
* .ops = &system_ec_ops,
* .single_producer = false
* };
*
* ck_ec_mode structs are only passed to inline functions defined in
* this header, and never escape to their slow paths, so they should
* not result in any object file size increase.
*/
struct ck_ec_mode {
const struct ck_ec_ops *ops;
/*
* If single_producer is true, the event count has a unique
* incrementer. The implementation will specialize ck_ec_inc
* and ck_ec_add if possible (if CK_F_EC_SP is defined).
*/
bool single_producer;
};
struct ck_ec32 {
/* Flag is "sign" bit, value in bits 0:30. */
uint32_t counter;
};
typedef struct ck_ec32 ck_ec32_t;
#ifdef CK_F_EC64
struct ck_ec64 {
/*
* Flag is bottom bit, value in bits 1:63. Eventcount only
* works on x86-64 (i.e., little endian), so the futex int
* lies in the first 4 (bottom) bytes.
*/
uint64_t counter;
};
typedef struct ck_ec64 ck_ec64_t;
#endif /* CK_F_EC64 */
#define CK_EC_INITIALIZER { .counter = 0 }
/*
* Initializes the event count to `value`. The value must not
* exceed INT32_MAX.
*/
static void ck_ec32_init(struct ck_ec32 *ec, uint32_t value);
#ifndef CK_F_EC64
#define ck_ec_init ck_ec32_init
#else
/*
* Initializes the event count to `value`. The value must not
* exceed INT64_MAX.
*/
static void ck_ec64_init(struct ck_ec64 *ec, uint64_t value);
#if __STDC_VERSION__ >= 201112L
#define ck_ec_init(EC, VALUE) \
(_Generic(*(EC), \
struct ck_ec32 : ck_ec32_init, \
struct ck_ec64 : ck_ec64_init)((EC), (VALUE)))
#endif /* __STDC_VERSION__ */
#endif /* CK_F_EC64 */
/*
* Returns the counter value in the event count. The value is at most
* INT32_MAX.
*/
static uint32_t ck_ec32_value(const struct ck_ec32* ec);
#ifndef CK_F_EC64
#define ck_ec_value ck_ec32_value
#else
/*
* Returns the counter value in the event count. The value is at most
* INT64_MAX.
*/
static uint64_t ck_ec64_value(const struct ck_ec64* ec);
#if __STDC_VERSION__ >= 201112L
#define ck_ec_value(EC) \
(_Generic(*(EC), \
struct ck_ec32 : ck_ec32_value, \
struct ck_ec64 : ck_ec64_value)((EC)))
#endif /* __STDC_VERSION__ */
#endif /* CK_F_EC64 */
/*
* Returns whether there may be slow pathed waiters that need an
* explicit OS wakeup for this event count.
*/
static bool ck_ec32_has_waiters(const struct ck_ec32 *ec);
#ifndef CK_F_EC64
#define ck_ec_has_waiters ck_ec32_has_waiters
#else
static bool ck_ec64_has_waiters(const struct ck_ec64 *ec);
#if __STDC_VERSION__ >= 201112L
#define ck_ec_has_waiters(EC) \
(_Generic(*(EC), \
struct ck_ec32 : ck_ec32_has_waiters, \
struct ck_ec64 : ck_ec64_has_waiters)((EC)))
#endif /* __STDC_VERSION__ */
#endif /* CK_F_EC64 */
/*
* Increments the counter value in the event count by one, and wakes
* up any waiter.
*/
static void ck_ec32_inc(struct ck_ec32 *ec, const struct ck_ec_mode *mode);
#ifndef CK_F_EC64
#define ck_ec_inc ck_ec32_inc
#else
static void ck_ec64_inc(struct ck_ec64 *ec, const struct ck_ec_mode *mode);
#if __STDC_VERSION__ >= 201112L
#define ck_ec_inc(EC, MODE) \
(_Generic(*(EC), \
struct ck_ec32 : ck_ec32_inc, \
struct ck_ec64 : ck_ec64_inc)((EC), (MODE)))
#endif /* __STDC_VERSION__ */
#endif /* CK_F_EC64 */
/*
* Increments the counter value in the event count by delta, wakes
* up any waiter, and returns the previous counter value.
*/
static uint32_t ck_ec32_add(struct ck_ec32 *ec,
const struct ck_ec_mode *mode,
uint32_t delta);
#ifndef CK_F_EC64
#define ck_ec_add ck_ec32_add
#else
static uint64_t ck_ec64_add(struct ck_ec64 *ec,
const struct ck_ec_mode *mode,
uint64_t delta);
#if __STDC_VERSION__ >= 201112L
#define ck_ec_add(EC, MODE, DELTA) \
(_Generic(*(EC), \
struct ck_ec32 : ck_ec32_add, \
struct ck_ec64 : ck_ec64_add)((EC), (MODE), (DELTA)))
#endif /* __STDC_VERSION__ */
#endif /* CK_F_EC64 */
/*
* Populates `new_deadline` with a deadline `timeout` in the future.
* Returns 0 on success, and -1 if clock_gettime failed, in which
* case errno is left as is.
*/
static int ck_ec_deadline(struct timespec *new_deadline,
const struct ck_ec_mode *mode,
const struct timespec *timeout);
/*
* Waits until the counter value in the event count differs from
* old_value, or, if deadline is non-NULL, until CLOCK_MONOTONIC is
* past the deadline.
*
* Returns 0 on success, and -1 on timeout.
*/
static int ck_ec32_wait(struct ck_ec32 *ec,
const struct ck_ec_mode *mode,
uint32_t old_value,
const struct timespec *deadline);
#ifndef CK_F_EC64
#define ck_ec_wait ck_ec32_wait
#else
static int ck_ec64_wait(struct ck_ec64 *ec,
const struct ck_ec_mode *mode,
uint64_t old_value,
const struct timespec *deadline);
#if __STDC_VERSION__ >= 201112L
#define ck_ec_wait(EC, MODE, OLD_VALUE, DEADLINE) \
(_Generic(*(EC), \
struct ck_ec32 : ck_ec32_wait, \
struct ck_ec64 : ck_ec64_wait)((EC), (MODE), \
(OLD_VALUE), (DEADLINE)))
#endif /* __STDC_VERSION__ */
#endif /* CK_F_EC64 */
/*
* Waits until the counter value in the event count differs from
* old_value, pred returns non-zero, or, if deadline is non-NULL,
* until CLOCK_MONOTONIC is past the deadline.
*
* Returns 0 on success, -1 on timeout, and the return value of pred
* if it returns non-zero.
*
* A NULL pred represents a function that always returns 0.
*/
static int ck_ec32_wait_pred(struct ck_ec32 *ec,
const struct ck_ec_mode *mode,
uint32_t old_value,
int (*pred)(const struct ck_ec_wait_state *,
struct timespec *deadline),
void *data,
const struct timespec *deadline);
#ifndef CK_F_EC64
#define ck_ec_wait_pred ck_ec32_wait_pred
#else
static int ck_ec64_wait_pred(struct ck_ec64 *ec,
const struct ck_ec_mode *mode,
uint64_t old_value,
int (*pred)(const struct ck_ec_wait_state *,
struct timespec *deadline),
void *data,
const struct timespec *deadline);
#if __STDC_VERSION__ >= 201112L
#define ck_ec_wait_pred(EC, MODE, OLD_VALUE, PRED, DATA, DEADLINE) \
(_Generic(*(EC), \
struct ck_ec32 : ck_ec32_wait_pred, \
struct ck_ec64 : ck_ec64_wait_pred) \
((EC), (MODE), (OLD_VALUE), (PRED), (DATA), (DEADLINE)))
#endif /* __STDC_VERSION__ */
#endif /* CK_F_EC64 */
/*
* Inline implementation details. 32 bit first, then 64 bit
* conditionally.
*/
CK_CC_FORCE_INLINE void ck_ec32_init(struct ck_ec32 *ec, uint32_t value)
{
ec->counter = value & ~(1UL << 31);
return;
}
CK_CC_FORCE_INLINE uint32_t ck_ec32_value(const struct ck_ec32 *ec)
{
uint32_t ret = ck_pr_load_32(&ec->counter) & ~(1UL << 31);
ck_pr_fence_acquire();
return ret;
}
CK_CC_FORCE_INLINE bool ck_ec32_has_waiters(const struct ck_ec32 *ec)
{
return ck_pr_load_32(&ec->counter) & (1UL << 31);
}
/* Slow path for ck_ec{32,64}_{inc,add} */
void ck_ec32_wake(struct ck_ec32 *ec, const struct ck_ec_ops *ops);
CK_CC_FORCE_INLINE void ck_ec32_inc(struct ck_ec32 *ec,
const struct ck_ec_mode *mode)
{
#if !defined(CK_F_EC_SP)
/* Nothing to specialize if we don't have EC_SP. */
ck_ec32_add(ec, mode, 1);
return;
#else
char flagged;
#if __GNUC__ >= 6
/*
* We don't want to wake if the sign bit is 0. We do want to
* wake if the sign bit just flipped from 1 to 0. We don't
* care what happens when our increment caused the sign bit to
* flip from 0 to 1 (that's once per 2^31 increment).
*
* This leaves us with four cases:
*
* old sign bit | new sign bit | SF | OF | ZF
* -------------------------------------------
* 0 | 0 | 0 | 0 | ?
* 0 | 1 | 1 | 0 | ?
* 1 | 1 | 1 | 0 | ?
* 1 | 0 | 0 | 0 | 1
*
* In the first case, we don't want to hit ck_ec32_wake. In
* the last two cases, we do want to call ck_ec32_wake. In the
* second case, we don't care, so we arbitrarily choose to
* call ck_ec32_wake.
*
* The "le" condition checks if SF != OF, or ZF == 1, which
* meets our requirements.
*/
#define CK_EC32_INC_ASM(PREFIX) \
__asm__ volatile(PREFIX " incl %0" \
: "+m"(ec->counter), "=@ccle"(flagged) \
:: "cc", "memory")
#else
#define CK_EC32_INC_ASM(PREFIX) \
__asm__ volatile(PREFIX " incl %0; setle %1" \
: "+m"(ec->counter), "=r"(flagged) \
:: "cc", "memory")
#endif /* __GNUC__ */
if (mode->single_producer == true) {
ck_pr_fence_store();
CK_EC32_INC_ASM("");
} else {
ck_pr_fence_store_atomic();
CK_EC32_INC_ASM("lock");
}
#undef CK_EC32_INC_ASM
if (CK_CC_UNLIKELY(flagged)) {
ck_ec32_wake(ec, mode->ops);
}
return;
#endif /* CK_F_EC_SP */
}
CK_CC_FORCE_INLINE uint32_t ck_ec32_add_epilogue(struct ck_ec32 *ec,
const struct ck_ec_mode *mode,
uint32_t old)
{
const uint32_t flag_mask = 1U << 31;
uint32_t ret;
ret = old & ~flag_mask;
/* These two only differ if the flag bit is set. */
if (CK_CC_UNLIKELY(old != ret)) {
ck_ec32_wake(ec, mode->ops);
}
return ret;
}
static CK_CC_INLINE uint32_t ck_ec32_add_mp(struct ck_ec32 *ec,
const struct ck_ec_mode *mode,
uint32_t delta)
{
uint32_t old;
ck_pr_fence_store_atomic();
old = ck_pr_faa_32(&ec->counter, delta);
return ck_ec32_add_epilogue(ec, mode, old);
}
#ifdef CK_F_EC_SP
static CK_CC_INLINE uint32_t ck_ec32_add_sp(struct ck_ec32 *ec,
const struct ck_ec_mode *mode,
uint32_t delta)
{
uint32_t old;
/*
* Correctness of this racy write depends on actually
* having an update to write. Exit here if the update
* is a no-op.
*/
if (CK_CC_UNLIKELY(delta == 0)) {
return ck_ec32_value(ec);
}
ck_pr_fence_store();
old = delta;
__asm__ volatile("xaddl %1, %0"
: "+m"(ec->counter), "+r"(old)
:: "cc", "memory");
return ck_ec32_add_epilogue(ec, mode, old);
}
#endif /* CK_F_EC_SP */
CK_CC_FORCE_INLINE uint32_t ck_ec32_add(struct ck_ec32 *ec,
const struct ck_ec_mode *mode,
uint32_t delta)
{
#ifdef CK_F_EC_SP
if (mode->single_producer == true) {
return ck_ec32_add_sp(ec, mode, delta);
}
#endif
return ck_ec32_add_mp(ec, mode, delta);
}
int ck_ec_deadline_impl(struct timespec *new_deadline,
const struct ck_ec_ops *ops,
const struct timespec *timeout);
CK_CC_FORCE_INLINE int ck_ec_deadline(struct timespec *new_deadline,
const struct ck_ec_mode *mode,
const struct timespec *timeout)
{
return ck_ec_deadline_impl(new_deadline, mode->ops, timeout);
}
int ck_ec32_wait_slow(struct ck_ec32 *ec,
const struct ck_ec_ops *ops,
uint32_t old_value,
const struct timespec *deadline);
CK_CC_FORCE_INLINE int ck_ec32_wait(struct ck_ec32 *ec,
const struct ck_ec_mode *mode,
uint32_t old_value,
const struct timespec *deadline)
{
if (ck_ec32_value(ec) != old_value) {
return 0;
}
return ck_ec32_wait_slow(ec, mode->ops, old_value, deadline);
}
int ck_ec32_wait_pred_slow(struct ck_ec32 *ec,
const struct ck_ec_ops *ops,
uint32_t old_value,
int (*pred)(const struct ck_ec_wait_state *state,
struct timespec *deadline),
void *data,
const struct timespec *deadline);
CK_CC_FORCE_INLINE int
ck_ec32_wait_pred(struct ck_ec32 *ec,
const struct ck_ec_mode *mode,
uint32_t old_value,
int (*pred)(const struct ck_ec_wait_state *state,
struct timespec *deadline),
void *data,
const struct timespec *deadline)
{
if (ck_ec32_value(ec) != old_value) {
return 0;
}
return ck_ec32_wait_pred_slow(ec, mode->ops, old_value,
pred, data, deadline);
}
#ifdef CK_F_EC64
CK_CC_FORCE_INLINE void ck_ec64_init(struct ck_ec64 *ec, uint64_t value)
{
ec->counter = value << 1;
return;
}
CK_CC_FORCE_INLINE uint64_t ck_ec64_value(const struct ck_ec64 *ec)
{
uint64_t ret = ck_pr_load_64(&ec->counter) >> 1;
ck_pr_fence_acquire();
return ret;
}
CK_CC_FORCE_INLINE bool ck_ec64_has_waiters(const struct ck_ec64 *ec)
{
return ck_pr_load_64(&ec->counter) & 1;
}
void ck_ec64_wake(struct ck_ec64 *ec, const struct ck_ec_ops *ops);
CK_CC_FORCE_INLINE void ck_ec64_inc(struct ck_ec64 *ec,
const struct ck_ec_mode *mode)
{
/* We always xadd, so there's no special optimization here. */
(void)ck_ec64_add(ec, mode, 1);
return;
}
CK_CC_FORCE_INLINE uint64_t ck_ec_add64_epilogue(struct ck_ec64 *ec,
const struct ck_ec_mode *mode,
uint64_t old)
{
uint64_t ret = old >> 1;
if (CK_CC_UNLIKELY(old & 1)) {
ck_ec64_wake(ec, mode->ops);
}
return ret;
}
static CK_CC_INLINE uint64_t ck_ec64_add_mp(struct ck_ec64 *ec,
const struct ck_ec_mode *mode,
uint64_t delta)
{
uint64_t inc = 2 * delta; /* The low bit is the flag bit. */
ck_pr_fence_store_atomic();
return ck_ec_add64_epilogue(ec, mode, ck_pr_faa_64(&ec->counter, inc));
}
#ifdef CK_F_EC_SP
/* Single-producer specialisation. */
static CK_CC_INLINE uint64_t ck_ec64_add_sp(struct ck_ec64 *ec,
const struct ck_ec_mode *mode,
uint64_t delta)
{
uint64_t old;
/*
* Correctness of this racy write depends on actually
* having an update to write. Exit here if the update
* is a no-op.
*/
if (CK_CC_UNLIKELY(delta == 0)) {
return ck_ec64_value(ec);
}
ck_pr_fence_store();
old = 2 * delta; /* The low bit is the flag bit. */
__asm__ volatile("xaddq %1, %0"
: "+m"(ec->counter), "+r"(old)
:: "cc", "memory");
return ck_ec_add64_epilogue(ec, mode, old);
}
#endif /* CK_F_EC_SP */
/*
* Dispatch on mode->single_producer in this FORCE_INLINE function:
* the end result is always small, but not all compilers have enough
* foresight to inline and get the reduction.
*/
CK_CC_FORCE_INLINE uint64_t ck_ec64_add(struct ck_ec64 *ec,
const struct ck_ec_mode *mode,
uint64_t delta)
{
#ifdef CK_F_EC_SP
if (mode->single_producer == true) {
return ck_ec64_add_sp(ec, mode, delta);
}
#endif
return ck_ec64_add_mp(ec, mode, delta);
}
int ck_ec64_wait_slow(struct ck_ec64 *ec,
const struct ck_ec_ops *ops,
uint64_t old_value,
const struct timespec *deadline);
CK_CC_FORCE_INLINE int ck_ec64_wait(struct ck_ec64 *ec,
const struct ck_ec_mode *mode,
uint64_t old_value,
const struct timespec *deadline)
{
if (ck_ec64_value(ec) != old_value) {
return 0;
}
return ck_ec64_wait_slow(ec, mode->ops, old_value, deadline);
}
int ck_ec64_wait_pred_slow(struct ck_ec64 *ec,
const struct ck_ec_ops *ops,
uint64_t old_value,
int (*pred)(const struct ck_ec_wait_state *state,
struct timespec *deadline),
void *data,
const struct timespec *deadline);
CK_CC_FORCE_INLINE int
ck_ec64_wait_pred(struct ck_ec64 *ec,
const struct ck_ec_mode *mode,
uint64_t old_value,
int (*pred)(const struct ck_ec_wait_state *state,
struct timespec *deadline),
void *data,
const struct timespec *deadline)
{
if (ck_ec64_value(ec) != old_value) {
return 0;
}
return ck_ec64_wait_pred_slow(ec, mode->ops, old_value,
pred, data, deadline);
}
#endif /* CK_F_EC64 */
#endif /* !CK_EC_H */
|