1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
|
<HTML>
<HEAD>
<TITLE>Logic (Subsystem of AIMA Code)</TITLE>
<!-- Changed by: Peter Norvig, 14-Apr-1997 -->
</HEAD>
<BODY bgcolor="#ffffff">
<H1>Logic (Subsystem of AIMA Code)</H1>
The <b>logic</b> system covers part III of the book. We define
knowledge bases, and <tt>tell</tt> and <tt>ask</tt> operations on
those knowledge bases. The interface is defined in the file <A
HREF="#logic/algorithms/tell-ask.lisp">tell-ask.lisp</A>.
<P>
We need a new language for logical expressions,
since we don't have all the nice characters (like upside-down A) that
we would like to use. We will allow an infix format for input, and
manipulate a Lisp-like prefix format internally. Here is a
description of the formats (compare to [p 167, 187]). The prefix
notation is a subset of the <A
href="http://logic.stanford.edu/kif/Hypertext/kif-manual.html">KIF
3.0</A> Knowledge Interchange Format.
<pre>
Infix Prefix Meaning Alternate Infix Notation
========== ====== =========== ========================
~P (not P) negation not P
P ^ Q (and P Q) conjunction P and Q
P | Q (or P Q) disjunction P or Q
P => Q (=> P Q) implication
P <=> Q (<=> P Q) logical equivalence
P(x) (P x) predicate
Q(x,y) (Q x y) predicate with multiple arguments
f(x) (f x) function
f(x)=3 (= (f x) 3) equality
forall(x,P(x) (forall (x) (P x)) universal quantification
exists(x,P(x) (exists (x) (P x)) existential quantification
[a,b] (listof a b) list of elements
{a,b} (setof a b) mathematical set of elements
true true the true logical constant
false false the false logical constant
</pre>
You can also use the usual operators for mathematical notation: +, -,
*, / for arithmetic, and &;lt;, >, <=, >= for comparison.
Many of the functions we define also accept strings as input,
interpreting them as infix expressions, so the following are
equivalent:
<pre>
(tell kb "P=>Q")
(tell kb '(=> P Q))
</pre>
<P><HR size=3></UL><A HREF="../logic/"><B>logic/</B></A>:
<UL> <LI><A HREF="#logic/test-logic.lisp"><B>test-logic.lisp</B></A> Testing Logical Inference</UL><A HREF="../logic/algorithms/"><B>logic/algorithms/</B></A>:
<UL> <LI><A HREF="#logic/algorithms/tell-ask.lisp"><B>tell-ask.lisp</B></A> Main Functions on KBs: Tell, Retract, Ask-Each, Ask, Ask-Pattern[s]<LI><A HREF="#logic/algorithms/unify.lisp"><B>unify.lisp</B></A> Unification and Substitutions (aka Binding Lists)<LI><A HREF="#logic/algorithms/normal.lisp"><B>normal.lisp</B></A> Convert Expressions to Normal Form (Conjunctive, Implicative or Horn)<LI><A HREF="#logic/algorithms/prop.lisp"><B>prop.lisp</B></A> Propositional Logic<LI><A HREF="#logic/algorithms/horn.lisp"><B>horn.lisp</B></A> Logical Reasoning in Horn Clause Knowledge Bases<LI><A HREF="#logic/algorithms/fol.lisp"><B>fol.lisp</B></A> First Order Logic (FOL) Tell, Retract, and Ask-Each<LI><A HREF="#logic/algorithms/infix.lisp"><B>infix.lisp</B></A> Prefix to Infix Conversion</UL><A HREF="../logic/environments/"><B>logic/environments/</B></A>:
<UL> <LI><A HREF="#logic/environments/shopping.lisp"><B>shopping.lisp</B></A> The Shopping World: </UL>
<A NAME="logic/test-logic.lisp"><HR>
<H2>File <A HREF="../logic/test-logic.lisp">logic/test-logic.lisp</A></H2></A>
<H2><I> Testing Logical Inference</I>
</H2>
<A NAME="logic/algorithms/tell-ask.lisp"><HR>
<H2>File <A HREF="../logic/algorithms/tell-ask.lisp">logic/algorithms/tell-ask.lisp</A></H2></A>
<H2><I> Main Functions on KBs: Tell, Retract, Ask-Each, Ask, Ask-Pattern[s]</I>
</H2>
<I> First we define a very simple kind of knowledge base, literal-kb,</I>
<I> that just stores a list of literal sentences.</I>
<A NAME="literal-kb"><P><A HREF="../logic/algorithms/tell-ask.lisp"><B>literal-kb</B></A></A> <I>type</I> (sentences)
<blockquote>A knowledge base that just stores a set of literal sentences.</blockquote>
<I> There are three generic functions that operate on knowledge bases, and</I>
<I> that must be defined as methods for each type of knowledge base: TELL,</I>
<I> RETRACT, and ASK-EACH. Here we show the implementation for literal-kb;</I>
<I> elsewhere you'll see implementations for propositional, Horn, and FOL KBs.</I>
<A NAME="tell:literal-kb"><P><A HREF="../logic/algorithms/tell-ask.lisp"><B>tell</B></A></A> <I>method</I> ((kb
literal-kb)
sentence)
<blockquote>Add the sentence to the knowledge base.</blockquote>
<A NAME="retract:literal-kb"><P><A HREF="../logic/algorithms/tell-ask.lisp"><B>retract</B></A></A> <I>method</I> ((kb
literal-kb)
sentence)
<blockquote>Remove the sentence from the knowledge base.</blockquote>
<A NAME="ask-each:literal-kb"><P><A HREF="../logic/algorithms/tell-ask.lisp"><B>ask-each</B></A></A> <I>method</I> ((kb
literal-kb)
query
fn)
<blockquote>For each proof of query, call fn on the substitution that
the proof ends up with.</blockquote>
<I> There are three other ASK functions, defined below, that are</I>
<I> defined in terms of ASK-EACH. These are defined once and for all</I>
<I> here (not for each kind of KB)."</I>
<A NAME="ask"><P><A HREF="../logic/algorithms/tell-ask.lisp"><B>ask</B></A></A> <I>function</I> (kb
query)
<blockquote>Ask if query sentence is true; return t or nil.</blockquote>
<A NAME="ask-pattern"><P><A HREF="../logic/algorithms/tell-ask.lisp"><B>ask-pattern</B></A></A> <I>function</I> (kb
query
&optional
pattern)
<blockquote>Ask if query sentence is true; if it is, substitute bindings into pattern.</blockquote>
<A NAME="ask-patterns"><P><A HREF="../logic/algorithms/tell-ask.lisp"><B>ask-patterns</B></A></A> <I>function</I> (kb
query
&optional
pattern)
<blockquote>Find all proofs for query sentence, substitute bindings into pattern
once for each proof. Return a list of all substituted patterns.</blockquote>
<A NAME="logic/algorithms/unify.lisp"><HR>
<H2>File <A HREF="../logic/algorithms/unify.lisp">logic/algorithms/unify.lisp</A></H2></A>
<H2><I> Unification and Substitutions (aka Binding Lists)</I>
</H2>
<I> This code is borrowed from "Paradigms of AI Programming: Case Studies</I>
<I> in Common Lisp", by Peter Norvig, published by Morgan Kaufmann, 1992.</I>
<I> The complete code from that book is available for ftp at mkp.com in</I>
<I> the directory "pub/Norvig". Note that it uses the term "bindings"</I>
<I> rather than "substitution" or "theta". The meaning is the same.</I>
<H2><I> Constants</I>
</H2>
<A NAME="+fail+"><P><A HREF="../logic/algorithms/unify.lisp"><B>+fail+</B></A></A> <I>constant</I>
<blockquote>Indicates unification failure</blockquote>
<A NAME="+no-bindings+"><P><A HREF="../logic/algorithms/unify.lisp"><B>+no-bindings+</B></A></A> <I>constant</I>
<blockquote>Indicates unification success, with no variables.</blockquote>
<H2><I> Top Level Functions</I>
</H2>
<A NAME="unify"><P><A HREF="../logic/algorithms/unify.lisp"><B>unify</B></A></A> <I>function</I> (x
y
&optional
bindings)
<blockquote>See if x and y match with given bindings. If they do,
return a binding list that would make them equal [p 303].</blockquote>
<A NAME="rename-variables"><P><A HREF="../logic/algorithms/unify.lisp"><B>rename-variables</B></A></A> <I>function</I> (x)
<blockquote>Replace all variables in x with new ones.</blockquote>
<H2><I> Auxiliary Functions</I>
</H2>
<A NAME="unify-var"><P><A HREF="../logic/algorithms/unify.lisp"><B>unify-var</B></A></A> <I>function</I> (var
x
bindings)
<blockquote>Unify var with x, using (and maybe extending) bindings [p 303].</blockquote>
<A NAME="variable?"><P><A HREF="../logic/algorithms/unify.lisp"><B>variable?</B></A></A> <I>function</I> (x)
<blockquote>Is x a variable (a symbol starting with $)?</blockquote>
<A NAME="get-binding"><P><A HREF="../logic/algorithms/unify.lisp"><B>get-binding</B></A></A> <I>function</I> (var
bindings)
<blockquote>Find a (variable . value) pair in a binding list.</blockquote>
<A NAME="binding-var"><P><A HREF="../logic/algorithms/unify.lisp"><B>binding-var</B></A></A> <I>function</I> (binding)
<blockquote>Get the variable part of a single binding.</blockquote>
<A NAME="binding-val"><P><A HREF="../logic/algorithms/unify.lisp"><B>binding-val</B></A></A> <I>function</I> (binding)
<blockquote>Get the value part of a single binding.</blockquote>
<A NAME="make-binding"><P><A HREF="../logic/algorithms/unify.lisp"><B>make-binding</B></A></A> <I>function</I> (var
val)
<P>
<A NAME="lookup"><P><A HREF="../logic/algorithms/unify.lisp"><B>lookup</B></A></A> <I>function</I> (var
bindings)
<blockquote>Get the value part (for var) from a binding list.</blockquote>
<A NAME="extend-bindings"><P><A HREF="../logic/algorithms/unify.lisp"><B>extend-bindings</B></A></A> <I>function</I> (var
val
bindings)
<blockquote>Add a (var . value) pair to a binding list.</blockquote>
<A NAME="occurs-in?"><P><A HREF="../logic/algorithms/unify.lisp"><B>occurs-in?</B></A></A> <I>function</I> (var
x
bindings)
<blockquote>Does var occur anywhere inside x?</blockquote>
<A NAME="subst-bindings"><P><A HREF="../logic/algorithms/unify.lisp"><B>subst-bindings</B></A></A> <I>function</I> (bindings
x)
<blockquote>Substitute the value of variables in bindings into x,
taking recursively bound variables into account.</blockquote>
<A NAME="unifier"><P><A HREF="../logic/algorithms/unify.lisp"><B>unifier</B></A></A> <I>function</I> (x
y)
<blockquote>Return something that unifies with both x and y (or fail).</blockquote>
<A NAME="variables-in"><P><A HREF="../logic/algorithms/unify.lisp"><B>variables-in</B></A></A> <I>function</I> (exp)
<blockquote>Return a list of all the variables in EXP.</blockquote>
<A NAME="unique-find-anywhere-if"><P><A HREF="../logic/algorithms/unify.lisp"><B>unique-find-anywhere-if</B></A></A> <I>function</I> (predicate
tree
&optional
found-so-far)
<blockquote>Return a list of leaves of tree satisfying predicate,
with duplicates removed.</blockquote>
<A NAME="find-anywhere-if"><P><A HREF="../logic/algorithms/unify.lisp"><B>find-anywhere-if</B></A></A> <I>function</I> (predicate
tree)
<blockquote>Does predicate apply to any atom in the tree?</blockquote>
<A NAME="*new-variable-counter*"><P><A HREF="../logic/algorithms/unify.lisp"><B>*new-variable-counter*</B></A></A> <I>variable</I>
<P>
<A NAME="new-variable"><P><A HREF="../logic/algorithms/unify.lisp"><B>new-variable</B></A></A> <I>function</I> (var)
<blockquote>Create a new variable. Assumes user never types variables of form $X.9</blockquote>
<A NAME="logic/algorithms/normal.lisp"><HR>
<H2>File <A HREF="../logic/algorithms/normal.lisp">logic/algorithms/normal.lisp</A></H2></A>
<H2><I> Convert Expressions to Normal Form (Conjunctive, Implicative or Horn)</I>
</H2>
<I> This could be done much more efficiently by using a special</I>
<I> representation for CNF, which eliminates the explicit ANDs</I>
<I> and ORs. This code is meant to be informative, not efficient.</I>
<H2><I> Top-Level Functions</I>
</H2>
<A NAME="->cnf"><P><A HREF="../logic/algorithms/normal.lisp"><B>->cnf</B></A></A> <I>function</I> (p
&optional
vars)
<blockquote>Convert a sentence p to conjunctive normal form [p 279-280].</blockquote>
<A NAME="->inf"><P><A HREF="../logic/algorithms/normal.lisp"><B>->inf</B></A></A> <I>function</I> (p)
<blockquote>Convert a sentence p to implicative normal form [p 282].</blockquote>
<A NAME="->horn"><P><A HREF="../logic/algorithms/normal.lisp"><B>->horn</B></A></A> <I>function</I> (p)
<blockquote>Try to convert sentence to a Horn clause, or a conjunction of Horn clauses.
Signal an error if this cannot be done.</blockquote>
<A NAME="logic"><P><A HREF="../logic/algorithms/normal.lisp"><B>logic</B></A></A> <I>function</I> (sentence)
<blockquote>Canonicalize a sentence into proper logical form.</blockquote>
<H2><I> Auxiliary Functions</I>
</H2>
<A NAME="cnf1->inf1"><P><A HREF="../logic/algorithms/normal.lisp"><B>cnf1->inf1</B></A></A> <I>function</I> (p)
<P>
<A NAME="eliminate-implications"><P><A HREF="../logic/algorithms/normal.lisp"><B>eliminate-implications</B></A></A> <I>function</I> (p)
<P>
<A NAME="move-not-inwards"><P><A HREF="../logic/algorithms/normal.lisp"><B>move-not-inwards</B></A></A> <I>function</I> (p)
<blockquote>Given P, return ~P, but with the negation moved as far in as possible.</blockquote>
<A NAME="merge-disjuncts"><P><A HREF="../logic/algorithms/normal.lisp"><B>merge-disjuncts</B></A></A> <I>function</I> (disjuncts)
<blockquote>Return a CNF expression for the disjunction.</blockquote>
<A NAME="skolemize"><P><A HREF="../logic/algorithms/normal.lisp"><B>skolemize</B></A></A> <I>function</I> (p
vars
outside-vars)
<blockquote>Within the proposition P, replace each of VARS with a skolem constant,
or if OUTSIDE-VARS is non-null, a skolem function of them.</blockquote>
<A NAME="skolem-constant"><P><A HREF="../logic/algorithms/normal.lisp"><B>skolem-constant</B></A></A> <I>function</I> (name)
<blockquote>Return a unique skolem constant, a symbol starting with '$'.</blockquote>
<A NAME="renaming?"><P><A HREF="../logic/algorithms/normal.lisp"><B>renaming?</B></A></A> <I>function</I> (p
q
&optional
bindings)
<blockquote>Are p and q renamings of each other? (That is, expressions that differ
only in variable names?)</blockquote>
<H2><I> Utility Predicates and Accessors</I>
</H2>
<A NAME="+logical-connectives+"><P><A HREF="../logic/algorithms/normal.lisp"><B>+logical-connectives+</B></A></A> <I>constant</I>
<P>
<A NAME="+logical-quantifiers+"><P><A HREF="../logic/algorithms/normal.lisp"><B>+logical-quantifiers+</B></A></A> <I>constant</I>
<P>
<A NAME="atomic-clause?"><P><A HREF="../logic/algorithms/normal.lisp"><B>atomic-clause?</B></A></A> <I>function</I> (sentence)
<blockquote>An atomic clause has no connectives or quantifiers.</blockquote>
<A NAME="literal-clause?"><P><A HREF="../logic/algorithms/normal.lisp"><B>literal-clause?</B></A></A> <I>function</I> (sentence)
<blockquote>A literal is an atomic clause or a negated atomic clause.</blockquote>
<A NAME="negative-clause?"><P><A HREF="../logic/algorithms/normal.lisp"><B>negative-clause?</B></A></A> <I>function</I> (sentence)
<blockquote>A negative clause has NOT as the operator.</blockquote>
<A NAME="horn-clause?"><P><A HREF="../logic/algorithms/normal.lisp"><B>horn-clause?</B></A></A> <I>function</I> (sentence)
<blockquote>A Horn clause (in INF) is an implication with atoms on the left and one
atom on the right.</blockquote>
<A NAME="conjuncts"><P><A HREF="../logic/algorithms/normal.lisp"><B>conjuncts</B></A></A> <I>function</I> (sentence)
<blockquote>Return a list of the conjuncts in this sentence.</blockquote>
<A NAME="disjuncts"><P><A HREF="../logic/algorithms/normal.lisp"><B>disjuncts</B></A></A> <I>function</I> (sentence)
<blockquote>Return a list of the disjuncts in this sentence.</blockquote>
<A NAME="conjunction"><P><A HREF="../logic/algorithms/normal.lisp"><B>conjunction</B></A></A> <I>function</I> (args)
<blockquote>Form a conjunction with these args.</blockquote>
<A NAME="disjunction"><P><A HREF="../logic/algorithms/normal.lisp"><B>disjunction</B></A></A> <I>function</I> (args)
<blockquote>Form a disjunction with these args.</blockquote>
<A NAME="logic/algorithms/prop.lisp"><HR>
<H2>File <A HREF="../logic/algorithms/prop.lisp">logic/algorithms/prop.lisp</A></H2></A>
<H2><I> Propositional Logic</I>
</H2>
<A NAME="prop-kb"><P><A HREF="../logic/algorithms/prop.lisp"><B>prop-kb</B></A></A> <I>type</I> (sentence)
<blockquote>A simple KB implementation that builds a big conjoined sentence.</blockquote>
<A NAME="truth-table"><P><A HREF="../logic/algorithms/prop.lisp"><B>truth-table</B></A></A> <I>type</I> (symbols
sentences
rows)
<P>
<H2><I> Tell, Ask, and Retract</I>
</H2>
<A NAME="tell:prop-kb"><P><A HREF="../logic/algorithms/prop.lisp"><B>tell</B></A></A> <I>method</I> ((kb
prop-kb)
sentence)
<blockquote>Add a sentence to a propositional knowledge base.</blockquote>
<A NAME="ask-each:prop-kb"><P><A HREF="../logic/algorithms/prop.lisp"><B>ask-each</B></A></A> <I>method</I> ((kb
prop-kb)
query
fn)
<blockquote>Ask a propositional knowledge base if the query is entailed by the kb.</blockquote>
<A NAME="retract:prop-kb"><P><A HREF="../logic/algorithms/prop.lisp"><B>retract</B></A></A> <I>method</I> ((kb
prop-kb)
sentence)
<blockquote>Remove a sentence from a knowledge base.</blockquote>
<H2><I> Other Useful Top-Level Functions</I>
</H2>
<A NAME="validity"><P><A HREF="../logic/algorithms/prop.lisp"><B>validity</B></A></A> <I>function</I> (sentence)
<blockquote>Return either VALID, SATISFIABLE or UNSATISFIABLE.</blockquote>
<A NAME="truth-table"><P><A HREF="../logic/algorithms/prop.lisp"><B>truth-table</B></A></A> <I>function</I> (sentence)
<blockquote>Build and print a truth table for this sentence, with columns for all the
propositions and all the non-trivial component sentences. Iff the sentence
is valid, the last column will have all T's.
Example: (truth-table '(<=> P (not (not P)))).</blockquote>
<H2><I> Auxiliary Functions</I>
</H2>
<A NAME="eval-truth"><P><A HREF="../logic/algorithms/prop.lisp"><B>eval-truth</B></A></A> <I>function</I> (sentence
&optional
interpretation)
<blockquote>Evaluate the truth of the sentence under an interpretation.
The interpretation is a list of (proposition . truth-value) pairs,
where a truth-value is t or nil, e.g., ((P . t) (Q . nil)).
It is an error if there are any propositional symbols in the sentence
that are not given a value in the interpretation.</blockquote>
<H2><I> Truth Tables</I>
</H2>
<A NAME="build-truth-table"><P><A HREF="../logic/algorithms/prop.lisp"><B>build-truth-table</B></A></A> <I>function</I> (sentence
&key
short)
<blockquote>Build a truth table whose last column is the sentence. If SHORT is true,
then that is the only column. If SHORT is false, all the sub-sentences
are also included as columns (except constants).</blockquote>
<A NAME="print-truth-table"><P><A HREF="../logic/algorithms/prop.lisp"><B>print-truth-table</B></A></A> <I>function</I> (table
&optional
stream)
<blockquote>Print a truth table.</blockquote>
<A NAME="compute-truth-entries"><P><A HREF="../logic/algorithms/prop.lisp"><B>compute-truth-entries</B></A></A> <I>function</I> (symbols
sentences)
<blockquote>Compute the truth of each sentence under all interpretations of symbols.</blockquote>
<A NAME="all-truth-interpretations"><P><A HREF="../logic/algorithms/prop.lisp"><B>all-truth-interpretations</B></A></A> <I>function</I> (symbols)
<blockquote>Return all 2^n interpretations for a list of n symbols.</blockquote>
<A NAME="prop-symbols-in"><P><A HREF="../logic/algorithms/prop.lisp"><B>prop-symbols-in</B></A></A> <I>function</I> (sentence)
<blockquote>Return a list of all the propositional symbols in sentence.</blockquote>
<A NAME="complex-sentences-in"><P><A HREF="../logic/algorithms/prop.lisp"><B>complex-sentences-in</B></A></A> <I>function</I> (sentence)
<blockquote>Return a list of all non-atom sub-sentences of sentence.</blockquote>
<A NAME="sentence-output-form"><P><A HREF="../logic/algorithms/prop.lisp"><B>sentence-output-form</B></A></A> <I>function</I> (sentence)
<blockquote>Convert a prefix sentence back into an infix notation with brief operators.</blockquote>
<A NAME="logic/algorithms/horn.lisp"><HR>
<H2>File <A HREF="../logic/algorithms/horn.lisp">logic/algorithms/horn.lisp</A></H2></A>
<H2><I> Logical Reasoning in Horn Clause Knowledge Bases</I>
</H2>
<A NAME="horn-kb"><P><A HREF="../logic/algorithms/horn.lisp"><B>horn-kb</B></A></A> <I>type</I> (table)
<P>
<A NAME="tell:horn-kb"><P><A HREF="../logic/algorithms/horn.lisp"><B>tell</B></A></A> <I>method</I> ((kb
horn-kb)
sentence)
<blockquote>Add a sentence to a Horn knowledge base. Warn if its not a Horn sentence.</blockquote>
<A NAME="retract:horn-kb"><P><A HREF="../logic/algorithms/horn.lisp"><B>retract</B></A></A> <I>method</I> ((kb
horn-kb)
sentence)
<blockquote>Delete each conjunct of sentence from KB.</blockquote>
<A NAME="ask-each:horn-kb"><P><A HREF="../logic/algorithms/horn.lisp"><B>ask-each</B></A></A> <I>method</I> ((kb
horn-kb)
query
fn)
<blockquote>Use backward chaining to decide if sentence is true.</blockquote>
<A NAME="back-chain-each"><P><A HREF="../logic/algorithms/horn.lisp"><B>back-chain-each</B></A></A> <I>function</I> (kb
goals
bindings
fn)
<blockquote>Solve the conjunction of goals by backward chaining.
See [p 275], but notice that this implementation is different.
It applies fn to each answer found, and handles composition differently.</blockquote>
<A NAME="logic/algorithms/fol.lisp"><HR>
<H2>File <A HREF="../logic/algorithms/fol.lisp">logic/algorithms/fol.lisp</A></H2></A>
<H2><I> First Order Logic (FOL) Tell, Retract, and Ask-Each</I>
</H2>
<A NAME="fol-kb"><P><A HREF="../logic/algorithms/fol.lisp"><B>fol-kb</B></A></A> <I>type</I> (<i> a fol (first-order logic) kb stores clauses. </i>
<i> access to the kb is via possible-resolvers, which takes a</i>
<i> literal (e.g. (not d), or b), and returns all the clauses that</i>
<i> contain the literal. we also keep a list of temporary clauses, </i>
<i> added to the kb during a proof and removed at the end. internally,</i>
<i> clauses are in minimal-cnf format, which is cnf without the and/or.</i>
<i> so (and (or p q) (or r (not s))) becomes ((p q) (r (not s)))</i>
positive-clauses
negative-clauses
temp-added)
<P>
<A NAME="tell:fol-kb"><P><A HREF="../logic/algorithms/fol.lisp"><B>tell</B></A></A> <I>method</I> ((kb
fol-kb)
sentence)
<blockquote>Add a sentence to a FOL knowledge base.</blockquote>
<A NAME="retract:fol-kb"><P><A HREF="../logic/algorithms/fol.lisp"><B>retract</B></A></A> <I>method</I> ((kb
fol-kb)
sentence)
<blockquote>Delete each conjunct of sentence from KB.</blockquote>
<A NAME="ask-each:fol-kb"><P><A HREF="../logic/algorithms/fol.lisp"><B>ask-each</B></A></A> <I>method</I> ((kb
fol-kb)
query
fn)
<blockquote>Use resolution to decide if sentence is true.</blockquote>
<H2><I> FOL Knowledge Base Utility Functions</I>
</H2>
<A NAME="possible-resolvers"><P><A HREF="../logic/algorithms/fol.lisp"><B>possible-resolvers</B></A></A> <I>function</I> (kb
literal)
<blockquote>Find clauses that might resolve with a clause containing literal.</blockquote>
<A NAME="tell-minimal-cnf-clause"><P><A HREF="../logic/algorithms/fol.lisp"><B>tell-minimal-cnf-clause</B></A></A> <I>function</I> (kb
clause)
<P>
<A NAME="retract-minimal-cnf-clauses"><P><A HREF="../logic/algorithms/fol.lisp"><B>retract-minimal-cnf-clauses</B></A></A> <I>function</I> (kb
clauses)
<blockquote>Remove the minimal-cnf clauses from the KB.</blockquote>
<A NAME="->minimal-cnf"><P><A HREF="../logic/algorithms/fol.lisp"><B>->minimal-cnf</B></A></A> <I>function</I> (sentence)
<blockquote>Convert a logical sentence to minimal CNF (no and/or connectives).</blockquote>
<A NAME="undo-temp-changes"><P><A HREF="../logic/algorithms/fol.lisp"><B>undo-temp-changes</B></A></A> <I>function</I> (kb)
<blockquote>Undo the changes that were temporarilly made to KB.</blockquote>
<A NAME="tautology?"><P><A HREF="../logic/algorithms/fol.lisp"><B>tautology?</B></A></A> <I>function</I> (clause)
<blockquote>Is clause a tautology (something that is always true)?</blockquote>
<H2><I> Functions for Resolution Refutation Theorem Proving</I>
</H2>
<A NAME="prove-by-refutation"><P><A HREF="../logic/algorithms/fol.lisp"><B>prove-by-refutation</B></A></A> <I>function</I> (kb
sos
fn)
<blockquote>Try to prove that ~SOS is true (given KB) by resolution refutation.</blockquote>
<A NAME="resolve"><P><A HREF="../logic/algorithms/fol.lisp"><B>resolve</B></A></A> <I>function</I> (literal
clause)
<blockquote>Resolve a single literal against a clause</blockquote>
<A NAME="insert"><P><A HREF="../logic/algorithms/fol.lisp"><B>insert</B></A></A> <I>function</I> (item
list
pred
&key
key)
<P>
<A NAME="logic/algorithms/infix.lisp"><HR>
<H2>File <A HREF="../logic/algorithms/infix.lisp">logic/algorithms/infix.lisp</A></H2></A>
<H2><I> Prefix to Infix Conversion</I>
</H2>
<A NAME="*infix-ops*"><P><A HREF="../logic/algorithms/infix.lisp"><B>*infix-ops*</B></A></A> <I>variable</I>
<blockquote>A list of lists of operators, highest precedence first.</blockquote>
<A NAME="->prefix"><P><A HREF="../logic/algorithms/infix.lisp"><B>->prefix</B></A></A> <I>function</I> (infix)
<blockquote>Convert an infix expression to prefix.</blockquote>
<A NAME="reduce-infix"><P><A HREF="../logic/algorithms/infix.lisp"><B>reduce-infix</B></A></A> <I>function</I> (infix)
<blockquote>Find the highest-precedence operator in INFIX and reduce accordingly.</blockquote>
<A NAME="op-token"><P><A HREF="../logic/algorithms/infix.lisp"><B>op-token</B></A></A> <I>function</I> (op)
<P>
<A NAME="op-name"><P><A HREF="../logic/algorithms/infix.lisp"><B>op-name</B></A></A> <I>function</I> (op)
<P>
<A NAME="op-type"><P><A HREF="../logic/algorithms/infix.lisp"><B>op-type</B></A></A> <I>function</I> (op)
<P>
<A NAME="op-match"><P><A HREF="../logic/algorithms/infix.lisp"><B>op-match</B></A></A> <I>function</I> (op)
<P>
<A NAME="replace-subseq"><P><A HREF="../logic/algorithms/infix.lisp"><B>replace-subseq</B></A></A> <I>function</I> (sequence
start
length
new)
<P>
<A NAME="reduce-matching-op"><P><A HREF="../logic/algorithms/infix.lisp"><B>reduce-matching-op</B></A></A> <I>function</I> (op
pos
infix)
<blockquote>Find the matching op (paren or bracket) and reduce.</blockquote>
<A NAME="remove-commas"><P><A HREF="../logic/algorithms/infix.lisp"><B>remove-commas</B></A></A> <I>function</I> (exp)
<blockquote>Convert (|,| a b) to (a b).</blockquote>
<A NAME="handle-quantifiers"><P><A HREF="../logic/algorithms/infix.lisp"><B>handle-quantifiers</B></A></A> <I>function</I> (exp)
<blockquote>Change (FORALL x y P) to (FORALL (x y) P).</blockquote>
<H2><I> Tokenization: convert a string to a sequence of tokens</I>
</H2>
<A NAME="string->infix"><P><A HREF="../logic/algorithms/infix.lisp"><B>string->infix</B></A></A> <I>function</I> (string
&optional
start)
<blockquote>Convert a string to a list of tokens.</blockquote>
<A NAME="parse-infix-token"><P><A HREF="../logic/algorithms/infix.lisp"><B>parse-infix-token</B></A></A> <I>function</I> (string
start)
<blockquote>Return the first token in string and the position after it, or nil.</blockquote>
<A NAME="parse-span"><P><A HREF="../logic/algorithms/infix.lisp"><B>parse-span</B></A></A> <I>function</I> (string
pred
i)
<P>
<A NAME="make-logic-symbol"><P><A HREF="../logic/algorithms/infix.lisp"><B>make-logic-symbol</B></A></A> <I>function</I> (string)
<blockquote>Convert string to symbol, preserving case, except for AND/OR/NOT/FORALL/EXISTS.</blockquote>
<A NAME="operator-char?"><P><A HREF="../logic/algorithms/infix.lisp"><B>operator-char?</B></A></A> <I>function</I> (x)
<P>
<A NAME="symbol-char?"><P><A HREF="../logic/algorithms/infix.lisp"><B>symbol-char?</B></A></A> <I>function</I> (x)
<P>
<A NAME="function-symbol?"><P><A HREF="../logic/algorithms/infix.lisp"><B>function-symbol?</B></A></A> <I>function</I> (x)
<P>
<A NAME="whitespace?"><P><A HREF="../logic/algorithms/infix.lisp"><B>whitespace?</B></A></A> <I>function</I> (ch)
<P>
<A NAME="logic/environments/shopping.lisp"><HR>
<H2>File <A HREF="../logic/environments/shopping.lisp">logic/environments/shopping.lisp</A></H2></A>
<H2><I> The Shopping World: </I>
</H2>
<I> Warning! This code has not yet been tested or debugged!</I>
<A NAME="*page250-supermarket*"><P><A HREF="../logic/environments/shopping.lisp"><B>*page250-supermarket*</B></A></A> <I>variable</I>
<P>
<A NAME="shopping-world"><P><A HREF="../logic/environments/shopping.lisp"><B>shopping-world</B></A></A> <I>type</I> nil
<P>
<H2><I> New Structures</I>
</H2>
<A NAME="credit-card"><P><A HREF="../logic/environments/shopping.lisp"><B>credit-card</B></A></A> <I>type</I> nil
<P>
<A NAME="food"><P><A HREF="../logic/environments/shopping.lisp"><B>food</B></A></A> <I>type</I> nil
<P>
<A NAME="tomato"><P><A HREF="../logic/environments/shopping.lisp"><B>tomato</B></A></A> <I>type</I> nil
<P>
<A NAME="lettuce"><P><A HREF="../logic/environments/shopping.lisp"><B>lettuce</B></A></A> <I>type</I> nil
<P>
<A NAME="onion"><P><A HREF="../logic/environments/shopping.lisp"><B>onion</B></A></A> <I>type</I> nil
<P>
<A NAME="orange"><P><A HREF="../logic/environments/shopping.lisp"><B>orange</B></A></A> <I>type</I> nil
<P>
<A NAME="apple"><P><A HREF="../logic/environments/shopping.lisp"><B>apple</B></A></A> <I>type</I> nil
<P>
<A NAME="grapefruit"><P><A HREF="../logic/environments/shopping.lisp"><B>grapefruit</B></A></A> <I>type</I> nil
<P>
<A NAME="sign"><P><A HREF="../logic/environments/shopping.lisp"><B>sign</B></A></A> <I>type</I> (words)
<P>
<A NAME="cashier-stand"><P><A HREF="../logic/environments/shopping.lisp"><B>cashier-stand</B></A></A> <I>type</I> nil
<P>
<A NAME="cashier"><P><A HREF="../logic/environments/shopping.lisp"><B>cashier</B></A></A> <I>type</I> nil
<P>
<A NAME="seeing-agent-body"><P><A HREF="../logic/environments/shopping.lisp"><B>seeing-agent-body</B></A></A> <I>type</I> (zoomed-at
can-zoom-at
visible-offsets)
<P>
<A NAME="shopper"><P><A HREF="../logic/environments/shopping.lisp"><B>shopper</B></A></A> <I>type</I> nil
<P>
<H2><I> Percepts</I>
</H2>
<A NAME="get-percept:shopping-world"><P><A HREF="../logic/environments/shopping.lisp"><B>get-percept</B></A></A> <I>method</I> ((env
shopping-world)
agent)
<blockquote>The percept is a sequence of sights, touch (i.e. bump), and sounds.</blockquote>
<A NAME="see"><P><A HREF="../logic/environments/shopping.lisp"><B>see</B></A></A> <I>function</I> (agent
env)
<blockquote>Return a list of visual percepts for an agent. Note the agent's camera may
either be zoomed out, so that it sees several squares, or zoomed in on one.</blockquote>
<A NAME="feel"><P><A HREF="../logic/environments/shopping.lisp"><B>feel</B></A></A> <I>function</I> (agent
env)
<P>
<A NAME="hear"><P><A HREF="../logic/environments/shopping.lisp"><B>hear</B></A></A> <I>function</I> (agent
env)
<P>
<A NAME="see-loc"><P><A HREF="../logic/environments/shopping.lisp"><B>see-loc</B></A></A> <I>function</I> (loc
env
zoomed-at)
<P>
<A NAME="appearance"><P><A HREF="../logic/environments/shopping.lisp"><B>appearance</B></A></A> <I>function</I> (object)
<blockquote>Return a list of visual attributes: (loc size color shape words)</blockquote>
<A NAME="object-words"><P><A HREF="../logic/environments/shopping.lisp"><B>object-words</B></A></A> <I>function</I> (object)
<P>
<A NAME="zoom"><P><A HREF="../logic/environments/shopping.lisp"><B>zoom</B></A></A> <I>function</I> (agent-body
env
offset)
<blockquote>Zoom the camera at an offset if it is feasible; otherwise zoom out.</blockquote>
<HR>
<TABLE BORDER=4 CELLPADDING=4 CELLSPACING=0><tr>
<td> <A HREF="../../aima.html">AIMA Home</A>
<td> <A HREF="../../contact.html">Authors</A>
<td> <A HREF="overview.html">Lisp Code</A>
<td> <A HREF="../../prog.html">AI Programming</A>
<td> <A HREF="../../instructors.html">Instructors Pages</A>
</TABLE>
</BODY>
</HTML>
|